TD5 - Fonctions de plusieurs variables, E.D.P., Optimisation

1 Lignes de niveaux, continuité

Exercice 1 Pour chacune des expressions suivantes, définir une fonction f : D —
R avec D C R? mazimale au sens de linclusion C et étudier sa continuité sur D.
Tracer Uallure de D et des ensembles de niveaux L.(f) = {(z,y) € D : f(z,y) = ¢}
avec ¢ € R indiqué.

(a) flz,y) =y* ce{-1,0,1,4};

(b) f(z,y) = %a: +y, ce {-2,-1,0,1,2};
(c) f(z,y) =In(z® +y? — 1), c € {-100,0,2};
(d) f($7y> Y, 1 —TY, CcE {_170a %7172}

Solution. Définissons tout d’abord les fonctions (projections canoniques) p1,p2 :
R? — R en posant

pi(z,y) =z et po(z,y) =y pour tout (z,y) € R
qui sont évidemment continues sur R? car linéaires.
(a) Avec D = R?, définissons la fonction f : D — R par
f(z,y) =y* pour tout (z,y) € D.

Celle-ci est continue sur D puisque f = p3. D’autre part, on vérifie sans difficultés

que L1(f) = 0, Lo(f) = R x {0}, Li(f) = Rx {1} UR x {1} et Ly(f) =
R x {—2} UR x {2}. La représentation géométrique de ces ensembles et de D est
laissée a titre d’exercice (Exer).

(b) Posons D = R? et considérons la fonction f : D — R définie par
1
fz,y) = 5 +y pour tout (z,y) € D.

L’égalité f = %pl + po nous assure que f est continue sur D. Enfin, pour chaque
ceR, ona

L) = {a e By = e o

La représentation géométrique de ces ensembles et de D est laissée a titre d’exercice
(Exer).

(c) Notons B la boule unité fermée associée a la norme euclidienne de R? et
posons D = R?\ B. On constate tout de suite que pour tout (z,y) € R?,

P4y’ —1>04 (2,9) ¢ B
ce qui permet de définir la fonction f: D — R en posant
f(z,y) =In(2® +4*> — 1) pour tout (z,y) € D.

La continuité de f sur I'ouvert D de R? est claire puisque f = ln(q% + q% —1) ou
g; désigne la restriction de p; & D pour chaque i € {1,2} et o 1: D — R désigne
la fonction constante de valeur 1. Enfin, on vérifie que pour chaque ¢ € R,

Le(f) ={(z,y) e D: 2” +y* =€ +1}.



La représentation géométrique de ces ensembles et de D est laissée a titre d’exercice
(Exer).

(d) Notons Hy = {(z,y) €ER: xR:y>1} Hy = {(z,y) e Ry xR:y <1}
et D= H; U HsU{0} x R et observons que pour tout (z,y) € R?

l—2y>0< (z,y) €D.
Ceci permet notamment de définir la fonction f: D — R en posant

f(z,y) =+/1—2y pour tout (z,y) € D.

La continuité de f en chaque point de D s’obtient en écrivant f = /1 — ¢1.g2 ou
g; désigne la restriction de p; & D pour chaque i € {1,2} et ou 1: D — R est la
fonction constante de valeur 1. Concernant les ensembles de niveaux de f, il est
clair que L.(f) = () pour tout réel ¢ < 0 et que pour tout réel ¢ > 0,

L(f)={(z,y) € D:ay = 1—02}.

Il s’ensuit pour tout ¢ € Ry \ {1},

L ={ay e oy =12}

et
Li(f) ={(z,y) € D : 2y = 0} = ({0} x R) U (R x {0}).

La représentation géométrique de D et de ces ensembles est laissée a titre d’exercice
(Exer). m

Exercice 2 (1) Soit f : R? — R et (wg,y0) € R? donnés. On suppose que les
fonctions f(-,y0) et f(xo,-) sont continues en xq et yo. Ceci implique t-il que f est
continue en (zg,yo) ?

(2) Etudier, en utilisant la définition, la continuité en (0,0) des fonctions f,g :
R? — R définies pour tout (z,y) € R? par

flz,y) =[1+z+y

et

o [ si@y) # 0,0,
9(@9) {0 si (z,y) = (0,0).

Solution. (1) Soit f : R? — R la fonction définie par

s si(n,y) # (0,0)
0 sinon.

f(z,y) ={

On vérifie tout de suite que les fonctions f(-,0), f(0,-) : R — R sont continues sur
R. D’autre part, pour tout entier n > 1, on a

Ceci et I'égalité f(0,0) = 0 justifient que f n’est pas continue en (0,0).



(2) Munissons R? de la norme euclidienne usuelle ||-|| et notons U sa boule unité
ouverte.
(a) Soit f: R? — R la fonction définie par

f(z,y) =[14+z+y| pour tout (z,y) € R?.

Etudions la continuité de f en (0,0). Soit € > 0 un réel fixé. Posons n = § > 0 et
observons que pour tout (z,y) € nU, on a

|f($,y) - f(070)| = |f(x,y) - 1‘
= |z +y|
< |a] + ly|
<2||(z.y)l < 2n <.
Ainsi, la fonction f est continue en (0, 0).
(b) Soit g : R? — R la fonction définie pour tout (z,y) € R? par
ot si(@y) #(0,0),
gla,y) =4 =
0 si (x,y) = (0,0).

Etudions la continuité de g en (0,0). Soit € > 0 un réel fixé. Posons n = § > 0 et
notons que pour tout (z,y) € nU\ {(0,0)}, on a
_ 2=y @ -y +ay+4P)]

l9(z,y) —9(0,0)| = it 1@

D’autre part, remarquons que pour tout (z,y) € R2,
[z —yl < [z + |y| < 2{|(z,y)]

et
|22 + 2 + ay| < (27 + ) + |oy| < 2|z, y)].

Il vient alors pour tout (z,y) € nU,

l9(z,y) —g(0,0)] < 4||(z,y)|| <4n <e.

Ceci justifie la continuité de g en (0,0). =

Exercice 3 Etudier la continuité en (0,0) des fonctions suivantes :
(a) f:R? = R définie pour tout (x,y) € R? par

Fag) = {fy si (z,y) # (0,0),

0 si (z,y) = (0,0)
(b) f:R2 = R définie pour tout (x,y) € R? par

1—cos(y/x2+y?) .
f(z,y) = W\/“’Ty ST (2,y #E0,0;,
x == .

N[
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—
—
<
S—
|
=
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(¢) f:R — R définie pour tout (x,y) € R? par

0 si(z,y) € A,
flz,y) = {l%e_;é si(z,y) ¢ A.



Solution. (a) Pour tout entier n > 1, on a
11

f(77 -

n’'n

donc f ne tend pas vers f(0,0) = 0 en (0,0). Ainsi, f n’est pas continue en (0, 0).

b) On a lim =08 _ 1 qonc
( 10 u 2

)=2,

(2,5)—(0,0) x2 + 42 )
Ceci et I'égalité f(0,0) = % nous disent que f est continue en (0,0).

(¢) Pour tout entier n > 1, on a f(%,#) = ¢!, donc f ne tend pas vers

£(0,0) =0 en (0,0). Ainsi, f n’est pas continue en (0,0). m

2 Dérivées partielles

Exercice 4 Montrer en utilisant la définition de différentielle que la fonction f :
R? — R définie par

f(z,y) ==zy pour tout (x,y) € R?
est différentiable sur R2.

Solution. Munissons R? de la norme euclidienne usuelle ||-||. Fixons (Z,7) € R
Pour tout (h, k) € R%, on a

ol PEy) - R? — R est I'application (linéaire continue) définie par
@y (h, k) =Tk +7yh pour tout (h, k) € R2.

Il reste & observer que
hk

lim =0
(hk)=(0.0) [[(, )
puisque pour tout (h, k) € R? avec (h, k) # (0,0)
T VRZEEE T [ R

On conclut alors que f est différentiable en (7,7) de différentielle D f(Z,7) = ¢
[ ]

(R, )| -
z,7)

Exercice 5 Déterminer les dérivées partielles premiéres la ot elles existent de la
fonction
(a) f:R2\ (R x {0}) — R définie par

f(z,y) = sing pour tout (x,y) € R*\ (R x {0}).

(b) g : R2\ {(0,0)} — R définie par
1

I\, Y) = —F—=
(@) = s

pour tout (x,y) € R*\ {(0,0)}.



Solution. (a) La fonction f est différentiable sur I'ouvert R? \ (R x {0}) de R?
(Exer). En particulier, f admet des dérivées partielles premiéres en chaque point
de R?\ (R x {0}). De plus, on a pour tout (xg,%0) € R?\ (R x {0}),

of 1 @ of o

- — Zo
Zo,Yo) = COS et — x0,Yo) = ——5 COS

Yo )

(b) La fonction g est différentiable sur l'ouvert R? \ {(0,0)} de R? (Exer). Il
s’ensuit que g admet des dérivées partielles premiéres en tout point de R?\ {(0,0)}.
De plus, on a pour tout (zo,y0) € R?\ {(0,0)},

@(ﬂfo Yo) = e @(fvo Yo) = — o
O @ +w): W

3 -
2

(5 + v3)

Exercice 6 Déterminer le plan tangent au point (1,2) au graphe de f : R?\
{(0,0)} — R définie par

Ty

212 pour tout (z,y) € R%\ {(0,0)}.

flz,y) =

Solution. Le plan tangent au graphe de f en (1,2) est donné par
Taa(f) = {(z,9,2) €R® 1 2= f(1,2) + 01 f(1,2)(w = 1) + Df (1,2)(y — 2)} -
|

Exercice 7 Soit f : R? — R une fonction de classe C? sur R? et g : R — R une
fonction de classe C? sur R. On définit h : R — R par

h(t) = f(t,g(t)) pour toutt € R.

Justifier que h est de classe C* sur R. Calculer la dérivée premiére et seconde de

h.

Solution. La fonction h est de classe C? sur R puisque h = f o ¢ ott p : R — R?
est la fonction de classe C? sur R définie par

©(t) = (t,g(t)) pour toutt € R.
Notons que pour tout ¢ € R,
¢'(t) = Dep(t)(1) = (1,4'(1))

et écrivons



Pour obtenir la dérivée seconde de h” de h, on peut écrire pour tout t € R,

(1) = DI/(1)(1)
=Dl ow+g x Lopy)

= D (o)1, 1) +9"(1) = ggjw»

2 2
= G (t.9(0) + ¢ () T (1. g(0) + 90 (1. 9(0)

2 2
310 (500 + 05

(t,9()))-
]

Exercice 8 Soit f : R?> — R une fonction de classe C? autour de (0,0). On
considére la fonction ¢ : R? — R définie par

o(t) = f(2t,—t) pour toutt € R.
Déterminer le développement limité de ¢ en 0.

Solution. On munit R? de la norme euclidienne usuelle ||-|| et on note U la boule
unité ouverte associée. Puisque f est de classe C? autour de (0,0), il existe un réel
17 > 0 et une fonction ¢ : V.— R avec  lim e(z,y) = 0 tels que pour tout

(z,9)—(0,0)
(a,b) € nU,
f(a,b) = £(0,0) + g—f(o 0)a + fo(o 0)b
1, ,0°f O f i 2
+ 307 5.5(0,0) + 20b 52 (0,0) + 175 5(0,0) + (0, 8)|* 2(ab).

On en déduit qu’il existe un voisinage ouvert W de 0 dans R tel que pour tout
te W,

f(2t,—t) = £(0,0) +2‘;f(0 0)t — gf(o 0)t

*f Of
Ox? 0x0y

0*f

% (0,0)) + [|(2t, —t)||* e(2t, —1).

(4t2 (0,0) — 4¢* (0,0) + 2=

En particulier, on a pour tout t € W,

o) = 10,0+ 2520,0) - L 0.0

Ox
0% f 82f 0% f

000 2509, 52

e (0,0))t* + o(t?).

(0,0) +
]

Exercice 9 Ftudier la continuité, [’existence des dérivées partielles premiéres et
la différentiabilité en tout point de R? de la fonction f : R? — R définie pour tout



(z,y) € R? par
(a) o)
sin(xy L
fag) = 4 7t S (z,y) # (0,0),
0 si(z,y) = (0,0).
(0)
0 si(z,y) € A,
f(z,y) = u
rArctan(Z) si(z,y) ¢ A,
ou A ={0} x R.
Solution. On considére la norme euclidienne ||-|| sur R2 et on note B(a,r) la boule

ouverte associée de centre a € R? et de rayon r > 0.
(a) La fonction f est différentiable (donc continue) sur R?\{(0,0)} (Exer). D’autre

part, elle n’est pas continue en (0,0) (et donc pas différentiable en (0,0)) puisque
11 1
lim (L) =24 (0.0)

n—-+o0o

On observe enfin que

f((0,0) +(1,0)) = f(0,0)

lim =0
t—0 t

ot 0,0 1
lim f(( ) )+t(0, )) _f(070) :O,
t—0 t

i.e., f admet des dérivées partielles selon la premiére et la seconde variable en (0, 0)

et
of af

ox 90 = oy

Z2(0,0) = 0.

(b) La fonction f est différentiable (et donc continue) sur I'ouvert R? \ A de
R2. Soit (7,7) € A. Examinons la continuité de f en (7,%). Fixons un réel £ > 0
et posons n = 2¢. Pour tout (z,y) € B((Z,¥),n) \ A, on a

) = F@D = 1 fay)| < el 5 <nF =

On a également pour tout (z,y) € A,

[f(z,y) = f(@,7)] =0 <e.

Ainsi, pour tout (x,y) € B((Z,9),n), on a |f(x,y) — f(Z,7)| < e. On en déduit
que f est continue en (Z,7). Soit § € R fixé. Pour tout ¢ € R\ {0}, notons que

1£((0,9) + £(1,0)) = Arctan(%)

et
t£((0,7) +1(0,1)) = 0.
En conséquence, on a que pour tout (a,b) € A\{(0,0)}, f n’admet pas de dérivée
partielle en la premiére variable en (a,b), on a I’égalité %(O, 0) = 0 et on a que
pour tout (a,b) € A, f admet une dérivée partielle en la seconde variable en (a,b)
vérifiant
of

6TJ(G, b) =0 pour tout (a,b) € AU{(0,0)}.



Exercice 10 Soit f : R?> = R la fonction définie par

o= e sy #0,0),
f(@:9) {0 si(z,y) = (0,0).

Montrer que f est de classe C* sur R?. Montrer que ;;gy(o, 0) et 881/2535(0,0) existent

et les calculer. La fonction f est-elle de classe C? sur un ouvert de R? contenant

(0,0) ?

Solution. On note ||-|| la norme euclidienne usuelle sur R2. La fonction f est
évidemment différentiable sur R?\ {(0,0)} (Exer). D’autre part, notons que pour
tout (h,k) € R%2\ {(0,0)}, on a

(0, 1)
O= i my =10PI-

Ceci entraine que f est différentiable en (0,0) de différentielle nulle. En particu-
lier, les dérivées partielles du premier ordre de f existent en tout point de R? et

%(O7 0) = %(0,0) = 0. De maniére élémentaire, on a tout de suite pour tout
(h, k) € R*\ {(0,0)},

g( )_h4k‘—|—3h2k:3 ot g(h )_h5—h3k:2

ox 7 (h2 4 k2)2 oy (k2 + k2%

Maintenant, définissons g, g» : R> — R par

sly3a2y® 0.0
gi(z,y) = { @iy St (z,y) # (0,0),

0 si (2,y) = (0,0)

et o
gQ(x y) e W S1 (x7 y) # (07 0)7
) 0 si (z,y) = (0,0).

Notons que gi(-,-) = %(,) et que ga(+, ) = %5(’) Il est aisé de vérifier que

g1, g2 sont continues sur R?, d’ott I'on tire que f est de classe C! sur R%. D’autre
2
part, la fonction ¢1(0,-) : R — R est nulle en chaque point de R. Ainsi, %(0, 0)
2
existe et vérifie %(0, 0) = 0. De méme, remarquons que ga(-,-) = %(, -) et que
la fonction ga(-,0) : R — R satisfait

(g2(-,0))(z) = go(x,0) = pour tout x € R.

Ainsi %(0,0) existe et gjgy (0,0) = 1. D’aprés le théoréme de Schwarz, f n’est

de classe C? sur aucun ouvert de R? contenant (0,0). m

3 Changements de variables et E.D.P.

Exercice 11 Résoudre sur R? léquation aux dérivées partielles % = 0 (resp.,
af _ 0)
oy :



Solution. Soit f : R? — R une fonction. Supposons dans un premier temps qu’elle
admet une dérivée partielle premiére selon la premiére (resp., seconde) variable en
tout point de R? vérifiant

o1 f(x,y) =0 pour tout (z,y) € R?

(resp.,
dof(x,y) =0 pour tout (z,y) € R?).

Fixons yg € R (resp., 9 € R). En observant que

(f(,90)) (z) = 01 f(x,90) =0 pour tout x € R

(resp.,
(f(xo,-)) (y) = 0o f (x0,y) =0 pour tout y € R)

on obtient I'existence de Cy, € R (resp., Dy, € R) tel que
f(z,y0) =Cy, pour toutz € R

(resp.,
f(zo,y) = Dy, pour touty € R).

Puisque yp (resp., xg) est un réel quelconque, il existe une fonction C' : R — R
satisfaisant
f(z,5) = Cly) pour tout (z,y) € R?

(resp., il existe une fonction D : R — R satisfaisant
f(z,y) = D(x) pour tout (x,y) € R?).
Réciproquement, si f : R? — R s’écrit
f(z,y) = gly) pour tout (z,y) € R?

(resp., s’écrit

f(z,y) = g(z) pour tout (z,y) € R?)
pour une certaine fonction g : R — R, alors f est dérivable partiellement en la
premiére (resp., seconde) variable et vérifie

or1f(z,y) =0 pour tout (z,y) € R?

(resp.,
dof(x,y) =0 pour tout (z,y) € R?).
]
Exercice 12 Résoudre sur R? I’équation aux dérivées partielles % =0 (resp.,
82
o =0

Solution. Soit f : R?> — R une fonction. Supposons tout d’abord que f admette
une dérivée partielle seconde selon la premiére (resp., seconde) variable en tout
point de R? satisfaisant

0’ f

W(a, b) =0 pour tout (a,b) € R?
T



(resp.,

O f 2
W(a, b) =0 pour tout (a,b) € R*).
Y
Soit v : R? — R (resp., w : R? — R) la fonction définie pour tout (a,b) € R? par
o b) = 2 a,1)
(resp.,
wla,b) = G (a.0)

Fixons by € R (resp., ap € R). Ce qui précede dit alors que v(+, by) (resp., w(ag,))
est dérivable sur R et satisfait

(v(-,b0)) (a) =0 pour tout a € R

(resp.,
(w(ap,-))'(b) =0 pour tout b € R).

Ainsi, il existe Cp, € R (resp., Eq, € R) tel que
(f(,b0))(a) = v(a,b) = Chy pour tout a € R

(resp.,
(f(ao,-))'(b) = w(ao,b) = E,, pour tout b € R).

Ceci entraine 'existence de Dy, € R (resp., Fy, € R) tel que
f(a,by) = Cpya + Dy, pour touta € R

(resp.,
f(ag,b) = Eq,b+ Fy, pour toutb € R).

Le fait que by (resp., ag) soit quelconque dans R nous permet alors de dire qu’il
existe deux fonctions C, D : R — R (resp., E, F : R — R) telles que

f(a,b) = C(b)a+ D(b) pour tout (a,b) € R?

(resp.,
f(a,b) = E(a)b+ F(a) pour tout (a,b) € R?).
Réciproquement, si f : R? — R s’écrit
f(a,b) = p(b)a+(b) pour tout (a,b) € R?
(resp.,
f(a,b) = p(a)b+1(a) pour tout (a,b) € R?)

avec p,1¥ : R — R deux fonctions quelconques, alors f est deux fois dérivable
partiellement selon la premiére (resp., seconde) variable en tout point de R? et
satisfait

0*f 2
@(a, b) =0 pour tout (a,b) € R
(resp.,
0*f 2
a—yQ(a, b) =0 pour tout (a,b) € R*).
|

10



Exercice 13 Résoudre sur R? Iéquation aux dérivées partielles % =0.

Solution. Soit f : R? — R une fonction. On suppose que aajgy(‘) existe et vérifie
82
8mgy(a’ b) =0 pour tout (a,b) € R2.

Soit ¢ : R? — R la fonction définie par

g(a,b) = gf(a, b) pour tout (a,b) € R%
Y

Fixons by € R. Ce qui précéde dit alors que pour tout a € R,

dg

%(av bO) = (.g(v bO))/(a) =0.

Ainsi, il existe Cp, € R tel que
g(a,by) = Cp, pour touta € R
et ceci entraine que g s’écrit pour une certaine fonction C': R — R
gla,b) = C(b) pour tout (a,b) € R?.

Fixons ap € R. On a

(F(ao,))'(B) = g;%ao,b) — g(ao,b) = C(b),

d’ot I'existence de Dg, € R tel que
f(ao,b) = C(b)b+ Dy, .

On tire de tout ceci 'existence de deux fonctions é, D : R — R telles que

f(a,b) = C(b) + D(a) pour tout (a,b) € R.

De plus, notons que le fait que f soit dérivable partiellement en la seconde variable
en tout point de R? entraine que C' est dérivable sur R. Réciproquement, si f :
R? — R s’écrit sous la forme

f(a,b) = p(b) +¥(a) pour tout (a,b) € R?
avec p(+) : R — R dérivable sur R et ¢ : R — R quelconque, f satisfait 'existence

9? )2 iz
de azgy(') et 1'égalité

o0 f
0xdy

(a,b) =0 pour tout (a,b) € R2.

11



Exercice 14 Soit f : R?\ {(0,0)} — R wune fonction. On considére F : U =
10, +oo[xR — R définie par

F(r,0) = f(rcos(0),rsin(f)) pour tout (r,0) € U.

(1) On suppose f différentiable sur R?\ {(0,0)}. Justifier que F est différentiable
sur U. Calculer %—F et %—5
(2) On suppose f de classe C? sur R?\ {(0,0)}. Justifier que F est de classe C?
sur U. Calculer %275, ‘?;Tg et %. On appelle Laplacien de f la fonction Af :
R2\ {(0,0)} — R définie par
2 2
Af@T) = SH@D + 5 5@D) pow tout (3,5) € B\ {(0,0)).

Déterminer le Laplacien de f en coordonnées polaires.

Solution. (1) Par composition, F est différentiable sur I'ouvert U de R2. Fixons
(p,) € U et notons & = (pcos(v), psin(¢))). On a

G ) = cosw) 3L () + sin() 3 (€
et
g 00 = —psin() 32 + peost) T 9

(2) Par composition, F' est de classe C? sur 'ouvert U de R2. Fixons (p,9) € U
et notons & = (pcos(¢), psin(y)). On a

2F 2 2 2
G (0:10) = o ()T (€) +sin (1) G5 (€) + 2cos(v) sin(0) 520
puis
0*F 0? 0?
G (011 = 9505 5 (€) = 27 cos(v) sin) (€
0? 0 0
7 08 (0) G5 (€) = poos(u) g1 (€) — psin() 3 (€
et
0%F B N N
M(Pa Y) = —pcos(h) sm(@b)@(f) + pcos(i) Sm@)?(f)
 pleos? () — () o () — sin() 92 6) + con(1) L 6)
D’autre part, observons que
O*F O*F
P 5z () + S5 (0 1)
0? 0? OF
55+ PR~ G p.0).
Il s’ensuit
O*F 1 9*°F 10F
Af(pcos(y), psin(y)) = W(P, ¥) + Ew(ﬂ, ¥) + ;5(077@-
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Exercice 15 Soit {2 = {(x,y) eR?:z > O}. Déterminer les fonctions f : 2 — R
différentiables sur {2 vérifiant

aai
ox

(a,b) + bgf(a, b) =0 pour tout (a,b) € (2.
Y

Solution. Soit f : {2 — R une fonction. On suppose dans un premier temps que
f est différentiable sur {2 et satisfait

of of _
a%(a, b) + ba—y(a, b) =0 pour tout (a,b) € £2. (3.1)

On pose U =0, +oo[x] — F, [ et on considére la fonction F': U — R définie par
F(r,0) = f(rcos(f),rsin(f)) pour tout (r,0) € U.

La différentiabilité de f sur I'ouvert 2 de R? assure celle de F sur I'ouvert U. On
vérifie de plus (Exer) que pour chaque (rg,6p) € U, on a

687}:(7“0, (90) = COS(eo)%(T‘O COS(Q(]), To sin(@o)) + sin(Go)g‘;(m COS(QQ), To sin(@o)).

En combinant ceci a (3.1), on obtient

OF
8—(7“0,60) =0 pour tout (ro,0) € U.
-
Il s’ensuit qu’il existe ¢ :] — 7, Z[— R telle que

F(r,0) = p(0) pour tout (r,0) € U.

Notons que le fait que F' soit dérivable partiellement en la seconde variable en

chaque point de U assure que ¢ est dérivable sur | — 7, Z[. Il reste alors a déduire

de la derniére égalité (Exer) que pour tout (a,b) € (2,

fla,b) = (po Arctan)(g).

Réciproquement, si f : 2 — R s’écrit
b
fla,b) = w(a) pour tout (a,b) € 2

avec ¥ : R — R dérivable sur R, alors f est différentiable sur 2 et satisfait

of of _
a%(a, b) + ba—y(a, b) =0 pour tout (a,b) € £2.

Exercice 16 On dit qu’une fonction f : R?\ {(0,0)} — R est radiale lorsqu’il
existe une fonction H :]0,+oo[— R telle que

f(rcos(8),rsin(0)) = H(r) pour tout(r,0) €]0, 400 xR.

Déterminer les fonctions radiales f : R\ {(0,0)} — R de classe C? sur R?\{(0,0)}
satisfaisant

Af(z,y) =0 pour tout (z,y) € R?\ {(0,0)}.
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Solution. Soit f : R?\ {(0,0)} — R de classe C? sur R? \ {(0,0)} radiale et
satisfaisant

Af(z,y) =0 pour tout (z,y) € R*\ {(0,0)}.

Introduisons la fonction F' :)0, +0o[xR — R définie par
F(r,0) = f(rcos(6),rsin(f)) pour tout (r,0) €]0, +oo[xR.
Puisque f est radiale, il existe H :]0, +oo[— R telle que
F(r,0) = H(r) pour tout (r,0) €]0, +oo[xR.

Notons tout de suite que H est de classe C? sur ]0, +oo[. D’autre part, le calcul
du Laplacien en coordonnées polaires donne pour tout (p, 1) €]0, +00[xR,

0*F 1 0°F 1OF
Af(pcos(), psin(y)) = W(Pﬂﬁ) + ;wmw) + ;E(pv ¥) = 0.

On a tout de suite %—f(p, V) = H'(p) et %%(p,q/}) = H"(p) pour tout (p,v) €
10, +00[xR. Il vient alors

1
—H'(p) + H"(p) =0 pour tout p €]0, +o0].
)

On en déduit qu’il existe A\, C € R tels que
H(p) = An(p) + C  pour tout p €]0, +oo.
En revenant a la définition de H, on aboutit &
f(z,y) = An(y/22 4+ y2) + C  pour tout (z,y) € R\ {(0,0)}.

Réciproquement, il est clair que toute fonction g : R?\ {(0,0)} — R pour laquelle
il existe pu, K € R tels que

g(z,y) = pln(y/22 + y2) + K pour tout (z,y) € R\ {(0,0)}

est radiale, de classe C2 sur R?\ {(0,0)} et vérifie Ag(x,y) = 0 pour tout R?\
{(0,0)}. =

Exercice 17 Soit f : R> — R une fonction différentiable sur R%. Pour chaque
(a,b) € R2, on considére la fonction Plab) R? — R? définie par

o(z,y) = (z+ay,z+by) pour tout (z,y) € R%

(1) Déterminer l'ensemble D des éléments (a,b) € R? tels que @, ) soit inversible.
(2) Montrer que pour chaque (a,b) € R2, la fonction Flap) : R? — R définie par

Foay(z,y) = f(x+ay,z+by) pour tout (z,y) € R2.

est différentiable sur R?. Calculer ses dérivées partielles premiéres.
(3) En déduire I’ensemble des fonctions g : R? — R différentiable sur R? vérifiant

99 _ 9
or Oy

14



Solution. (1) Soit (ag, by) € R? fixé. Notons que la fonction ¢4, p,) est linéaire, en
ao

1 by ) # 0 si et seulement

particulier elle est inversible si et seulement si det <

si ag # bg. L’ensemble recherché D est donc
D ={(a,b) eR*:a#b}.

(2) Soit (ag, bg) € R?. La fonction f étant différentiable sur R?, et ¢4, 5,) étant de
classe C™ sur R?, la fonction F, (a,b) €st différentiable sur R? par composition. On
a de plus pour tout (7,7) € R?,

ot (3. 5) = DFjgy ) (7. 7)(1.0)
= Df 0 ¥(a0,b0) (T, J)
= D f(@(ag,b0) (T, 1)) (DY (a,b0) (T ¥)(1,0))
= Df(T + aoy, T + boy)(1,1)

) )
= a%(ﬂ a0y, T + boy) + az(“ a0y, T + boy)

et de méme

OF ag,b0)

_ . of _ _ _ of _ o _
dy (T,9) = a5 (T + aoy, T + boy) + bo By (T + a0y, T + boy).

(3) Supposons dans un premier temps que f vérifie

gi( ,Y) = g‘;j (z,7) pour tout (Z,7) € R

Notons que (—1,1) € D et posons F = F(_1,1)- Via ce qui précede, on a pour tout
(7,y) € R?,

OF

—(x,y) = 0.

50 =

Il s’ensuit qu’il existe alors h : R — R une fonction telle que
fx —y,z+y) = F(z,y) = h(z) pour tout (z,y) € R?.

Le caractére différentiable de F' sur R? entraine tout de suite que h est dérivable
sur R. Il reste & écrire

x + - T+ —x x +
f(z,y) = f( y_y , y,Y ) = h( y) pour tout (z,%) € R?.
2 2 2 2 2
Réciproquement, toute fonction ¢ : R? — R différentiable sur R? s’écrivant
o(x,y) = q/)(m * y) pour tout (z,y) € R?

2

avec ¥ : R — R dérivable sur R satisfait I’égalité

06 09 e
e (Z,7y) = By (Z,y) pour tout (Z,7y) € R”.
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4 Extrema, fonctions implicites, extrema liés, optimi-
sation

Exercice 18 Soit K = [0,1]? et f : K — R la fonction définie par
fx,y) =2 —y+2°+y* pour tout (z,y) € K.

Justifier Uexistence d’un mazimum et d’un minimum global sur K. Etudier les
extrema locaur de f sur intpe K et globaux de f sur K.

Solution. Puisque K est compact dans R? et que f est continue sur K (Exer), la
fonction f admet un minimum et un maximum global sur K. D’autre part, puisque
f est différentiable sur 'ouvert intg2 K (Exer) et que pour tout (u,v) € R? (Exer),

OF vy = 2 ot Moy = 14302
8$(u,v)—1+3u et 8y(u,v)— 1+ 3v7,

f n’admet aucun minimum local (a fortiori global) sur ]0, 1[2. Donc, un minimum
(resp., maximum) global de f est nécessairement un élément de bdg2 K. Observons
maintenant que pour tout y € [0, 1],

FOy)=-y+y° et fly)=2-y+y’
et que pour tout = € [0, 1],
f(@,0) =z +2° = f(z,1).
Une étude élémentaire de variations donne (Exer)

max f(ovy) =0=£(0,0) :f(ovl)a

y€[0,1]
max f(1,y) =2 = f(1,0) = f(1,1),
y€[0,1]
0) = f(1,0) =2
Joax [(2,0) = f(1,0) =2,
)= f(1,1)=2
zlg[%,}i]f(x’ )= f(1,1)
ainsi que
in F0.9) = —5== = f0. )
min YY) = ——— = ),
y€[0,1] Y 33 3
2 1
: 1, =2 — —— = 177 ’
iy L) =2 = 05 = 10, )
. ,0) = f(0,0) =0,
Jmin, f(,1) = J(0,1) = 0.
Il vient
=2=f(1,0)= f(1,1
(x,yﬁlﬁfkﬂf(%y) F(1,0) = £(1,1)
et

2 1
i ) = T == 07 =
(mvy)lgégw(f(ﬂf Y) 373 f( 7

En conséquence (Exer), 2 est le maximum global de f sur K et —

).

2

3 est le

minimum global de f sur K. =
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Exercice 19 Soit f : R?> = R la fonction définie par
f(z,y) =zy pour tout (z,y) € R%

(1) Donner lallure des lignes de niveaux de f.
(2) Etudier les extrema de f sur R2.
(3) Etudier le probleme d’optimisation sous contraintes

Minimiser f(z,y)
(P) 2, 0
s.c. 4z 4y =4

Solution. (1) Rappelons que pour chaque ¢ € R, la c-ligne de niveau de f est par
définition I’ensemble

L.f) = {(m,y) ERQ:xy:c}.

Tout de suite, notons que Ly = R x {0} U {0} x R et que pour tout ¢ € R\ {0},
ch{(»’v,y)GRQ:yzf}-
T

L’allure graphique des lignes de niveaux de f est laissée a titre d’exercice (Exer).

(2) La fonction f est de classe C* sur R? (Exer). De plus, en observant que
pour tout (u,v) € R?,

ﬁ(u,v) =v et

O (ua U) =u,

of
0y

on obtient le fait que (0,0) est I'unique point critique de f. Mais (0,0) ne peut pas
étre extremum local de f puisque la hessienne de f en (0,0)

0 1
hess(,0)f = < 10 >

n’est ni positive ni négative.

(3) On s’intéresse au probléme d’optimisation sous contraintes

Minimiser zy
(P 2, ,2
s.c. 4dz“4y*=4.
Puisque C' = {(z,y) € R? : 42% 4+ y* = 4} est compact (Exer) et f est continue

sur R?, f admet un minimum global sur C' noté (Z,7). En particulier, (Z,7) est
une solution locale de (P) et il existe alors (Exer) un réel A tel que

(1, %) + (8%, 27) = 0.

Ceci donne sans difficultés

20y + 160%z = 0
Z+2\7 =0,

et ce systéme entraine F(16A% — 1) = 0. Si 7 = 0, alors § = 0 et ceci est absurde
puisqu’on doit avoir 472 4+ 7% = 4. Donc T # 0 et par suite 162 = 1, i.e., A €

17



{—%7 %} Distinguons deux cas.
Cas 1 : A = ;. Dans ce cas, on a j = —27. L'égalité 47° + 7 = 4 donne alors

fe{—l,

} . Il s’ensuit

s
<

1 1
7,7) €4 (——=,V2), (—=,—V2) p.
@ e {25 VD. (5 —vD)
Cas2:)\:—%.Danscecas,onay:2f.Graceaélfz—i—@?:4ona§6
{—%,% . Il s’ensuit

On en arrive &
Jin fl@y) = f(—ﬁa\@) = f(

Exercice 20 Trouver les points critiques et indiquer s’il s’agit d’extrema locaux
de la fonction f : R%? — R définie pour tout (x,y) € R? par :

(a) fz,y) = day — 22> —y*;

(b) flzy) =2t +y* = 2(z —y)?;

() f(x,y) = (222 4 3y?)e~ (" +V).

Solution. (a) La fonction f : R? — R définie par
f(z,y) = 4zy — 222 — y*  pour tout (z,y) € R*
est de classe O sur R? (Exer). Pour tout (u,v) € R?, on a

of of 3

—(u,v) = —4du+4v et —(u,v)=4u—4v

 (u,0) S (.0)

et ceci entraine tout de suite (Exer) que 'ensemble des points critiques de f
est {(0,0),(1,1),(—1,—1)}. Déterminons si ces points critiques sont des extrema

locaux. Pour tout (u,v) € R? on a

0% f 0% f
dz0y (u,0) = dydzx (u,0) =4
et o f o f
_— = — _— = — 2
92 (u,v) 4, et 052 (u,v) 1207,
On a alors

—4 4
heSS(O,O)f = < 4 0 ) Y

en particulier la hessienne de f en (0,0) n’est ni positive ni négative. Ainsi, (0,0)
n’est pas un extremum local. On a également

-4 4
hess(; 1) f = < 4 19 ) = hess(_1 1) /.
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Puisque pour chaque (a, 8) € R

(a ﬁ)(‘f _412>(§)——8/32—4<a—5>2,

la hessienne de f en (1,1) et (=1, —1) est définie négative. Donc, (1,1) et (—1,—1)
sont des maxima locaux de f.

(b) La fonction f : R? — R définie par
flz,y) =zt +y* —2(x —y)* pour tout (z,y) € R?
est de classe O sur R? (Exer). Pour tout (u,v) € R? on a

of of

e — 43 — _ e — 43 —_
ax(u,v) du® — 4(u —v) et ay(u,v) 4v° + 4(u — v)

donc (Exer) I'ensemble des points critiques de f est {(0,0), (vV2,—v2), (—v2,v2) }.
Déterminons si ces points critiques sont des extrema locaux. Pour tout (u,v) € R?,
on a

0% f 0% f

Oxdy (uw,0) = Oyox (u,v) =4
et ) )
a—f(u,v =120 —4, et 8—f(u,v = 1202 — 4.
0x2 Oy?

Notons que

—4 4
hess(&o)f = ( 4 4 >

et que pour tout (a, ) € R?,

o (3 4)(5) e

Ainsi, la hessienne de f en (0,0) est négative mais pas définie négative. En obser-
vant que f(z,z) = 22* > 0 pour tout z € R et que f(x, —x) = 22%(22—4) < 0 pour
tout x € [—2,2], on justifie que (0,0) n’est pas un extremum local. Maintenant,
écrivons

20 4
hess(\/ﬁ77\/§)f = < 4 920 ) = hess(f\/i\/i)f.

Pour tout (o, 3) € R%, on a

(a ﬁ)<240 240><g)=20(a+;6)2+95652

et ceci nous dit que la hessienne de f en (\[ , —\/i) et en (—\/5, \/5) est définie
positive. Donc, (v/2, —v/2) et (—v/2,v/2) sont des minima locaux.

La fonction f : R? — R définie par

f(z,y) = (22 + 3y2)e*(x2+y2) pour tout (z,y) € R?
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est de classe C°° sur R? (Exer). Pour tout (u,v) € R?, on a

g(u,v) = e_(“2+”2)(4u—2u(2u2—|—302)) et ?(u,v) = e_(“2+“2)(60—21}(2u2—|—3v2)).
T Y

Supposons que (%, %) € R? soit un point critique de f. On a

4Ty — 277 (272 + 35%) = 0
67y — 277 (272 + 35%) = 0

ce qui donne tout de suite T = 0 ou ¥ = 0. De ceci, on tire sans difficultés (Exer)
que

{(070)3 (O’ _1)’ (Oa 1)7 (170)3 (_13 0)}

est ’ensemble des points critiques de f. Déterminons si ces points critiques sont
des extrema locaux. Pour tout (u,v) € R? on a

0% f 0% f —(u?+v?)
daoy ") = Gyag ) = ~Buve ’
2
%(u, v) = e~ (4 — 2002 + 8ut 4 12u%0% — 607)
et 52
3Z/J2C(u, v) = e~ ) (6 — 4u? — 300% + Suv? + 120%).

Il vient tout de suite

4 0
hess(o’o)f = ( 0 6 > ,

donc la hessienne de f en (0,0) est définie positive. Ainsi, (0,0) est minimum local
de f. Il vient également que la hessienne de f en (1,0) et en (0,—1) est définie
négative puisque

(-2 0
hess(o1)f =e ! ( 0 —12 ) = hess 1) [

Donc, (0,1) et (0,—1) sont des maxima locaux. Enfin, la hessienne de f en (1,0)
et en (—1,0) n’est ni négative ni positive puisque

_ -8 0
hess(1 o) f = e ! ( 0 9 > = hess(_1 )/

En conséquence, (1,0) et (—1,0) ne sont pas des extrema locaux. m
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