
TD5 - Fonctions de plusieurs variables, E.D.P., Optimisation

1 Lignes de niveaux, continuité

Exercice 1 Pour chacune des expressions suivantes, définir une fonction f : D →
R avec D ⊂ R2 maximale au sens de l’inclusion ⊂ et étudier sa continuité sur D.
Tracer l’allure de D et des ensembles de niveaux Lc(f) = {(x, y) ∈ D : f(x, y) = c}
avec c ∈ R indiqué.
(a) f(x, y) = y2, c ∈ {−1, 0, 1, 4} ;
(b) f(x, y) = 1

2x+ y, c ∈ {−2,−1, 0, 1, 2} ;
(c) f(x, y) = ln(x2 + y2 − 1), c ∈ {−100, 0, 2} ;
(d) f(x, y) =

√
1− xy, c ∈

{
−1, 0, 12 , 1, 2

}
.

Solution. Définissons tout d’abord les fonctions (projections canoniques) p1, p2 :
R2 → R en posant

p1(x, y) = x et p2(x, y) = y pour tout (x, y) ∈ R2

qui sont évidemment continues sur R2 car linéaires.

(a) Avec D = R2, définissons la fonction f : D → R par

f(x, y) = y2 pour tout (x, y) ∈ D.

Celle-ci est continue sur D puisque f = p22. D’autre part, on vérifie sans difficultés
que L−1(f) = ∅, L0(f) = R × {0}, L1(f) = R × {−1} ∪ R × {1} et L4(f) =
R× {−2} ∪ R× {2}. La représentation géométrique de ces ensembles et de D est
laissée à titre d’exercice (Exer).

(b) Posons D = R2 et considérons la fonction f : D → R définie par

f(x, y) =
1

2
x+ y pour tout (x, y) ∈ D.

L’égalité f = 1
2p1 + p2 nous assure que f est continue sur D. Enfin, pour chaque

c ∈ R, on a

Lc(f) =

{
(x, y) ∈ R2 : y = c− 1

2
x

}
.

La représentation géométrique de ces ensembles et deD est laissée à titre d’exercice
(Exer).

(c) Notons B la boule unité fermée associée à la norme euclidienne de R2 et
posons D = R2 \ B. On constate tout de suite que pour tout (x, y) ∈ R2,

x2 + y2 − 1 > 0⇔ (x, y) /∈ B

ce qui permet de définir la fonction f : D → R en posant

f(x, y) = ln(x2 + y2 − 1) pour tout (x, y) ∈ D.

La continuité de f sur l’ouvert D de R2 est claire puisque f = ln(q21 + q22 − 1) où
qi désigne la restriction de pi à D pour chaque i ∈ {1, 2} et où 1 : D → R désigne
la fonction constante de valeur 1. Enfin, on vérifie que pour chaque c ∈ R,

Lc(f) =
{

(x, y) ∈ D : x2 + y2 = ec + 1
}
.
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La représentation géométrique de ces ensembles et deD est laissée à titre d’exercice
(Exer).

(d) Notons H1 =
{

(x, y) ∈ R?− × R : y ≥ 1
x

}
, H2 =

{
(x, y) ∈ R?+ × R : y ≤ 1

x

}
et D = H1 ∪H2 ∪ {0} × R et observons que pour tout (x, y) ∈ R2

1− xy ≥ 0⇔ (x, y) ∈ D.

Ceci permet notamment de définir la fonction f : D → R en posant

f(x, y) =
√

1− xy pour tout (x, y) ∈ D.

La continuité de f en chaque point de D s’obtient en écrivant f =
√
1− q1.q2 où

qi désigne la restriction de pi à D pour chaque i ∈ {1, 2} et où 1 : D → R est la
fonction constante de valeur 1. Concernant les ensembles de niveaux de f , il est
clair que Lc(f) = ∅ pour tout réel c < 0 et que pour tout réel c ≥ 0,

Lc(f) =
{

(x, y) ∈ D : xy = 1− c2
}
.

Il s’ensuit pour tout c ∈ R+ \ {1},

Lc(f) =

{
(x, y) ∈ H1 ∪H2 : y =

1− c2

x

}
et

L1(f) = {(x, y) ∈ D : xy = 0} = ({0} × R) ∪ (R× {0}).

La représentation géométrique deD et de ces ensembles est laissée à titre d’exercice
(Exer).

Exercice 2 (1) Soit f : R2 → R et (x0, y0) ∈ R2 donnés. On suppose que les
fonctions f(·, y0) et f(x0, ·) sont continues en x0 et y0. Ceci implique t-il que f est
continue en (x0, y0) ?
(2) Etudier, en utilisant la définition, la continuité en (0, 0) des fonctions f, g :
R2 → R définies pour tout (x, y) ∈ R2 par

f(x, y) = |1 + x+ y|

et

g(x, y) =

{
x3−y3
x2+y2

si (x, y) 6= (0, 0),

0 si (x, y) = (0, 0).

Solution. (1) Soit f : R2 → R la fonction définie par

f(x, y) =

{
xy

x2+y2
si (x, y) 6= (0, 0),

0 sinon.

On vérifie tout de suite que les fonctions f(·, 0), f(0, ·) : R→ R sont continues sur
R. D’autre part, pour tout entier n ≥ 1, on a

f(
1

n
,

1

n
) = 2.

Ceci et l’égalité f(0, 0) = 0 justifient que f n’est pas continue en (0, 0).
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(2) Munissons R2 de la norme euclidienne usuelle ‖·‖ et notons U sa boule unité
ouverte.
(a) Soit f : R2 → R la fonction définie par

f(x, y) = |1 + x+ y| pour tout (x, y) ∈ R2.

Etudions la continuité de f en (0, 0). Soit ε > 0 un réel fixé. Posons η = ε
2 > 0 et

observons que pour tout (x, y) ∈ ηU, on a

|f(x, y)− f(0, 0)| = |f(x, y)− 1|
= |x+ y|
≤ |x|+ |y|
≤ 2 ‖(x, y)‖ < 2η ≤ ε.

Ainsi, la fonction f est continue en (0, 0).

(b) Soit g : R2 → R la fonction définie pour tout (x, y) ∈ R2 par

g(x, y) =

{
x3−y3
x2+y2

si (x, y) 6= (0, 0),

0 si (x, y) = (0, 0).

Etudions la continuité de g en (0, 0). Soit ε > 0 un réel fixé. Posons η = ε
4 > 0 et

notons que pour tout (x, y) ∈ ηU \ {(0, 0)}, on a

|g(x, y)− g(0, 0)| =
∣∣x3 − y3∣∣
x2 + y2

=

∣∣(x− y)(x2 + xy + y2)
∣∣

‖(x, y)‖2
.

D’autre part, remarquons que pour tout (x, y) ∈ R2,

|x− y| ≤ |x|+ |y| ≤ 2 ‖(x, y)‖

et ∣∣x2 + y2 + xy
∣∣ ≤ (x2 + y2) + |xy| ≤ 2 ‖(x, y)‖2 .

Il vient alors pour tout (x, y) ∈ ηU,

|g(x, y)− g(0, 0)| ≤ 4 ‖(x, y)‖ < 4η ≤ ε.

Ceci justifie la continuité de g en (0, 0).

Exercice 3 Etudier la continuité en (0, 0) des fonctions suivantes :
(a) f : R2 → R définie pour tout (x, y) ∈ R2 par

f(x, y) =

{
xy

x2+y2
si (x, y) 6= (0, 0),

0 si (x, y) = (0, 0).

(b) f : R2 → R définie pour tout (x, y) ∈ R2 par

f(x, y) =

1−cos(
√
x2+y2)

x2+y2
si (x, y) 6= (0, 0),

1
2 si (x, y) = (0, 0).

(c) f : R→ R définie pour tout (x, y) ∈ R2 par

f(x, y) =

{
0 si (x, y) ∈ ∆,
|y|
x2
e−

|y|
x2 si (x, y) /∈ ∆.
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Solution. (a) Pour tout entier n ≥ 1, on a

f(
1

n
,

1

n
) = 2,

donc f ne tend pas vers f(0, 0) = 0 en (0, 0). Ainsi, f n’est pas continue en (0, 0).

(b) On a lim
u↓0

1−cos(
√
u)

u = 1
2 , donc

lim
(x,y)→(0,0)

1− cos(
√
x2 + y2)

x2 + y2
=

1

2
.

Ceci et l’égalité f(0, 0) = 1
2 nous disent que f est continue en (0, 0).

(c) Pour tout entier n ≥ 1, on a f( 1
n ,

1
n2 ) = e−1, donc f ne tend pas vers

f(0, 0) = 0 en (0, 0). Ainsi, f n’est pas continue en (0, 0).

2 Dérivées partielles

Exercice 4 Montrer en utilisant la définition de différentielle que la fonction f :
R2 → R définie par

f(x, y) = xy pour tout (x, y) ∈ R2

est différentiable sur R2.

Solution. Munissons R2 de la norme euclidienne usuelle ‖·‖. Fixons (x, y) ∈ R2.
Pour tout (h, k) ∈ R2, on a

f((x, y) + (h, k)) = xy + ϕ(x,y)(h, k) + hk,

où ϕ(x,y) : R2 → R est l’application (linéaire continue) définie par

ϕ(x,y)(h, k) = xk + yh pour tout (h, k) ∈ R2.

Il reste à observer que

lim
(h,k)→(0,0)

hk

‖(h, k)‖
= 0

puisque pour tout (h, k) ∈ R2 avec (h, k) 6= (0, 0)

0 ≤ |hk|√
h2 + k2

≤ ‖(h, k)‖2

‖(h, k)‖
= ‖(h, k)‖ .

On conclut alors que f est différentiable en (x, y) de différentielleDf(x, y) = ϕ(x,y).

Exercice 5 Déterminer les dérivées partielles premières là où elles existent de la
fonction
(a) f : R2 \ (R× {0})→ R définie par

f(x, y) = sin
x

y
pour tout (x, y) ∈ R2 \ (R× {0}).

(b) g : R2 \ {(0, 0)} → R définie par

g(x, y) =
1√

x2 + y2
pour tout (x, y) ∈ R2 \ {(0, 0)} .
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Solution. (a) La fonction f est différentiable sur l’ouvert R2 \ (R × {0}) de R2

(Exer). En particulier, f admet des dérivées partielles premières en chaque point
de R2 \ (R× {0}). De plus, on a pour tout (x0, y0) ∈ R2 \ (R× {0}),

∂f

∂x
(x0, y0) =

1

y0
cos(

x0
y0

) et
∂f

∂y
(x0, y0) = −x0

y20
cos(

x0
y0

).

(b) La fonction g est différentiable sur l’ouvert R2 \ {(0, 0)} de R2 (Exer). Il
s’ensuit que g admet des dérivées partielles premières en tout point de R2\{(0, 0)}.
De plus, on a pour tout (x0, y0) ∈ R2 \ {(0, 0)},

∂g

∂x
(x0, y0) = − x0

(x20 + y20)
3
2

et
∂g

∂y
(x0, y0) = − y0

(x20 + y20)
3
2

.

Exercice 6 Déterminer le plan tangent au point (1, 2) au graphe de f : R2 \
{(0, 0)} → R définie par

f(x, y) =
xy

x2 + y2
pour tout (x, y) ∈ R2 \ {(0, 0)}.

Solution. Le plan tangent au graphe de f en (1, 2) est donné par

T(1,2)(f) =
{

(x, y, z) ∈ R3 : z = f(1, 2) + ∂1f(1, 2)(x− 1) + ∂2f(1, 2)(y − 2)
}
.

Exercice 7 Soit f : R2 → R une fonction de classe C2 sur R2 et g : R → R une
fonction de classe C2 sur R. On définit h : R→ R par

h(t) = f(t, g(t)) pour tout t ∈ R.

Justifier que h est de classe C2 sur R. Calculer la dérivée première et seconde de
h.

Solution. La fonction h est de classe C2 sur R puisque h = f ◦ ϕ où ϕ : R→ R2

est la fonction de classe C2 sur R définie par

ϕ(t) = (t, g(t)) pour tout t ∈ R.

Notons que pour tout t ∈ R,

ϕ′(t) = Dϕ(t)(1) = (1, g′(t))

et écrivons

h′(t) = Dh(t)(1)

= D(f ◦ ϕ)(t)(1)

= Df(ϕ(t))(Dϕ(t)(1))

= Df(ϕ(t))(1, g′(t))

=
∂f

∂x
(t, g(t)) + g′(t)

∂f

∂y
(t, g(t)).
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Pour obtenir la dérivée seconde de h′′ de h, on peut écrire pour tout t ∈ R,

h′′(t) = Dh′(t)(1)

= D(
∂f

∂x
◦ ϕ+ g′ × ∂f

∂y
◦ ϕ)(t)(1)

= D
∂f

∂x
(ϕ(t))(1, g′(t)) + g′′(t)× ∂f

∂y
(ϕ(t))

+ g′(t)(D
∂f

∂y
(ϕ(t))(1, g′(t))

=
∂2f

∂x2
(t, g(t)) + g′(t)

∂2f

∂y∂x
(t, g(t)) + g′′(t)

∂f

∂y
(t, g(t))

+ g′(t)
( ∂2f
∂x∂y

(t, g(t)) + g′(t)
∂2f

∂y2
(t, g(t))

)
.

Exercice 8 Soit f : R2 → R une fonction de classe C2 autour de (0, 0). On
considère la fonction ϕ : R2 → R définie par

ϕ(t) = f(2t,−t) pour tout t ∈ R.

Déterminer le développement limité de ϕ en 0.

Solution. On munit R2 de la norme euclidienne usuelle ‖·‖ et on note U la boule
unité ouverte associée. Puisque f est de classe C2 autour de (0, 0), il existe un réel
η > 0 et une fonction ε : V → R avec lim

(x,y)→(0,0)
ε(x, y) = 0 tels que pour tout

(a, b) ∈ ηU,

f(a, b) = f(0, 0) +
∂f

∂x
(0, 0)a+

∂f

∂y
(0, 0)b

+
1

2
(a2

∂2f

∂x2
(0, 0) + 2ab

∂2f

∂x∂y
(0, 0) + b2

∂2f

∂y2
(0, 0)) + ‖(a, b)‖2 ε(a, b).

On en déduit qu’il existe un voisinage ouvert W de 0 dans R tel que pour tout
t ∈W ,

f(2t,−t) = f(0, 0) + 2
∂f

∂x
(0, 0)t− ∂f

∂y
(0, 0)t

+
1

2
(4t2

∂2f

∂x2
(0, 0)− 4t2

∂2f

∂x∂y
(0, 0) + t2

∂2f

∂y2
(0, 0)) + ‖(2t,−t)‖2 ε(2t,−t).

En particulier, on a pour tout t ∈W ,

ϕ(t) = f(0, 0) + (2
∂f

∂x
(0, 0)− ∂f

∂y
(0, 0))t

+ (2
∂2f

∂x2
(0, 0)− 2

∂2f

∂x∂y
(0, 0) +

∂2f

∂y2
(0, 0))t2 + o(t2).

Exercice 9 Etudier la continuité, l’existence des dérivées partielles premières et
la différentiabilité en tout point de R2 de la fonction f : R2 → R définie pour tout
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(x, y) ∈ R2 par :
(a)

f(x, y) =

{
sin(xy)
x2+y2

si (x, y) 6= (0, 0),

0 si (x, y) = (0, 0).

(b)

f(x, y) =

{
0 si (x, y) ∈ ∆,

xArctan( yx) si (x, y) /∈ ∆,

où ∆ = {0} × R.

Solution. On considère la norme euclidienne ‖·‖ sur R2 et on note B(a, r) la boule
ouverte associée de centre a ∈ R2 et de rayon r > 0.
(a) La fonction f est différentiable (donc continue) sur R2\{(0, 0)} (Exer). D’autre
part, elle n’est pas continue en (0, 0) (et donc pas différentiable en (0, 0)) puisque

lim
n→+∞

f(
1

n
,

1

n
) =

1

2
6= f(0, 0).

On observe enfin que

lim
t→0

f((0, 0) + t(1, 0))− f(0, 0)

t
= 0

et
lim
t→0

f((0, 0) + t(0, 1))− f(0, 0)

t
= 0,

i.e., f admet des dérivées partielles selon la première et la seconde variable en (0, 0)
et

∂f

∂x
(0, 0) =

∂f

∂y
(0, 0) = 0.

(b) La fonction f est différentiable (et donc continue) sur l’ouvert R2 \ ∆ de
R2. Soit (x, y) ∈ ∆. Examinons la continuité de f en (x, y). Fixons un réel ε > 0
et posons η = 2

πε. Pour tout (x, y) ∈ B((x, y), η) \∆, on a

|f(x, y)− f(x, y)| = |f(x, y)| ≤ |x| π
2
≤ ηπ

2
= ε.

On a également pour tout (x, y) ∈ ∆,

|f(x, y)− f(x, y)| = 0 ≤ ε.

Ainsi, pour tout (x, y) ∈ B((x, y), η), on a |f(x, y)− f(x, y)| ≤ ε. On en déduit
que f est continue en (x, y). Soit y ∈ R fixé. Pour tout t ∈ R \ {0}, notons que

t−1f((0, y) + t(1, 0)) = Arctan(
y

t
)

et
t−1f((0, y) + t(0, 1)) = 0.

En conséquence, on a que pour tout (a, b) ∈ ∆ \ {(0, 0)}, f n’admet pas de dérivée
partielle en la première variable en (a, b), on a l’égalité ∂f

∂x (0, 0) = 0 et on a que
pour tout (a, b) ∈ ∆, f admet une dérivée partielle en la seconde variable en (a, b)
vérifiant

∂f

∂y
(a, b) = 0 pour tout (a, b) ∈ ∆ ∪ {(0, 0)}.
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Exercice 10 Soit f : R2 → R la fonction définie par

f(x, y) =

{
x3y
x2+y2

si (x, y) 6= (0, 0),

0 si (x, y) = (0, 0).

Montrer que f est de classe C1 sur R2. Montrer que ∂2f
∂x∂y (0, 0) et ∂2f

∂y∂x(0, 0) existent
et les calculer. La fonction f est-elle de classe C2 sur un ouvert de R2 contenant
(0, 0) ?

Solution. On note ‖·‖ la norme euclidienne usuelle sur R2. La fonction f est
évidemment différentiable sur R2 \ {(0, 0)} (Exer). D’autre part, notons que pour
tout (h, k) ∈ R2 \ {(0, 0)}, on a

0 ≤ |f(h, k)|
‖(h, k)‖

≤ ‖(h, k)‖ .

Ceci entraîne que f est différentiable en (0, 0) de différentielle nulle. En particu-
lier, les dérivées partielles du premier ordre de f existent en tout point de R2 et
∂f
∂x (0, 0) = ∂f

∂y (0, 0) = 0. De manière élémentaire, on a tout de suite pour tout
(h, k) ∈ R2 \ {(0, 0)},

∂f

∂x
(h, k) =

h4k + 3h2k3

(h2 + k2)2
et

∂f

∂y
(h, k) =

h5 − h3k2

(h2 + k2)2
.

Maintenant, définissons g1, g2 : R2 → R par

g1(x, y) =

{
x4y+3x2y3

(x2+y2)2
si (x, y) 6= (0, 0),

0 si (x, y) = (0, 0)

et

g2(x, y) =

{
x5−x3y2
(x2+y2)2

si (x, y) 6= (0, 0),

0 si (x, y) = (0, 0).

Notons que g1(·, ·) = ∂f
∂x (·, ·) et que g2(·, ·) = ∂f

∂y (·, ·). Il est aisé de vérifier que
g1, g2 sont continues sur R2, d’où l’on tire que f est de classe C1 sur R2. D’autre
part, la fonction g1(0, ·) : R→ R est nulle en chaque point de R. Ainsi, ∂2f

∂y∂x(0, 0)

existe et vérifie ∂2f
∂y∂x(0, 0) = 0. De même, remarquons que g2(·, ·) = ∂f

∂y (·, ·) et que
la fonction g2(·, 0) : R→ R satisfait

(g2(·, 0))(x) = g2(x, 0) = x pour tout x ∈ R.

Ainsi ∂2f
∂x∂y (0, 0) existe et ∂2f

∂x∂y (0, 0) = 1. D’après le théorème de Schwarz, f n’est
de classe C2 sur aucun ouvert de R2 contenant (0, 0).

3 Changements de variables et E.D.P.

Exercice 11 Résoudre sur R2 l’équation aux dérivées partielles ∂f
∂x = 0 (resp.,

∂f
∂y = 0).
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Solution. Soit f : R2 → R une fonction. Supposons dans un premier temps qu’elle
admet une dérivée partielle première selon la première (resp., seconde) variable en
tout point de R2 vérifiant

∂1f(x, y) = 0 pour tout (x, y) ∈ R2

(resp.,
∂2f(x, y) = 0 pour tout (x, y) ∈ R2).

Fixons y0 ∈ R (resp., x0 ∈ R). En observant que

(f(·, y0))′(x) = ∂1f(x, y0) = 0 pour tout x ∈ R

(resp.,
(f(x0, ·))′(y) = ∂2f(x0, y) = 0 pour tout y ∈ R)

on obtient l’existence de Cy0 ∈ R (resp., Dx0 ∈ R) tel que

f(x, y0) = Cy0 pour tout x ∈ R

(resp.,
f(x0, y) = Dx0 pour tout y ∈ R).

Puisque y0 (resp., x0) est un réel quelconque, il existe une fonction C : R → R
satisfaisant

f(x, y) = C(y) pour tout (x, y) ∈ R2

(resp., il existe une fonction D : R→ R satisfaisant

f(x, y) = D(x) pour tout (x, y) ∈ R2).

Réciproquement, si f : R2 → R s’écrit

f(x, y) = g(y) pour tout (x, y) ∈ R2

(resp., s’écrit
f(x, y) = g(x) pour tout (x, y) ∈ R2)

pour une certaine fonction g : R → R, alors f est dérivable partiellement en la
première (resp., seconde) variable et vérifie

∂1f(x, y) = 0 pour tout (x, y) ∈ R2

(resp.,
∂2f(x, y) = 0 pour tout (x, y) ∈ R2).

Exercice 12 Résoudre sur R2 l’équation aux dérivées partielles ∂2f
∂x2

= 0 (resp.,
∂2f
∂y2

= 0).

Solution. Soit f : R2 → R une fonction. Supposons tout d’abord que f admette
une dérivée partielle seconde selon la première (resp., seconde) variable en tout
point de R2 satisfaisant

∂2f

∂x2
(a, b) = 0 pour tout (a, b) ∈ R2
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(resp.,
∂2f

∂y2
(a, b) = 0 pour tout (a, b) ∈ R2).

Soit v : R2 → R (resp., w : R2 → R) la fonction définie pour tout (a, b) ∈ R2 par

v(a, b) =
∂f

∂x
(a, b)

(resp.,

w(a, b) =
∂f

∂y
(a, b)).

Fixons b0 ∈ R (resp., a0 ∈ R). Ce qui précède dit alors que v(·, b0) (resp., w(a0, ·))
est dérivable sur R et satisfait

(v(·, b0))′(a) = 0 pour tout a ∈ R

(resp.,
(w(a0, ·))′(b) = 0 pour tout b ∈ R).

Ainsi, il existe Cb0 ∈ R (resp., Ea0 ∈ R) tel que

(f(·, b0))′(a) = v(a, b0) = Cb0 pour tout a ∈ R

(resp.,
(f(a0, ·))′(b) = w(a0, b) = Ea0 pour tout b ∈ R).

Ceci entraîne l’existence de Db0 ∈ R (resp., Fa0 ∈ R) tel que

f(a, b0) = Cb0a+Db0 pour tout a ∈ R

(resp.,
f(a0, b) = Ea0b+ Fa0 pour tout b ∈ R).

Le fait que b0 (resp., a0) soit quelconque dans R nous permet alors de dire qu’il
existe deux fonctions C,D : R→ R (resp., E,F : R→ R) telles que

f(a, b) = C(b)a+D(b) pour tout (a, b) ∈ R2

(resp.,
f(a, b) = E(a)b+ F (a) pour tout (a, b) ∈ R2).

Réciproquement, si f : R2 → R s’écrit

f(a, b) = ϕ(b)a+ ψ(b) pour tout (a, b) ∈ R2

(resp.,
f(a, b) = ϕ(a)b+ ψ(a) pour tout (a, b) ∈ R2)

avec ϕ,ψ : R → R deux fonctions quelconques, alors f est deux fois dérivable
partiellement selon la première (resp., seconde) variable en tout point de R2 et
satisfait

∂2f

∂x2
(a, b) = 0 pour tout (a, b) ∈ R2

(resp.,
∂2f

∂y2
(a, b) = 0 pour tout (a, b) ∈ R2).
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Exercice 13 Résoudre sur R2 l’équation aux dérivées partielles ∂2f
∂x∂y = 0.

Solution. Soit f : R2 → R une fonction. On suppose que ∂2f
∂x∂y (·) existe et vérifie

∂2f

∂x∂y
(a, b) = 0 pour tout (a, b) ∈ R2.

Soit g : R2 → R la fonction définie par

g(a, b) =
∂f

∂y
(a, b) pour tout (a, b) ∈ R2.

Fixons b0 ∈ R. Ce qui précède dit alors que pour tout a ∈ R,

∂g

∂x
(a, b0) = (g(·, b0))′(a) = 0.

Ainsi, il existe Cb0 ∈ R tel que

g(a, b0) = Cb0 pour tout a ∈ R

et ceci entraîne que g s’écrit pour une certaine fonction C : R→ R

g(a, b) = C(b) pour tout (a, b) ∈ R2.

Fixons a0 ∈ R. On a

(f(a0, ·))′(b) =
∂f

∂y
(a0, b) = g(a0, b) = C(b),

d’où l’existence de Da0 ∈ R tel que

f(a0, b) = C(b)b+Da0 .

On tire de tout ceci l’existence de deux fonctions Ĉ,D : R→ R telles que

f(a, b) = Ĉ(b) +D(a) pour tout (a, b) ∈ R.

De plus, notons que le fait que f soit dérivable partiellement en la seconde variable
en tout point de R2 entraîne que Ĉ est dérivable sur R. Réciproquement, si f :
R2 → R s’écrit sous la forme

f(a, b) = ϕ(b) + ψ(a) pour tout (a, b) ∈ R2

avec ϕ(·) : R→ R dérivable sur R et ψ : R→ R quelconque, f satisfait l’existence
de ∂2f

∂x∂y (·) et l’égalité

∂2f

∂x∂y
(a, b) = 0 pour tout (a, b) ∈ R2.
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Exercice 14 Soit f : R2 \ {(0, 0)} → R une fonction. On considère F : U =
]0,+∞[×R→ R définie par

F (r, θ) = f(r cos(θ), r sin(θ)) pour tout (r, θ) ∈ U.

(1) On suppose f différentiable sur R2 \ {(0, 0)}. Justifier que F est différentiable
sur U . Calculer ∂F

∂r et ∂F
∂θ .

(2) On suppose f de classe C2 sur R2 \ {(0, 0)}. Justifier que F est de classe C2

sur U . Calculer ∂2F
∂r2

, ∂2F
∂2θ

et ∂2F
∂θ∂r . On appelle Laplacien de f la fonction ∆f :

R2 \ {(0, 0)} → R définie par

∆f(x, y) =
∂2f

∂x2
(x, y) +

∂2f

∂y2
(x, y) pour tout (x, y) ∈ R2 \ {(0, 0)}.

Déterminer le Laplacien de f en coordonnées polaires.

Solution. (1) Par composition, F est différentiable sur l’ouvert U de R2. Fixons
(ρ, ψ) ∈ U et notons ξ = (ρ cos(ψ), ρ sin(ψ)). On a

∂F

∂r
(ρ, ψ) = cos(ψ)

∂f

∂x
(ξ) + sin(ψ)

∂f

∂y
(ξ)

et
∂F

∂θ
(ρ, ψ) = −ρ sin(ψ)

∂f

∂x
(ξ) + ρ cos(ψ)

∂f

∂y
(ξ).

(2) Par composition, F est de classe C2 sur l’ouvert U de R2. Fixons (ρ, ψ) ∈ U
et notons ξ = (ρ cos(ψ), ρ sin(ψ)). On a

∂2F

∂r2
(ρ, ψ) = cos2(ψ)

∂2f

∂x2
(ξ) + sin2(ψ)

∂2f

∂y2
(ξ) + 2 cos(ψ) sin(ψ)

∂2f

∂x∂y
(ξ)

puis

∂2F

∂θ2
(ρ, ψ) = ρ2 sin2(ψ)

∂2f

∂x2
(ξ)− 2ρ2 cos(ψ) sin(ψ)

∂2f

∂x∂y
(ξ)

+ ρ2 cos2(ψ)
∂2f

∂y2
(ξ)− ρ cos(ψ)

∂f

∂x
(ξ)− ρ sin(ψ)

∂f

∂y
(ξ)

et

∂2F

∂θ∂r
(ρ, ψ) = −ρ cos(ψ) sin(ψ)

∂2f

∂x2
(ξ) + ρ cos(ψ) sin(ψ)

∂2f

∂y2
(ξ)

+ ρ(cos2(ψ)− sin2(ψ))
∂2f

∂x∂y
(ξ)− sin(ψ)

∂f

∂x
(ξ) + cos(ψ)

∂f

∂y
(ξ).

D’autre part, observons que

ρ2
∂2F

∂r2
(ρ, ψ) +

∂2F

∂θ2
(ρ, ψ)

=ρ2
∂2f

∂x2
(ξ) + ρ2

∂2f

∂y2
(ξ)− ρ∂F

∂r
(ρ, ψ).

Il s’ensuit

∆f(ρ cos(ψ), ρ sin(ψ)) =
∂2F

∂r2
(ρ, ψ) +

1

ρ2
∂2F

∂θ2
(ρ, ψ) +

1

ρ

∂F

∂r
(ρ, ψ).
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Exercice 15 Soit Ω =
{

(x, y) ∈ R2 : x > 0
}
. Déterminer les fonctions f : Ω → R

différentiables sur Ω vérifiant

a
∂f

∂x
(a, b) + b

∂f

∂y
(a, b) = 0 pour tout (a, b) ∈ Ω.

Solution. Soit f : Ω → R une fonction. On suppose dans un premier temps que
f est différentiable sur Ω et satisfait

a
∂f

∂x
(a, b) + b

∂f

∂y
(a, b) = 0 pour tout (a, b) ∈ Ω. (3.1)

On pose U =]0,+∞[×]− π
2 ,

π
2 [ et on considère la fonction F : U → R définie par

F (r, θ) = f(r cos(θ), r sin(θ)) pour tout (r, θ) ∈ U.

La différentiabilité de f sur l’ouvert Ω de R2 assure celle de F sur l’ouvert U . On
vérifie de plus (Exer) que pour chaque (r0, θ0) ∈ U , on a

∂F

∂r
(r0, θ0) = cos(θ0)

∂f

∂x
(r0 cos(θ0), r0 sin(θ0)) + sin(θ0)

∂f

∂y
(r0 cos(θ0), r0 sin(θ0)).

En combinant ceci à (3.1), on obtient

∂F

∂r
(r0, θ0) = 0 pour tout (r0, θ0) ∈ U.

Il s’ensuit qu’il existe ϕ :]− π
2 ,

π
2 [→ R telle que

F (r, θ) = ϕ(θ) pour tout (r, θ) ∈ U.

Notons que le fait que F soit dérivable partiellement en la seconde variable en
chaque point de U assure que ϕ est dérivable sur ]− π

2 ,
π
2 [. Il reste alors à déduire

de la dernière égalité (Exer) que pour tout (a, b) ∈ Ω,

f(a, b) = (ϕ ◦Arctan)(
b

a
).

Réciproquement, si f : Ω → R s’écrit

f(a, b) = ψ(
b

a
) pour tout (a, b) ∈ Ω

avec ψ : R→ R dérivable sur R, alors f est différentiable sur Ω et satisfait

a
∂f

∂x
(a, b) + b

∂f

∂y
(a, b) = 0 pour tout (a, b) ∈ Ω.

Exercice 16 On dit qu’une fonction f : R2 \ {(0, 0)} → R est radiale lorsqu’il
existe une fonction H :]0,+∞[→ R telle que

f(r cos(θ), r sin(θ)) = H(r) pour tout (r, θ) ∈]0,+∞[×R.

Déterminer les fonctions radiales f : R2\{(0, 0)} → R de classe C2 sur R2\{(0, 0)}
satisfaisant

∆f(x, y) = 0 pour tout (x, y) ∈ R2 \ {(0, 0)} .
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Solution. Soit f : R2 \ {(0, 0)} → R de classe C2 sur R2 \ {(0, 0)} radiale et
satisfaisant

∆f(x, y) = 0 pour tout (x, y) ∈ R2 \ {(0, 0)} .

Introduisons la fonction F :]0,+∞[×R→ R définie par

F (r, θ) = f(r cos(θ), r sin(θ)) pour tout (r, θ) ∈]0,+∞[×R.

Puisque f est radiale, il existe H :]0,+∞[→ R telle que

F (r, θ) = H(r) pour tout (r, θ) ∈]0,+∞[×R.

Notons tout de suite que H est de classe C2 sur ]0,+∞[. D’autre part, le calcul
du Laplacien en coordonnées polaires donne pour tout (ρ, ψ) ∈]0,+∞[×R,

∆f(ρ cos(ψ), ρ sin(ψ)) =
∂2F

∂r2
(ρ, ψ) +

1

ρ2
∂2F

∂θ2
(ρ, ψ) +

1

ρ

∂F

∂r
(ρ, ψ) = 0.

On a tout de suite ∂F
∂r (ρ, ψ) = H ′(ρ) et ∂2F

∂r2
(ρ, ψ) = H ′′(ρ) pour tout (ρ, ψ) ∈

]0,+∞[×R. Il vient alors

1

ρ
H ′(ρ) +H ′′(ρ) = 0 pour tout ρ ∈]0,+∞[.

On en déduit qu’il existe λ,C ∈ R tels que

H(ρ) = λ ln(ρ) + C pour tout ρ ∈]0,+∞[.

En revenant à la définition de H, on aboutit à

f(x, y) = λ ln(
√
x2 + y2) + C pour tout (x, y) ∈ R2 \ {(0, 0)} .

Réciproquement, il est clair que toute fonction g : R2 \ {(0, 0)} → R pour laquelle
il existe µ,K ∈ R tels que

g(x, y) = µ ln(
√
x2 + y2) +K pour tout (x, y) ∈ R2 \ {(0, 0)}

est radiale, de classe C2 sur R2 \ {(0, 0)} et vérifie ∆g(x, y) = 0 pour tout R2 \
{(0, 0)}.

Exercice 17 Soit f : R2 → R une fonction différentiable sur R2. Pour chaque
(a, b) ∈ R2, on considère la fonction ϕ(a,b) : R2 → R2 définie par

ϕ(x, y) = (x+ ay, x+ by) pour tout (x, y) ∈ R2.

(1) Déterminer l’ensemble D des éléments (a, b) ∈ R2 tels que ϕ(a,b) soit inversible.
(2) Montrer que pour chaque (a, b) ∈ R2, la fonction F(a,b) : R2 → R définie par

F(a,b)(x, y) = f(x+ ay, x+ by) pour tout (x, y) ∈ R2.

est différentiable sur R2. Calculer ses dérivées partielles premières.
(3) En déduire l’ensemble des fonctions g : R2 → R différentiable sur R2 vérifiant

∂g

∂x
=
∂g

∂y
.
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Solution. (1) Soit (a0, b0) ∈ R2 fixé. Notons que la fonction ϕ(a0,b0) est linéaire, en

particulier elle est inversible si et seulement si det

(
1 a0
1 b0

)
6= 0 si et seulement

si a0 6= b0. L’ensemble recherché D est donc

D =
{

(a, b) ∈ R2 : a 6= b
}
.

(2) Soit (a0, b0) ∈ R2. La fonction f étant différentiable sur R2, et ϕ(a0,b0) étant de
classe C∞ sur R2, la fonction F(a,b) est différentiable sur R2 par composition. On
a de plus pour tout (x, y) ∈ R2,

∂F(a0,b0)

∂x
(x, y) = DF(a0,b0)(x, y)(1, 0)

= Df ◦ ϕ(a0,b0)(x, y)

= Df(ϕ(a0,b0)(x, y))(Dϕ(a0,b0)(x, y)(1, 0))

= Df(x+ a0y, x+ b0y)(1, 1)

=
∂f

∂x
(x+ a0y, x+ b0y) +

∂f

∂y
(x+ a0y, x+ b0y)

et de même

∂F(a0,b0)

∂y
(x, y) = a0

∂f

∂x
(x+ a0y, x+ b0y) + b0

∂f

∂y
(x+ a0y, x+ b0y).

(3) Supposons dans un premier temps que f vérifie

∂f

∂x
(x, y) =

∂f

∂y
(x, y) pour tout (x, y) ∈ R2.

Notons que (−1, 1) ∈ D et posons F = F(−1,1). Via ce qui précède, on a pour tout
(x, y) ∈ R2,

∂F

∂y
(x, y) = 0.

Il s’ensuit qu’il existe alors h : R→ R une fonction telle que

f(x− y, x+ y) = F (x, y) = h(x) pour tout (x, y) ∈ R2.

Le caractère différentiable de F sur R2 entraîne tout de suite que h est dérivable
sur R. Il reste à écrire

f(x, y) = f(
x+ y

2
− y − x

2
,
x+ y

2
+
y − x

2
) = h(

x+ y

2
) pour tout (x, y) ∈ R2.

Réciproquement, toute fonction φ : R2 → R différentiable sur R2 s’écrivant

φ(x, y) = ψ(
x+ y

2
) pour tout (x, y) ∈ R2

avec ψ : R→ R dérivable sur R satisfait l’égalité

∂φ

∂x
(x, y) =

∂φ

∂y
(x, y) pour tout (x, y) ∈ R2.
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4 Extrema, fonctions implicites, extrema liés, optimi-
sation

Exercice 18 Soit K = [0, 1]2 et f : K → R la fonction définie par

f(x, y) = x− y + x3 + y3 pour tout (x, y) ∈ K.

Justifier l’existence d’un maximum et d’un minimum global sur K. Etudier les
extrema locaux de f sur intR2K et globaux de f sur K.

Solution. Puisque K est compact dans R2 et que f est continue sur K (Exer), la
fonction f admet un minimum et un maximum global sur K. D’autre part, puisque
f est différentiable sur l’ouvert intR2K (Exer) et que pour tout (u, v) ∈ R2 (Exer),

∂f

∂x
(u, v) = 1 + 3u2 et

∂f

∂y
(u, v) = −1 + 3v2,

f n’admet aucun minimum local (a fortiori global) sur ]0, 1[2. Donc, un minimum
(resp., maximum) global de f est nécessairement un élément de bdR2K. Observons
maintenant que pour tout y ∈ [0, 1],

f(0, y) = −y + y3 et f(1, y) = 2− y + y3

et que pour tout x ∈ [0, 1],

f(x, 0) = x+ x3 = f(x, 1).

Une étude élémentaire de variations donne (Exer)

max
y∈[0,1]

f(0, y) = 0 = f(0, 0) = f(0, 1),

max
y∈[0,1]

f(1, y) = 2 = f(1, 0) = f(1, 1),

max
x∈[0,1]

f(x, 0) = f(1, 0) = 2,

max
x∈[0,1]

f(x, 1) = f(1, 1) = 2

ainsi que

min
y∈[0,1]

f(0, y) = − 2

3
√

3
= f(0,

1√
3

),

min
y∈[0,1]

f(1, y) = 2− 2

3
√

3
= f(1,

1√
3

),

min
x∈[0,1]

f(x, 0) = f(0, 0) = 0,

min
x∈[0,1]

f(x, 1) = f(0, 1) = 0.

Il vient
max

(x,y)∈bdR2K
f(x, y) = 2 = f(1, 0) = f(1, 1)

et
min

(x,y)∈bdR2K
f(x, y) = − 2

3
√

3
= f(0,

1√
3

).

En conséquence (Exer), 2 est le maximum global de f sur K et − 2
3
√
3
est le

minimum global de f sur K.
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Exercice 19 Soit f : R2 → R la fonction définie par

f(x, y) = xy pour tout (x, y) ∈ R2.

(1) Donner l’allure des lignes de niveaux de f .
(2) Etudier les extrema de f sur R2.
(3) Etudier le problème d’optimisation sous contraintes

(P)

{
Minimiser f(x, y)

s.c. 4x2 + y2 = 4.

Solution. (1) Rappelons que pour chaque c ∈ R, la c-ligne de niveau de f est par
définition l’ensemble

Lc(f) =
{

(x, y) ∈ R2 : xy = c
}
.

Tout de suite, notons que L0 = R× {0} ∪ {0} × R et que pour tout c ∈ R \ {0},

Lc =
{

(x, y) ∈ R2 : y =
c

x

}
.

L’allure graphique des lignes de niveaux de f est laissée à titre d’exercice (Exer).

(2) La fonction f est de classe C∞ sur R2 (Exer). De plus, en observant que
pour tout (u, v) ∈ R2,

∂f

∂x
(u, v) = v et

∂f

∂y
(u, v) = u,

on obtient le fait que (0, 0) est l’unique point critique de f . Mais (0, 0) ne peut pas
être extremum local de f puisque la hessienne de f en (0, 0)

hess(0,0)f =

(
0 1
1 0

)
n’est ni positive ni négative.

(3) On s’intéresse au problème d’optimisation sous contraintes

(P)

{
Minimiser xy

s.c. 4x2 + y2 = 4.

Puisque C =
{

(x, y) ∈ R2 : 4x2 + y2 = 4
}
est compact (Exer) et f est continue

sur R2, f admet un minimum global sur C noté (x, y). En particulier, (x, y) est
une solution locale de (P) et il existe alors (Exer) un réel λ tel que

(y, x) + λ(8x, 2y) = 0.

Ceci donne sans difficultés {
2λy + 16λ2x = 0

x+ 2λy = 0,

et ce système entraîne x(16λ2 − 1) = 0. Si x = 0, alors y = 0 et ceci est absurde
puisqu’on doit avoir 4x2 + y2 = 4. Donc x 6= 0 et par suite 16λ2 = 1, i.e., λ ∈
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{
−1

4 ,
1
4

}
. Distinguons deux cas.

Cas 1 : λ = 1
4 . Dans ce cas, on a y = −2x. L’égalité 4x2 + y2 = 4 donne alors

x ∈
{
− 1√

2
, 1√

2

}
. Il s’ensuit

(x, y) ∈
{

(− 1√
2
,
√

2), (
1√
2
,−
√

2)

}
.

Cas 2 : λ = −1
4 . Dans ce cas, on a y = 2x. Grâce à 4x2 + y2 = 4 on a x ∈{

− 1√
2
, 1√

2

}
. Il s’ensuit

(x, y) ∈
{

(− 1√
2
,−
√

2), (
1√
2
,
√

2)

}
.

On en arrive à

min
(x,y)∈C

f(x, y) = f(− 1√
2
,
√

2) = f(
1√
2
,−
√

2) = −1.

Exercice 20 Trouver les points critiques et indiquer s’il s’agit d’extrema locaux
de la fonction f : R2 → R définie pour tout (x, y) ∈ R2 par :
(a) f(x, y) = 4xy − 2x2 − y4 ;
(b) f(x, y) = x4 + y4 − 2(x− y)2 ;
(c) f(x, y) = (2x2 + 3y2)e−(x

2+y2).

Solution. (a) La fonction f : R2 → R définie par

f(x, y) = 4xy − 2x2 − y4 pour tout (x, y) ∈ R4

est de classe C∞ sur R2 (Exer). Pour tout (u, v) ∈ R2, on a

∂f

∂x
(u, v) = −4u+ 4v et

∂f

∂y
(u, v) = 4u− 4v3

et ceci entraîne tout de suite (Exer) que l’ensemble des points critiques de f
est {(0, 0), (1, 1), (−1,−1)}. Déterminons si ces points critiques sont des extrema
locaux. Pour tout (u, v) ∈ R2, on a

∂2f

∂x∂y
(u, v) =

∂2f

∂y∂x
(u, v) = 4

et
∂2f

∂x2
(u, v) = −4, et

∂2f

∂y2
(u, v) = −12v2.

On a alors

hess(0,0)f =

(
−4 4
4 0

)
,

en particulier la hessienne de f en (0, 0) n’est ni positive ni négative. Ainsi, (0, 0)
n’est pas un extremum local. On a également

hess(1,1)f =

(
−4 4
4 −12

)
= hess(−1,−1)f.
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Puisque pour chaque (α, β) ∈ R2,

(
α β

)( −4 4
4 −12

)(
α
β

)
= −8β2 − 4(α− β)2,

la hessienne de f en (1, 1) et (−1,−1) est définie négative. Donc, (1, 1) et (−1,−1)
sont des maxima locaux de f .

(b) La fonction f : R2 → R définie par

f(x, y) = x4 + y4 − 2(x− y)2 pour tout (x, y) ∈ R2

est de classe C∞ sur R2 (Exer). Pour tout (u, v) ∈ R2, on a

∂f

∂x
(u, v) = 4u3 − 4(u− v) et

∂f

∂y
(u, v) = 4v3 + 4(u− v)

donc (Exer) l’ensemble des points critiques de f est
{

(0, 0), (
√

2,−
√

2), (−
√

2,
√

2)
}
.

Déterminons si ces points critiques sont des extrema locaux. Pour tout (u, v) ∈ R2,
on a

∂2f

∂x∂y
(u, v) =

∂2f

∂y∂x
(u, v) = 4

et
∂2f

∂x2
(u, v) = 12u2 − 4, et

∂2f

∂y2
(u, v) = 12v2 − 4.

Notons que

hess(0,0)f =

(
−4 4
4 −4

)
et que pour tout (α, β) ∈ R2,

(
α β

)( −4 4
4 −4

)(
α
β

)
= −4(α− β)2.

Ainsi, la hessienne de f en (0, 0) est négative mais pas définie négative. En obser-
vant que f(x, x) = 2x4 ≥ 0 pour tout x ∈ R et que f(x,−x) = 2x2(x2−4) ≤ 0 pour
tout x ∈ [−2, 2], on justifie que (0, 0) n’est pas un extremum local. Maintenant,
écrivons

hess(
√
2,−
√
2)f =

(
20 4
4 20

)
= hess(−

√
2,
√
2)f.

Pour tout (α, β) ∈ R2, on a

(
α β

)( 20 4
4 20

)(
α
β

)
= 20(α+

1

5
β)2 +

96

5
β2

et ceci nous dit que la hessienne de f en (
√

2,−
√

2) et en (−
√

2,
√

2) est définie
positive. Donc, (

√
2,−
√

2) et (−
√

2,
√

2) sont des minima locaux.

La fonction f : R2 → R définie par

f(x, y) = (2x2 + 3y2)e−(x
2+y2) pour tout (x, y) ∈ R2
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est de classe C∞ sur R2 (Exer). Pour tout (u, v) ∈ R2, on a

∂f

∂x
(u, v) = e−(u

2+v2)(4u−2u(2u2+3v2)) et
∂f

∂y
(u, v) = e−(u

2+v2)(6v−2v(2u2+3v2)).

Supposons que (x, y) ∈ R2 soit un point critique de f . On a{
4xy − 2xy(2x2 + 3y2) = 0

6xy − 2xy(2x2 + 3y2) = 0

ce qui donne tout de suite x = 0 ou y = 0. De ceci, on tire sans difficultés (Exer)
que

{(0, 0), (0,−1), (0, 1), (1, 0), (−1, 0)}

est l’ensemble des points critiques de f . Déterminons si ces points critiques sont
des extrema locaux. Pour tout (u, v) ∈ R2, on a

∂2f

∂x∂y
(u, v) =

∂2f

∂y∂x
(u, v) = −8uve−(u

2+v2),

∂2f

∂x2
(u, v) = e−(u

2+v2)(4− 20u2 + 8v4 + 12u2v2 − 6v2)

et
∂2f

∂y2
(u, v) = e−(u

2+v2)(6− 4u2 − 30v2 + 8u2v2 + 12v4).

Il vient tout de suite

hess(0,0)f =

(
4 0
0 6

)
,

donc la hessienne de f en (0, 0) est définie positive. Ainsi, (0, 0) est minimum local
de f . Il vient également que la hessienne de f en (1, 0) et en (0,−1) est définie
négative puisque

hess(0,1)f = e−1
(
−2 0
0 −12

)
= hess(0,−1)f.

Donc, (0, 1) et (0,−1) sont des maxima locaux. Enfin, la hessienne de f en (1, 0)
et en (−1, 0) n’est ni négative ni positive puisque

hess(1,0)f = e−1
(
−8 0
0 2

)
= hess(−1,0)f.

En conséquence, (1, 0) et (−1, 0) ne sont pas des extrema locaux.
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