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Abstract. We introduce in a general Hilbert space the class of ρ(·)-strongly
convex sets. Various characterizations and properties of such sets involving the
farthest distance function and the farthest points are provided.

1. Introduction. Motivated by some convexity-type properties of reachable sets
of nonlinear control systems, H. Frankowska and C. Olech proved in Theorem 3.1 of
their 1980 paper [15] the R-convexity of the integral of a multimapping M : [0, 1] ⇒
Rn under certain conditions. Such a study of convexity properties of reachable
sets of nonlinear control systems seems to be started in 1975 with A. Plís [28] who
demonstrated, under some assumptions, the localR-convexity of reachable sets. The
result in [15] on the R-convexity of the integral a multimapping M : [0, 1] ⇒ Rn

was a significant extension of a previous 1979 contribution of St. Lojaciewicz [24].
A closed set C in Rn is called R-convex in [15] for a real R > 0 when it is the

intersection of a collection of closed balls in Rn with radius R. The proof of H.
Frankowska and C. Olech in [15] of Theorem 3.1 is based for a large part on their
Proposition 3.1 that we promote as a theorem in the following form:

Theorem 1.1. Let C be a nonempty closed convex set in Rn endowed with its
canonical Euclidean norm ∥ · ∥ and let R > 0. The following are equivalent:
(a) The set C is R-convex;
(b) for any x, y ∈ C with ∥x− y∥ ≤ 2R, every arc of circle of radius R which joins
x and y and whose length is not greater that πR is contained in C;
(c) for any point x in the boundary of C and any normal vector v to C at x with
∥v∥ = 1, one has

⟨v, y − x⟩ ≤ − 1

2R
∥y − x∥2 for all y ∈ C;

(d) for any xi in the boundary of C with i = 1, 2 and any normal vector vi to C at
xi with ∥vi∥ = 1, one has

∥x1 − x2∥ ≤ R∥v1 − v2∥.

Closed sets in Rn (in the plane) satisfying the property (b) in Theorem 1.1
was earlier considered in 1935 by A. E. Mayer [25] and developed in the more
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general setting of Minkowski norm in [26] under the name “Überkonvexen Mengen”
(in German). Subsequently to [26], sets with this arc property or similar other
properties were analyzed in [5, 7, 8, 39]. The formulation as intersection of closed
balls with common radius R probably first appeared in the two-dimensional case of
the plane in “Théorème fondamental” of E. Blanc [5, p. 219] as a characterization
therein of “ensembles surconvexes” (in French). Given a real R > 0, a set C in the
plane is declared by Blanc [5] “R-surconvexe” if for two points A,B in the plane
with d(A,B) ≤ 2R the lens L(A,B;R) is contained in C. The lens L(A,B;R) in
the plane is defined in [5] as the closed bounded convex set whose boundary is the
union of the two arcs of circle with radius R and length not greater than πR joining
A and B. Regarding the property (b) in Theorem 1.1 again, it is worth noticing (as
said in [5, p. 215]) that lenses were utilized in 1921 by H. Lebesgue [22, p. 77,79]
in a study of “orbiform” curves. It was also the study [25] of Mayer on “orbiform
sets” which led him to the property (b) in Theorem 1.1 above and hence to analyze
in the same paper [25] some aspects of this property for their own sake. Sets which
are intersections of closed balls with common radius R were utilized in 1966 by
B. T. Polyak [32] and E. S. Levintin and B. T. Polyak [23] for the convergence of
certain optimization algorithms, and by J. J. Moreau [27] in 1975 for an asymptotic
analysis of sweeping processes (see also [10]). They are nowadays called R-strongly
convex sets or strongly convex sets with radius R, and a large development of their
properties in Hilbert spaces began in 1982 with J.-P. Vial [37, 38]. Recent other
important developments have been provided by M. V. Balashov, G. E. Ivanov, E.
S. Polovinkin, and others (see, e.g., [2, 18, 27, 36]).

A convex set C which is R-strongly convex (presented as R-convex set ahead
Theorem 1.1) is known to have nonempty interior (when it is not reduced to a
singleton), hence for any x in the boundary bdryC of the set C one can choose a
unit outward normal vector v to C at x, and for such a vector v the characterization
(c) in Theorem 1.1 is equivalent (as it can be easily verified) to the inclusion C ⊂
B[x−Rv,R]. As a particular consequence of this latter inclusion for x ∈ bdryC, one
could formally say that the curvature of bdryC at x is not less than the curvature
1/R of B[x − Rv,R] at x; see, e.g., (12) for two-dimensional analytical arguments
of this feature.

The aim of the present paper is to analyze a class of convex sets for which at
each point x of the boundary the curvature is bounded from below by 1/ρ(x) (see
(12)) where ρ(·) is a given suitable positive function. As we will see, such sets,
that we call ρ(·)-strongly convex or strongly convex with variable radius ρ(·), can be
characterized by requiring that the property (c) in Theorem 1.1 be satisfied with
ρ(x) in place of the real constant R. The subject here has then to be seen as
subsequent to that of ρ(·)-prox-regular sets characterized by the property that for
any pair (x, v) with x in the boundary of C and v in the proximal normal cone (see
Section 2 for the definition) to C at x with ∥v∥ = 1 one has

⟨v, y − x⟩ ≤ 1

2ρ(x)
∥y − x∥2 for all y ∈ C.

The ρ(·)-prox-regularity of sets has been considered by A. Canino [9] under a differ-
ent name (see also [12, 36]). It is a variant of the r-prox-regularity of sets where the
function ρ(·) is constant with value r, as mainly initiated in [13] in finite dimensions
and developed in infinite dimensions in [3, 4, 11, 12, 17, 19, 34, 36, 38] and references
in those papers. Our analysis of ρ(·)-strongly convex sets will be carried out in the
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setting of a general Hilbert space. Section 2 recalls some notions and results. The
concept and properties of ρ(·)-strongly convex sets are developed in Section 3.

2. Farthest distance and farthest points. Throughout the paper, N denotes
the set of positive integers N := {1, 2, 3, · · · } and R stands for the set of real numbers.
Let (X, ∥ · ∥) be a (real) normed space. The identity mapping of X is denoted IdX .
The closed (resp. open) ball in X with center x ∈ X and radius r > 0 is denoted
as usual by B[x, r] (resp. B(x, r)). We will use the letter B (resp. U) for the closed
(resp. open) unit ball in X, i.e., B := B[0X , 1] (resp. U := B(0X , 1)). We will
also put S := {x ∈ X : ∥x∥ = 1}, i.e., S is the unit sphere of X. The interior
(resp. closure, boundary) of a subset C of (X, ∥ · ∥) is denoted by intC (resp. clC,
bdryC). If Q is a nonempty subset of H containing C, we will set intQ C (resp.
clQ C, bdryQ C) for the interior (resp. closure, boundary) of C in Q equipped with
the induced topology. The diameter of C is the extended real

diamC := sup{∥x− x′∥ : x, x′ ∈ C}.
Given a multimapping M : E ⇒ F between two sets E and F , its (effective)
domain is given by DomM := {x ∈ E : M(x) ̸= ∅} and its inverse multimapping
M−1 : F ⇒ E is defined by

M−1(y) := {x ∈ E : y ∈ M(x)} for all y ∈ F.

The graph of the multimapping M is the set gphM := {(x, y) ∈ E×F : y ∈ M(x)}
while the image of a set A ⊂ E is defined as

M(A) :=
⋃
x∈A

M(x).

The (standard) distance function dC and the farthest distance function dfarC
from/to the set C are defined for every x ∈ X by

dC(x) := d(x,C) := inf
y∈C

∥x− y∥

and
dfarC(x) := dfar(x,C) := sup

y∈C
∥x− y∥ ,

with the (usual) convention that the latter supremum is 0 if C is empty. The
Lipschitz continuity of the distance function dC (for C ̸= ∅) is classical with |dC(x)−
dC(x

′)| ≤ ∥x − x′∥ for all x, x′ ∈ X. A similar (less classical) result also holds for
dfarC . Indeed, given x, x′ ∈ X and writing ∥x − y∥ ≤ ∥x − x′∥ + ∥x′ − y∥ we see
(by taking the supremum of both sides over y ∈ C) that

sup
y∈C

∥x− y∥ ≤ ∥x− x′∥+ sup
y∈C

∥x′ − y∥, i.e. dfarC(x) ≤ ∥x− x′∥+ dfarC(x
′),

so dfarC is continuous on X, and if C is unbounded it follows that dfarC is finite
valued and Lipschitz continuous on X with

|dfarC(x)− dfarC(x
′)| ≤ ∥x− x′∥. (1)

With the (standard) distance function dC and the farthest distance function
dfarC one generally associates the multimappings ProjC : X ⇒ X of nearest points
in C and FarC : X ⇒ X of farthest points in C given for every x ∈ X by

ProjC(x) := Proj(C, x) := {y ∈ C : ∥x− y∥ = dC(x)}
and

FarC(x) := Far(C, x) := {y ∈ C : ∥x− y∥ = dfarC(x)} .
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It is an exercise to check that

ProjC(x) ⊂ bdryC and FarC(x) ⊂ bdryC. (2)

When for some x ∈ X the set ProjC(x) (resp. FarC(x)) is reduced to a singleton,
i.e., ProjC(x) = {y} (resp. FarC(x) = {y}) it will be convenient to denote this
vector y ∈ C by projC(x) (resp. farC(x)). Every sequence (yn)n in C satisfying
∥x − yn∥ → dfarC(x) is called a maximizing sequence of/for dfarC(x). One says
that dfarC(x) is strongly attained if all its maximizing sequences converge in C. In
such a case, one can easily check that v := farC(x) is well defined along with the
convergence of every maximizing sequence for dfarC(x) to v. Putting for each real
η > 0

FarC,η(x) := {y ∈ C : ∥x− y∥+ η ≥ dfarC(x)} , (3)

it is not difficult to see, when the normed space (X, ∥·∥) is complete and C is closed
in X, that dfarC(x) is strongly attained if and only if

lim
η↓0

diamFarC,η(x) = 0. (4)

Notice also that both graphs gphProjC and gphFarC are closed in X×X whenever
the set C is closed.

In the rest of this section and in the next ones, H is a (real) Hilbert space not
reduced to zero equipped with the inner product ⟨·, ·⟩ and the associated norm ∥ · ∥
given by ∥x∥2 = ⟨x, x⟩ for all x ∈ H. Take now C as a nonempty subset of H. The
proximal normal cone of/to the set C at x ∈ C, denoted by NP (C;x), is defined
as (see, e.g., [35]) the set of v ∈ H for which there is a real σ > 0 (depending on
v) such that x is a nearest point of x + σv, i.e., x ∈ ProjC(x + σv). This can be
rewritten as

NP (C;x) =
{
v ∈ H : ∃σ ≥ 0,∀x′ ∈ C, ⟨v, x′ − x⟩ ≤ σ∥x′ − x∥2

}
.

When C is convex, the proximal normal cone NP (C;x) is known to coincide with
the (standard) normal cone in the sense of convex analysis, i.e.,

NP (C;x) = {v ∈ H : ⟨v, x′ − x⟩ ≤ 0,∀x′ ∈ C} =: N(C;x).

More generally, given a point a ∈ H, a closed vector subspace E in H and a
nonempty set S in the affine subspace a+ E, i.e, S ⊂ a+ E, the proximal normal
cone NP,E(S;x) of/to S relative to E (or in E) at x ∈ S is

NP,E(S;x) := {v ∈ E : ∃σ > 0, x ∈ ProjS(x+ σv)},
or equivalently

NP,E(S;x) =
{
v ∈ E : ∃σ ≥ 0,∀x′ ∈ S, ⟨v, x′ − x⟩ ≤ σ∥x′ − x∥2

}
.

According to the equivalences valid for any x, y ∈ H

y ∈ ProjC(x) ⇔ y ∈ C and ⟨x− y, c− y⟩ ≤ 1

2
∥c− y∥2 for all c ∈ C

and

y ∈ FarC(x) ⇔ y ∈ C and ⟨y − x, c− y⟩ ≤ −1

2
∥c− y∥2 for all c ∈ C, (5)

it is clear that

x− y ∈ NP (C; y) for all (x, y) ∈ gphProjC
and

y − x ∈ NP (C; y) for all (x, y) ∈ gphFarC , (6)
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where gphProjC and gphFarC denote the graphs (as recalled above) of the mul-
timappings ProjC and FarC . It is worth pointing out that for any (x, y) ∈ gphFarC

y = farC
(
x+ s(x− y)

)
for all s > 0. (7)

We proceed now to some properties of farthest/nearest distance function and
farthest/nearest points that we will need later. First, we recall two theorems of K.
S. Lau and of S. Fitzpatrick on the genericity of points with nearest points and of
points with farthest points respectively. For their proofs we refer to [20] and [14]
respectively.

Recall that the norm of a normed space (X, ||| · |||) possesses the (sequential)
Kadec-Klee property provided that for any sequence (xn)n in X one has(

|||xn − x||| → 0 ) ⇐⇒
(
xn → x weakly and |||xn||| → |||x|||

)
.

It is well known (and not difficult to check) that Hilbert spaces enjoy the sequential
Kadec-Klee property.

Theorem 2.1 (Lau theorem for nearest points). Let X be a reflexive Banach space
endowed with a norm ||| · ||| satisfying the sequential Kadec-Klee property and let C be
a nonempty closed subset of X. Then, the set of points of X \ C admitting nearest
points in C contains a dense Gδ set of X \ C.

If in addition the sequential Kadec-Klee norm ||| · ||| is strictly convex, then there
exists a dense Gδ set of points in X \ C with unique nearest point in C.

Note that, under its above assumptions with C ̸= X, the theorem entails in
particular that

{x ∈ bdryC : ∃u ∈ X \ C, x ∈ ProjC(u)} is dense in bdryC. (8)

Indeed, take any x ∈ bdryC and any real ε > 0. By the above theorem there exist
u ∈ B(x, ε/2) \ C and x ∈ ProjC(u) (so in particular x ∈ bdryC). Further, the
inequalities

|||x− x||| ≤ |||x− u|||+ |||u− x||| < dC(u) +
ε

2
≤ ε

ensure that x ∈ (bdryC) ∩B(x, ε) as desired.

Theorem 2.2 (Fitzpatrick theorem for farthest points). Let (X, ||| · |||) be a reflexive
Banach space whose norm is strictly convex and possesses the (sequential) Kadec-
Klee property. Let C be a nonempty closed bounded subset of X. Then there exists
a dense Gδ set of points in X with unique farthest point in C.

The results in the next theorem are also due to S. Fitspatrick [14]. The theorem
summarizes diverse basic characterizations of the Fréchet differentiability of the
farthest distance function. Before stating the theorem, recall that a real-valued
function is C1,1 on an open set U of a normed space when it is differentiable on U
and its derivative is locally Lipschitz on U .

Theorem 2.3. Let C be a nonempty closed bounded subset of the Hilbert space H
not reduced to a singleton and let U be a nonempty open subset of H. The following
assertions are equivalent:
(a) The function dfarC is C1,1 on U ;
(b) the function dfarC is Fréchet differentiable on U ;
(c) dfarC is Gâteaux differentiable on U and ∥DGdfarC(x)∥ = 1 for every x ∈ U ;
(d) dfarC is Gâteaux differentiable on U and FarC(x) ̸= ∅ for every x ∈ U ;
(e) the mapping farC : U → X is well defined on U and locally Lipschitz therein;
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(f) the mapping farC : U → X is well defined on U and norm-to-norm continuous
therein;
(g) the mapping farC : U → X is well defined on U and norm-to-weak sequentially
continuous therein;
(h) the supremum dfarC(x) is strongly attained for every x ∈ U .

Under anyone of the latter assumptions, one has

∇dfarC(x) =
x− farC(x)

dfarC(x)
for all x ∈ U.

We end this section by stating a lemma of G. E. Ivanov [18, Lemma 7] concerning
a behavior of the farthest point mapping farC under Fréchet differentiability of the
farthest distance function. It is the counterpart for the farthest distance function
dfarC of Lemma 3.3 in [29] (see also, [12, 36]) related to a similar behavior of projC
under the condition of Fréchet differentiability of the standard distance function
dC .

Lemma 2.4 (Ivanov). Let C be a nonempty closed bounded subset of a locally
uniformly convex reflexive Banach space (X, ||| · |||). If dfarC(·) is Fréchet differen-
tiable on a neighborhood of x ∈ X, then there exist a real δ > 0 such that for each
x ∈ B(x, δ) one has that farC(x) is well defined along with the existence of a real
τ ∈]0, 1[ (depending on x) for which

farC
(
x+ t(farC(x)− x)

)
= farC(x) for all t ≤ τ.

3. ρ(·)-strongly convex sets. We pass now to the presentation and development
of ρ(·)-strongly convex sets. As said in the introduction, an R-strongly convex set
C for a constant real R > 0 is nowadays generally defined in the Hilbert setting
as an intersection of a collection of closed balls with the common radius R, so the
curvature of the boundary of C is bounded from below by the constant 1/R (as
formally explained in the introduction). Such R-strongly convex sets with constant
real R are largely studied in the literature (see, e.g., the aforementioned references
in the introduction). Sets which are ρ(·)-strongly convex will be defined here in such
a way that we have the refinement of boundedness from below of the curvature by
the function 1/ρ(·).

3.1. Definition and characterizations with normals. Consider a nonempty
closed subset C of the (real) Hilbert space H with C ̸= H. Thanks to Lau’s
theorem relative to nearest points (see Theorem 2.1) we can choose some x ∈ H\C
such that projC(x) ∈ bdryC is well defined and this leads to

x− projC(x)

dC(x)
∈ NP

(
C; projC(x)

)
∩ S.

This ensures the following non-vacuity property

ΛP (C) :=
{
(x, v) ∈ H2 : x ∈ bdryC, v ∈ NP (C;x) ∩ S

}
̸= ∅. (9)

Definition 3.1. Let C be a nonempty closed subset of the Hilbert space H with
C ̸= H and let ρ : bdryC →]0,+∞[ be a positive function. We say that C is ρ(·)-
strongly convex whenever for any (x, v) ∈ H2 with x ∈ bdryC and v ∈ NP (C;x)∩S,
we have

x ∈ FarC
(
x− ρ(x)v

)
.

Whenever ρ(·) ≡ R, it is usually said that C is anR-strongly convex set (or uniformly
strongly convex set of constant R). Similarly, if the closed set C is included in a
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closed affine subspace a + E of H and ρ(·) is defined on bdrya+E C, where E is
a closed vector subspace of H, we say that C is ρ(·)-strongly convex in a + E (or
relative to a + E) provided the inclusion x ∈ FarC

(
x − ρ(x)v

)
is satisfied when

x ∈ bdrya+E(C) and v ∈ NP,E(C;x) ∩ S.

Given a nonempty closed subset C of H, a function ρ : bdryC →]0,+∞[ and a
closed affine subspace L of H with CL := C ∩ L ̸= ∅, we easily note that BL :=
bdryL CL ⊂ L ∩ bdryC. So, we will say (by convenience) that CL is ρ(·)-strongly
convex in L when it is ρ|BL

(·)-strongly convex in L for the restriction ρ|BL
of the

function ρ to the set BL.

Remark 3.2. Let C be a nonempty closed (not necessarily bounded) subset of H
with C ̸= H and let also ρ : bdryC →]0,+∞[ be a positive function. Through the
equivalence in (5), it is readily seen that the set C is ρ(·)-strongly convex if and
only if

⟨v, x′ − x⟩ ≤ − 1

2ρ(x)
∥x′ − x∥2 for all x′ ∈ C and all (x, v) ∈ ΛP (C). (10)

We point out that there is no need to assume that C is bounded in the above
equivalence (10). Indeed, it directly follows from the above definition that a ρ(·)-
strongly convex set is bounded. Conversely, if the latter estimate (10) holds, fixing
any (x0, v0) with x0 ∈ bdryC and v0 ∈ NP (C;x) ∩ S (see (9)) and applying the
Cauchy-Schwarz inequality guarantee that

∥c− x0∥ ≤ 2ρ(x0) for all c ∈ C, (11)

and this ensures the boundedness of the set C. In fact, noticing that the set G :=
{x ∈ bdryC : NP (C;x) ̸= {0}} is dense in bdryC (as follows from (8)), we can
refine the inequality (11) as

diamC = sup
x∈G,x′∈G

∥x′ − x∥ ≤ 2 sup
G

ρ(·) ≤ 2 sup
bdryC

ρ(·).

If the set C is ρ(·)-strongly convex for some function ρ(·) satisfying the inequality
s := supbdryC ρ(·) < +∞ (which always holds true whenever dimX < ∞ and ρ(·) is
upper semicontinuous), then C is s-strongly convex (that is, ρ0(·)-strongly convex
with ρ0(·) ≡ s) since

⟨v, x′ − x⟩ ≤ − 1

2ρ(x)
∥x′ − x∥2 ≤ − 1

2s
∥x′ − x∥2

for all x′ ∈ C and all (x, v) with x ∈ bdryC and v ∈ NP (C;x) ∩ S.

Before starting with the analysis of ρ(·)-strongly convex sets, let us consider two
basic two-dimensional situations. Given a ρ(·)-strongly convex set in R2 whose
boundary Γ is sufficiently regular, the first situation is devoted to show analytically
that the curvature of Γ at every x ∈ Γ is bounded from below by 1/ρ(x).

Let C be a (non-singleton) ρ(·)-strongly convex set in R2 endowed with its canon-
ical inner product. Let Γ be the boundary of C, that is, Γ := bdryC. Assume that
Γ is of class C2 near x0 ∈ Γ with non null first and second derivatives of parametric
representation of an arc of Γ with x0 in its relative interior (that is, in the interior
of the arc with respect to the topology induced on Γ). Consider such a parametriza-
tion g : I → R2 of this arc with an open interval I and the arclength s as parameter
in I. Let s0 ∈ I be such that g(s0) = x0. We know (see any kinematic book) that

τ⃗(s0) :=
dg
ds (s0) is the unit vector tangent to Γ at x0 (in the sense of increasing s)
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and d2g
ds2 (s0) = γ(s0)ν⃗(s0) where ν⃗(s0) is the inward unit vector normal to C at x0

and γ(s0) is the curvature of Γ at g(s0) = x0. Putting τ⃗0 := τ⃗(s0), ν⃗0 := ν⃗(s0) and
γ0 := γ(s0), we then have for s ∈ I

g(s)− g(s0) = (s− s0)

(
τ⃗0 +

(s− s0)

2
γ0ν⃗0 + (s− s0)ε⃗(s)

)
,

for some function ε⃗(·) defined on a neighborhood of s0 with values in R2 such that
lims→s0 ε⃗(s) = 0R2 . Since −ν⃗0 is unit outward normal to C at x0 = g(s0), the
inequality (10) yields for every s ∈ I〈

−ν⃗0, (s− s0)

(
τ⃗0 +

(s− s0)

2
γ0ν⃗0 + (s− s0)ε⃗(s)

)〉
≤ − 1

2ρ(x0)
(s− s0)

2

∥∥∥∥τ⃗0 + (s− s0)

2
γ0ν⃗0 + (s− s0)ε⃗(s)

∥∥∥∥2 ,
so the equality ⟨τ⃗0, ν⃗0⟩ = 0 gives

(s− s0)
2

2
γ0 + (s− s0)

2⟨ν⃗0, ε⃗(s)⟩

≥ 1

2ρ(x0)
(s− s0)

2

∥∥∥∥τ⃗0 + (s− s0)

2
γ0ν⃗0 + (s− s0)ε⃗(s)

∥∥∥∥2 ,
and hence for some function ε⃗1(·) defined on a neighborhood of s0 with values in
R2 such that lims→s0 ε⃗1(s) = 0R2 one has

γ0 + 2⟨ν⃗0, ε⃗(s)⟩ ≥
1

ρ(x0)
∥τ⃗0 + ε⃗1(s)∥2.

It follows as s → s0 that

γ0 ≥ 1

ρ(x0)
. (12)

This confirms in some way that the curvature of bdryC at x ∈ bdryC is bounded
from below by 1/ρ(x).

The second situation aims, with a two-dimensional simple example, to make clear
the idea and interest of considering the function ρ(·) when dealing with strongly
convex sets. Fix three reals R1, R2 and r with 0 < r < R1 < R2. Set a := (−r, 0)
and b := (r, 0). Let Γ1 (resp. Γ2) be the closed short arc of circle with center c1
(resp. c2) in R2 and radius R1 (resp. R2) joining a and b and whose points has
non-positive (resp. non-negative) second components. By short arc of circle with
radius R1 we mean that its length is not greater than πR1. Let C be the convex
hull of Γ := Γ1 ∪ Γ2. Pick any real ε ∈]0, ℓ/2[ where ℓ is the length of Γ1. Let Γa,ε

and Γb,ε be the two arcs of Γ1 of length ε containing a and b respectively (see Figure
1). Let ρ : Γ → R be a continuous function with R1 ≤ ρ(x) ≤ R2 for all x ∈ Γ and
such that ρ(x) = R1 for x ∈ Γ1 \ (Γa,ε ∪ Γb,ε) and ρ(x) = R2 for x ∈ Γ2. Since C is
R2-strongly convex, for any pair (x, v) with x ∈ Γ2 and v ∈ N(C;x)∩ S one has by
(10)

⟨v, y − x⟩ ≤ − 1

R2
∥y − x∥2 = − 1

ρ(x)
∥y − x∥2 for all y ∈ C.

On the other hand, the inclusion C ⊂ B[c1, R1] gives for any pair (x, v) with x ∈
Γ\Γ2 and v ∈ N(C;x)∩S that (since x ∈ bdryB[c1, R1] and v ∈ N (B[c1, R1];x)∩S)

⟨v, y − x⟩ ≤ − 1

R1
∥y − x∥2 ≤ − 1

ρ(x)
∥y − x∥2 for all y ∈ C.
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It ensues that for any pair (x, v) with x ∈ Γ and v ∈ N(C;x) ∩ S one has

⟨v, y − x⟩ ≤ − 1

ρ(x)
∥y − x∥2 for all y ∈ C,

which tells us by (10) again that C is ρ(·)-strongly convex.

Figure 1. The ρ(·)-strongly convex set C

We now state and prove several characterizations of ρ(·)-strongly convex sets.

Theorem 3.3 (normal properties of ρ(·)-strongly convex sets). Let C be a nonempty
closed subset of the Hilbert space H with C ̸= H and let ρ : bdryC →]0,+∞[ be a
function. The following are equivalent:
(a) The set C is ρ(·)-strongly convex;
(b) for any (x, v) ∈ H2 with x ∈ bdryC and v ∈ NP (C;x) ∩ S and for any real
t > ρ(x), one has

x = farC(x− tv);

(c) one has the equality

C =
⋂

x∈bdryC,v∈NP (C;x)∩S

B[x− ρ(x)v, ρ(x)];

(d) one has the inclusion

C ⊂
⋂

x∈bdryC,v∈NP (C;x)∩S

B[x− ρ(x)v, ρ(x)];

(e) for all x′ ∈ C and for all (x, v) ∈ H2 with x ∈ bdryC and v ∈ NP (C;x) ∩ S,
one has

⟨v, x′ − x⟩ ≤ − 1

2ρ(x)
∥x′ − x∥2 ;

(f) for all x′ ∈ C and for all (x, v) ∈ H2 with x ∈ bdryC and v ∈ NP (C;x), one
has

⟨v, x′ − x⟩ ≤ − ∥v∥
2ρ(x)

∥x′ − x∥2 ;

(g) for all x1, x2 ∈ bdryC, for all v1 ∈ NP (C;x1), all v2 ∈ NP (C;x2), one has

⟨v1 − v2, x1 − x2⟩ ≥
1

2

(
∥v1∥
ρ(x1)

+
∥v2∥
ρ(x2)

)
∥x1 − x2∥2;
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(h) for all xi ∈ H, all yi ∈ [IdH −NP (C; ·)]−1(xi) ∩ bdryC, i = 1, 2,

⟨y1 − y2, x1 − x2⟩ ≤
(
1− ∥y1 − x1∥

2ρ(y1)
− ∥y2 − x2∥

2ρ(y2)

)
∥y1 − y2∥2 .

Proof. The equivalence (a) ⇔ (b) directly follows from the equality (7) while the
equivalence (10) translates (a) ⇔ (e). Further, it is readily seen that (e) ⇔ (f). The
implications (c) ⇒ (d) ⇒ (a) being evident, let us show that (a) ⇒ (c). Assume
that C is ρ(·)-strongly convex. Observe first that the implication (a) ⇒ (f) easily
entails that the multimapping NP (C; ·) is monotone on H (since NP (C;x) = {0}
if x ∈ intC), hence the closed set C is convex (see, e.g., [35, Corollary 6.69]). On
the other hand, (9) says that

ΛP (C) :=
{
(x, v) ∈ H2 : x ∈ bdryC, v ∈ N(C;x) ∩ S

}
̸= ∅,

and then using the ρ(·)-strong convexity of C furnishes in a straightforward way
that

C ⊂
⋂

(x,v)∈ΛP (C)

B[x− ρ(x)v, ρ(x)] =: I.

By contradiction, suppose that I ̸⊂ C. Doing so, we can find some y ∈ I such that
y /∈ C. Set d := dC(y) > 0, p := projC(y) (which is well defined since the set C is
nonempty, closed and convex by what precedes) and set also w := y−p

d ∈ N(C; p)∩S.
Since B[p− ρ(p)w, ρ(p)] ⊃ I, we have

∥y − (p− ρ(p)w)∥2 ≤ ρ(p)2,

or equivalently, (
1 +

ρ(p)

d

)2 ∥y − p∥2 ≤ ρ(p)2.

Consequently, we get (d+ρ(p))2 ≤ ρ(p)2, and this cannot hold true. The implication
(a) ⇒ (c) is then proved.

It remains to observe that the equivalences (e) ⇔ (f) ⇔ (g) ⇔ (h) are evident
to complete the proof.

The next proposition is concerned with the intersection of a ρ(·)-strongly convex
set with a closed affine subspace.

Proposition 3.4. Assume that the dimension of the Hilbert space H is greater than
2. Let C be a closed convex subset of H with nonempty interior and with C ̸= H,
and let ρ : bdryC →]0,+∞[ be a function. The following hold.
(a) If for any two-dimensional affine subspace L of H intersecting intC, the set
C ∩ L is ρ(·)-strongly convex in L, then the set C is ρ(·)-strongly convex (in H).
(b) If C is ρ(·)-strongly convex, then for any closed affine subspace L of H inter-
secting intC the set C ∩ L is ρ(·)-strongly convex in L.
(c) The set C is ρ(·)-strongly convex if and only if, for any two-dimensional affine
subspace L of H intersecting intC, the set C ∩ L is ρ(·)-strongly convex in L.

Proof. (a) Assume that the property in (a) is satisfied. Let (x, v) ∈ H2 with x ∈
bdryC and v ∈ NP (C;x) with ∥v∥ = 1. Take any y ∈ intC and put u := x+v. Let
E be a two-dimensional vector subspace of H such that x+E contains both u and
y, that is, E contains v and y−x. By assumption the set CE := C ∩ (x+E) is ρ(·)-
strongly convex in x+E. Observe that v ∈ NP,E(CE ;x), so x ∈ bdryx+E(CE) since
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∥v∥ = 1. By the ρ(·)-strong convexity of CE in x+E we have x ∈ FarCE
(x−ρ(x)v).

Using the inclusion y ∈ CE we deduce that

⟨v, y − x⟩ ≤ − 1

2ρ(x)
∥y − x∥2.

Since intC is dense in the convex set C, the latter inequality still holds true for
every y ∈ C. This entails the ρ(·)-strong convexity of C (in H) by (e) in Theorem
3.3.
(b) Assume that C is ρ-strongly convex. Let E be any closed vector subspace of H
and a be any point in intC, and let CE := C∩(a+E). Let (x, v) ∈ (a+E)×E with
x ∈ bdrya+E(CE) and v ∈ NP,E(CE ;x) with ∥v∥ = 1. Observe that x ∈ bdryC
since it is not difficult to see that bdrya+E(CE) ⊂ (a+E)∩bdryC (as already said

after Definition 3.1). Take any y ∈ CE . Note that NP,E(CE ;x) = N(CE ;x) ∩ E
as easily seen. Further, since (a+ E) ∩ intC ̸= ∅ we have (see, e.g., [35, Corollary
3.177(b)])

N(CE ;x) = N(C ∩ (a+ E);x) = N(C;x) +N(a+ E;x) = N(C;x) + E⊥,

where as usual E⊥ denotes the orthogonal of the set E. Hence, there are vC ∈
N(C;x) and vE ∈ E⊥ such that v = vC + vE . Since ⟨vE , v⟩ = 0, we have ∥vC∥2 =
∥v∥2 + ∥vE∥2, and hence 1 = ∥v∥2 ≤ ∥vC∥2. Then we can write by (f) in Theorem
3.3

⟨v, y − x⟩ = ⟨vC , y − x⟩+ ⟨vE , y − x⟩
= ⟨vC , y − x⟩

≤ − ∥vC∥
2ρ(x)

∥y − x∥2

≤ − 1

2ρ(x)
∥y − x∥2.

The inequality ⟨v, y − x⟩ ≤ − 1
2ρ(x)∥y − x∥2 for all y ∈ CE means (see (5)) x ∈

FarCE
(x − ρ(x)v). It follows that CE is ρ(·)-strongly convex in (a + E), justifying

(b).
(c) The equivalence in (c) follows from (a) and (b).

Now we derive from Theorem 3.3 the following important property on the support
function of a ρ(·)-strongly convex set.

Proposition 3.5. Let C be a ρ(·)-strongly convex set in the Hilbert space H for
some function ρ : bdryC →]0,+∞[. Then, for any ζ ∈ H \ {0}, there exists one
and only one cζ ∈ C such that

σ(ζ, C) = ⟨ζ, cζ⟩ ,
or equivalently such that

ζ ∈ N(C; cζ).

Proof. Take any nonzero ζ ∈ H. According to the weak compactness of C, we know
that we can find some cζ ∈ C such that

σ(ζ, C) := sup
x∈C

⟨ζ, x⟩ = ⟨ζ, cζ⟩ .

Consider any c1, c2 ∈ C such that

σ(ζ, C) = ⟨ζ, c1⟩ = ⟨ζ, c2⟩ .
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Applying the implication (a) ⇒ (g) in Theorem 3.3 (using the obvious inclusion

ζ ∈ N(C; ci) with i = 1, 2) we see that for κ := ∥ζ∥
(

1
2ρ(c1)

+ 1
2ρ(c2)

)
0 = ⟨ζ − ζ, c1 − c2⟩ ≥ κ∥c1 − c2∥2,

and this entails that c1 = c2. The proof is complete.

We establish now a lemma in preparation of the next proposition.

Lemma 3.6. Let C be a nonempty subset of the Hilbert space H and let x, y ∈ C
and t ∈ [0, 1]. Assume that there exists a real σ ≥ 0 such that

dfarC
(
(1− t)x+ ty

)
− σdfar2C

(
(1− t)x+ ty

)
≥ σt(1− t)∥x− y∥2. (13)

Then, one has

dfarC
(
(1− t)x+ ty

)
≥ σmax{t, 1− t}∥x− y∥2.

Proof. Set z := (1 − t)x + ty and κ := ∥x − y∥2. Using the inclusions x, y ∈ C we
have

dfar2C(z) ≥ ∥z − x∥2 = t2κ and dfar2C(z) ≥ ∥z − y∥2 = (1− t)2κ.

Put δ := dfar2C(z) + t(1− t)κ. We easily derive from the latter inequalities that

δ ≥ max{tκ, (1− t)κ}. (14)

On the other hand, note that (13) can be rewritten as σ−1dfarC(z) ≥ δ. This and
(14) furnish

dfarC(z) ≥ σδ ≥ σκmax{t, (1− t)}.
The proof is then complete.

By means of the above lemma we can prove a lower estimate property for the
value at convex combination of the farthest distance function to ρ(·)-strongly convex
sets. It complements upper estimates in the same line in [12, Proposition 9] (see
also [36, Proposition 15.16]) for the (standard) distance function dC to prox-regular
sets C. Before stating the lower estimate property, recall by Theorem 2.2 that
DomFarC is dense in H for any nonempty closed bounded set C in H.

Proposition 3.7. Let C be a ρ(·)-strongly convex subset of the Hilbert space H for
some function ρ : bdryC →]0,+∞[. The following hold.
(a) For any x1, . . . , xn ∈ C and t1, . . . , tn ≥ 0 with

∑n
i=1 ti = 1 such that z :=∑n

i=1 tixi ∈ DomFarC , one has

dfarC(z) ≥
1

2ρ(v)
dfar2C(z) +

1

4ρ(v)

∑
1≤i,j≤n

titj∥xi − xj∥2 for all v ∈ FarC(z).

(b) For any x, y ∈ C and t ∈ [0, 1] such that z := tx+ (1− t)y ∈ DomFarC

dfarC(z)−
1

2ρ(v)
dfar2C(z) ≥

1

2ρ(v)
t(1− t)∥x− y∥2 for all v ∈ FarC(z).

(c) For any x, y ∈ C and t ∈ [0, 1] such that z := tx+ (1− t)y ∈ DomFarC

dfarC(z) ≥
1

2ρ(v)
max{t, 1− t}∥x− y∥2 for all v ∈ FarC(z).
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Proof. (a) Let x1, . . . , xn ∈ C and t1, . . . , tn ≥ 0 with
∑n

i=1 ti = 1 such that z :=∑n
i=1 tixi ∈ DomFarC . Fix any v ∈ FarC(z). By (6) we have z − v ∈ −N(C; v).

Using the ρ(·)-strong convexity of the set C, we can then write (by (f) in Theorem
3.3) for each i ∈ {1, . . . , n}

⟨z − v, xi − v⟩ ≥ 1

2ρ(v)
∥z − v∥∥xi − v∥2,

which obviously implies〈
z − v,

n∑
i=1

tixi − v

〉
≥ 1

2ρ(v)
∥z − v∥

n∑
i=1

ti∥xi − v∥2.

This and the definition of z easily give

dfarC(z) = ∥z − v∥ ≥ 1

2ρ(v)

n∑
i=1

ti∥xi − v∥2. (15)

Set α :=
∑n

i=1 ti∥xi − z∥2 and fix any u ∈ H. Observe first that

n∑
i=1

ti∥xi−u∥2 =

n∑
i=1

ti
(
∥xi−z∥2+∥z−u∥2+2 ⟨xi − z, z − u⟩

)
= α+∥z−u∥2. (16)

Therefore, we have∑
1≤i,j≤n

tjti∥xi − xj∥2 =

n∑
j=1

tj∥z − xj∥2 +
n∑

j=1

tjα.

Putting together the latter equality and the fact that
∑n

j=1 tj = 1, we arrive to

α =
1

2

∑
1≤i,j≤n

tjti∥xi − xj∥2.

Combining this equality with the second equality in (16) then ensures

n∑
i=1

ti∥xi − v∥2 =
1

2

∑
1≤i,j≤n

tjti∥xi − xj∥2 + ∥z − v∥2.

Coming back to (15), we obtain

dfarC(z) ≥
1

4ρ(v)

∑
1≤i,j≤n

tjti∥xi − xj∥2 +
1

2ρ(v)
∥z − v∥2,

which translates the inequality in (a).
(b) It is a direct consequence of (a) above.
(c) It suffices to combine (b) above and Lemma 3.6.

3.2. Main properties of ρ(·)-strongly convex sets. Consider again a function
ρ : bdryC →]0,+∞[ defined on a nonempty closed bounded subset C of the Hilbert
space H. By Theorem 2.2 we know that Dom farC contains a dense Gδ set in H.
Accordingly, take any u ∈ DomFarC and y ∈ FarC(u). Putting ut := u+t(u−y) we
know (see (7)) that for each real t > 0 we have y = farC(ut), and hence dfarC(ut) =
(1 + t)∥u− y∥. Therefore, for every real γ ≥ 1 we can choose some real t > 0 such
that y ∈ FarC(ut) and dfarC(ut) > γρ(y). This ensures in particular that

{u ∈ H : ∃y ∈ FarC(u), dfarC(u) > γρ(y)} ≠ ∅ for every γ ≥ 1. (17)
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On the other hand, given any u ∈ H there exists by (Theorem 2.2) a sequence
(un, yn)n∈N in gphFarC such that un → u. Writing for every integer n ≥ 1

∥yn − un∥ − ∥un − u∥ ≤ ∥yn − u∥ ≤ ∥yn − un∥+ ∥un − u∥

and using the convergence ∥yn − un∥ = dfarC(un) → dfarC(u), yield ∥yn − u∥ →
dfarC(u), hence

yn ∈ bdryC and ∥yn − u∥ → dfarC(u). (18)

This says that for every u ∈ H the lower limit

lim inf
∥x−u∥→dfarC(u)

x∈bdry C

∥x− u∥
ρ(x)

is well defined. Accordingly, in addition to (17) our analysis below will begin, for
γ ≥ 1, with the similar set Dγ

ρ(·)(C) given by{
u∈H :∃γ′ > γ, ∃η ∈]0,dfarC(u)[,∀x∈(bdryC) \B

(
u,dfarC(u)−η

)
,
∥x−u∥
ρ(x)

>γ′
}
.

It is clear that

Dρ(·)(C) := D1
ρ(·)(C) =

⋃
γ>1

Dγ
ρ(·)(C),

along with

Dγ
ρ(·)(C) =

u ∈ H : lim inf
∥x−u∥→dfarC(u)

x∈bdry C

∥x− u∥
ρ(x)

> γ

 for every γ ≥ 1. (19)

Obviously, for any real γ ≥ 1 the inclusion

{u ∈ H : ∃y ∈ FarC(u), dfarC(u) > γρ(y)} ⊂ Dγ
ρ(·)(C) (20)

always holds, and it makes a first link between Dγ
ρ(·)(C) and the set involved in (17).

In fact, we will see later (in Theorem 3.10) that the latter inclusion is an equality
whenever the set C is ρ(·)-strongly convex.

When C is a singleton, say C = {c}, it is an exercise to check that

Dγ
ρ(·)(C) = H \B[c, γρ(c)] for every γ ≥ 1.

In particular, we note that

Dρ(·)(C) ∩ C = ∅ whenever C is a singleton.

The next proposition shows that the set Dγ
ρ(·)(C) is always open in H.

Proposition 3.8. Let C be a nonempty closed bounded subset of the Hilbert space
H and let ρ : bdryC →]0,+∞[ be a given function. For any real γ ≥ 1 the set
Dγ

ρ(·)(C) is open.

Proof. We may suppose that C is not a singleton, since otherwise the result is
trivial. Fix any real γ ≥ 1 and any u0 ∈ Dγ

ρ(·)(C). For each u ∈ H define

ℓ(u) := lim inf
∥x−u∥→dfarC(u)

x∈bdry C

∥x− u∥
ρ(x)

,
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so ℓ(u0) > γ by (19). Choose a real γ′ > γ with ℓ(u0) > γ′ and a real λ > 1 such
that ℓ(u0) > λγ′. By definition of ℓ there exists a positive real δ0 < dfarC(u0) such
that (

x ∈ bdryC, dfarC(u0)− ∥x− u0∥ < δ0
)
=⇒ ∥x− u0∥

ρ(x)
> λγ′.

Choose a positive real δ < min
{
δ0/3,

(
1− λ−1

)
(dfarC(u0)− δ0)

}
. Fix any u ∈

B(u0, δ). By (18) take any x ∈ bdryC satisfying dfarC(u)−∥x− u∥ < δ. This and
(1) ensure that

dfarC(u0)− ∥x− u0∥ ≤ dfarC(u)− ∥x− u∥+ 2∥u− u0∥ < 3δ < δ0, (21)

which entails
∥x− u0∥
ρ(x)

> λγ′. (22)

On the other hand, from the inequality δ < (1−λ−1)(dfarC(u0)−δ0) and from (21)
we have δ < (1− λ−1)∥x− u0∥, which allows us to write

∥x− u∥ ≥ ∥x− u0∥ − ∥u− u0∥ > ∥x− u0∥ − δ >
1

λ
∥x− u0∥.

Combinining this with (22) gives ∥x−u∥
ρ(x) > γ′. Taking the lim inf as ∥x − u∥ →

dfarC(u) with x ∈ bdryC we obtain ℓ(u) ≥ γ′ > γ, hence u ∈ Dγ
ρ(·)(C). This being

true for every u ∈ B(u0, δ), we conclude that Dγ
ρ(·)(C) is open.

With the above open sets Dγ
ρ(·)(C) at hands we can state and prove the following

theorem on ρ(·)-strongly convex sets.

Theorem 3.9. Let C be a nonempty closed bounded subset of the Hilbert space H
and let ρ : bdryC →]0,+∞[ be a function which is lower semicontinuous relative
to bdryC. Consider the following assertions.
(h) For all xi ∈ H, all yi ∈ [IdH −NP (C; ·)]−1(xi) ∩ bdryC, i = 1, 2,

⟨y1 − y2, x1 − x2⟩ ≤
(
1− ∥y1 − x1∥

2ρ(y1)
− ∥y2 − x2∥

2ρ(y2)

)
∥y1 − y2∥2 .

(i) For any real γ > 1 and any u ∈ Dγ
ρ(·)(C), the set FarC(u) is a singleton, that is,

farC(u) exists, one has dfarC(u) > γρ
(
farC(u)

)
, the equality

{farC(u)} =
(
IdH −NP (C; ·) ∩ (H \ γρ(·)B)

)−1
(u)

holds, and the mapping farC is Lipschitz continuous on the open set Dγ
ρ(·)(C) with

(γ − 1)−1 as a Lipschitz constant, that is,

∥farC(u1)− farC(u2)∥ ≤ (γ − 1)−1 ∥u1 − u2∥ for all u1, u2 ∈ Dγ
ρ(·)(C).

(j) For any real γ > 1 and any u1, u2 ∈ Dγ
ρ(·)(C), one has that farC(u1) and farC(u2)

are well defined and satisfy

∥(farC−IdH)(u1)−(farC−IdH)(u2)∥2 ≥ ∥u1−u2∥2+(2γ−1)∥farC(u1)−farC(u2)∥2.
(k) The mapping farC is well defined on the open set Dρ(·)(C) and for all u1, u2 ∈
Dρ(·)(C), one has

∥farC(u1)− farC(u2)∥ ≤
( dfarC(u1)

2ρ(farC(u1))
+

dfarC(u2)

2ρ(farC(u2))
− 1
)−1∥u1 − u2∥.

Then, the ρ(·)-strong convexity of the set C is equivalent to the assertion (h) which
itself implies each one of the assertions (i), (j) and (k).
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Proof. Proposition 3.8 says that Dγ
ρ(·)(C) is open for every real γ ≥ 1, and we have

already seen in Theorem 3.3 that the ρ(·)-strong convexity of C is equivalent to the
assertion (h).
(h) ⇒ (i). If C is a singleton, say C = {c}, we obviously have all the desired
properties since Dγ

ρ(·)(C) = H \ B[c, γρ(c)]. Then, we may assume that C is not

a singleton. Fix any real γ > 1. Let us consider the multimapping M : H ⇒ H
defined by

M(y) := y −NP (C; y) ∩
(
H \ γρ(y)B

)
for all y ∈ H.

Note that DomM = {y ∈ bdryC : NP (C; y) ̸= {0}} ̸= ∅. Fix any x1, x2 ∈
DomM−1 and let y1 ∈ M−1(x1) and y2 ∈ M−1(x2). Since yi ∈ [IdH −NP (C; ·)]−1

(xi)∩bdryC for each i ∈ {1, 2}, we can apply our assumption given by the property
(h) to get

⟨y1 − y2, x2 − x1⟩ ≥
(
∥y1 − x1∥
2ρ(y1)

+
∥y2 − x2∥
2ρ(y2)

− 1

)
∥y1 − y2∥2.

Thanks to the fact that y1 − x1 /∈ γρ(y1)B and y2 − x2 /∈ γρ(y2)B, we see that

∥y1 − y2∥ ∥x2 − x1∥ ≥ (γ − 1)∥y1 − y2∥2.

Consequently, the multimapping M−1(·) =
(
IdH − NP (C; ·) ∩

(
H \ γρ(·)B

))−1

is

single-valued and Lipschitz continuous on its domain with (γ − 1)−1 as a Lipschitz
constant.

Let u ∈ Dγ
ρ(·)(C). We can apply Fitzpatrick’s theorem relative to farthest points

(see Theorem 2.2) to get a sequence (un)n∈N of H with un → u such that farC(un) is
well-defined for every integer n ≥ 1. Thanks to the continuity of dfarC(·), it is clear
that ∥un − farC(un)∥ = dfarC(un) → dfarC(u). This along with the convergence
un → u entail ∥u − farC(un)∥ → dfarC(u). Then, the inclusion u ∈ Dγ

ρ(·)(C) gives

the estimate

lim inf
n→∞

∥u− farC(un)∥
ρ(farC(un))

> γ.

Combining this and the convergence ∥u−farC(un)∥
∥un−farC(un)∥ → 1, we obtain

l := lim inf
n→∞

∥un − farC(un)∥
ρ(farC(un))

> γ.

Fix any real γ′ ∈]γ, l[. Hence, we may suppose

∥un − farC(un)∥ > γ′ρ(farC(un)) for all n ∈ N. (23)

This and (6) furnish

farC(un) ∈ M−1(un) =
(
IdH −NP (C; ·) ∩

(
H \ γρ(·)B

))−1

(un) for all n ∈ N.

We are then in a position to use the (γ− 1)−1-Lipschitz property established above
to get

∥farC(up)− farC(uq)∥ ≤ (γ − 1)−1∥up − uq∥ for all p, q ∈ N,
in particular the sequence

(
farC(un)

)
n∈N is a Cauchy sequence of H. Keeping in

mind that bdryC is a closed subset of the Hilbert space H, the latter sequence
(strongly) converges to some vector v ∈ bdryC, that is,

vn := farC(un) → v ∈ bdryC.
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Further, we see that the continuity of dfarC and the equality ∥un−vn∥ = dfarC(un)
(valid for every integer n ∈ N) entail that ∥u − v∥ = dfarC(u), i.e., v ∈ FarC(u).
Coming back to the inequality (23), it follows by the lower semicontinuity of ρ(·)
relative to bdryC that

dfarC(u) = ∥u− v∥ ≥ γ′ρ(v) > γρ(v).

Putting together the latter estimate, the inclusion v ∈ FarC(u) and (6) yield

v ∈
(
IdH −NP (C; ·) ∩

(
H \ γρ(·)B

))−1

(u) = M−1(u).

Consequently, we have established that

Dγ
ρ(·)(C) ⊂ Dom FarC and Dγ

ρ(·)(C) ⊂ DomM−1.

Since M−1 =
(
IdH−NP (C; ·)∩

(
H\γρ(·)B

))−1

is single-valued on its domain and

u ∈ Dγ
ρ(·)(C), we arrive to the existence of farC(u) along with

farC(u) = M−1(u) =
(
IdH −NP (C; ·) ∩

(
H \ γρ(·)B

))−1

(u).

This and the (γ − 1)−1-Lipschitz continuity of M−1 on its domain combined with
the above inclusion Dγ

ρ(·)(C) ⊂ DomM−1 assures us that

∥farC(u1)− farC(u2)∥ ≤ (γ − 1)−1∥u1 − u2∥ for all u1, u2 ∈ Dγ
ρ(·)(C),

which translates the desired implication (h) ⇒ (i).
(h) ⇒ (j). Fix any u1, u2 ∈ Dγ

ρ(·)(C). According to the implication (h) ⇒ (i), we

know that for each i ∈ {1, 2}, the vector yi := farC(ui) is well defined along with
∥ui − yi∥ > γρ(yi). Noting also that yi ∈ [IdH −NP (C; ·)]−1(ui) ∩ bdryC for each
i ∈ {1, 2} (see (2) and (6)), the estimate provided by (h) yields

⟨y1 − y2, u1 − u2⟩ ≤ (1− γ)∥y1 − y2∥2.
It remains to combine the latter estimate with the elementary equality

∥(y1 − u1)− (y2 − u2)∥2 = ∥u1 − u2∥2 + ∥y1 − y2∥2 − 2 ⟨y1 − y2, u1 − u2⟩
to obtain the desired inequality in (j).
(h) ⇒ (k). As above the implication (h) ⇒ (i) tells us that the mapping farC(·)
is well defined on Dρ(·)(C). Fix any u1, u2 ∈ Dρ(·)(C). Set y1 := farC(u1) and

y2 ∈ farC(u2). Thanks to the inclusion yi ∈ [IdH −NP (C; ·)]−1(ui) ∩ bdryC (due
to (2) and (6)) valid for each i ∈ {1, 2}, we can use the inequality provided by (h)
to get

⟨y1 − y2, u2 − u1⟩ ≥
(
∥y1 − u1∥
2ρ(y1)

+
∥y2 − u2∥
2ρ(y2)

− 1

)
∥y1 − y2∥2.

It remains to apply the Cauchy-Schwarz inequality and to observe that ∥yi − ui∥ =
dfarC(ui) for any i ∈ {1, 2} to obtain the desired estimate in (k). The proof of the
theorem is then complete.

Let us continue with a function ρ : bdryC →]0,+∞[ defined on the boundary
a nonempty closed bounded subset C of the Hilbert space H. Let us consider for
every real γ ≥ 1 (in addition to the set Dγ

ρ(·)(C)) the set Eγ
ρ(·)(C) given by{

u ∈ H : ∃γ′ > γ, ∀η > 0,∃(u′, y) ∈ gphFarC ∩
(
B(u, η)×H

)
,
∥y − u′∥
ρ(y)

> γ′
}
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which can be rewritten as

Eγ
ρ(·)(C) =

u ∈ H : lim sup
DomFarC ∋ u′ → u

y ∈ FarC(u
′)

∥y − u′∥
ρ(y)

> γ

 .

Notice that the right members of the former and latter equalities for Eγ
ρ(·)(C) make

sense according to Fitzpatrick’s theorem relative to farthest points (see Theorem
2.2). It can be checked in a straightforward way that

{u ∈ H : ∃y ∈ FarC(u),dfarC(u) > γρ(y)} ⊂ Eγ
ρ(·)(C) for all γ ≥ 1 (24)

along with

Eρ(·)(C) := E1
ρ(·)(C) =

⋃
γ>1

Eγ
ρ(·)(C).

In addition to the inclusion {u ∈ H : ∃y ∈ FarC(u),dfarC(u) > γρ(y)} ⊂ Dγ
ρ(·)(C)

in (20), we have also observed above the inclusion of the left-hand side into Eγ
ρ(·)(C).

In fact, we claim that one has the stronger inclusion

Dγ
ρ(·)(C) ⊂ Eγ

ρ(·)(C) for all γ ≥ 1. (25)

Indeed, take any u ∈ Dγ
ρ(·)(C). Choose sequences (un)n∈N and (yn)n∈N with yn ∈

FarC(un) and DomFarC ∋ un → u and such that

∥yn − un∥
ρ(yn)

→ lim sup
DomFarC ∋ u′ → u

y ∈ FarC(u
′)

∥y − u′∥
ρ(y)

=: ℓ.

The convergence un → u and the continuity of dfarC ensure that

∥yn − un∥ = dfarC(un) → dfarC(u),

hence ∥yn − u∥ → dfarC(u). This and the inclusion yn ∈ bdryC give

ℓ = lim
n→∞

∥yn − un∥
ρ(yn)

= lim
n→∞

∥yn − u∥
ρ(yn)

≥ lim inf
∥y − u∥ → dfarC(u)

y ∈ bdryC

∥y − u∥
ρ(y)

> γ.

This justifies the inclusion (25).
If C is a singleton, i.e., C = {c} for some vector c ∈ H, it is readily observed

that
Eγ
ρ(·)(C) = H \B[c, γρ(c)].

In particular, we note that

Eρ(·)(C) ∩ C = ∅ whenever C is a singleton. (26)

Under the ρ(·)-strong convexity of C, the next theorem shows in particular the
coincidence of the sets Eγ

ρ(·)(C) and Dγ
ρ(·)(C).

Theorem 3.10. Let C be a ρ(·)-strongly convex subset of the Hilbert space H for
some function ρ : bdryC →]0,+∞[ which is continuous relative to bdryC. The
following hold.
(a) For every real γ ≥ 1, one has

Dγ
ρ(·)(C) = {u ∈ H : ∃y ∈ FarC(u),dfarC(u) > γρ(y)} = Eγ

ρ(·)(C).
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(b) The mapping farC(·) is well defined on the open set Dρ(·)(C) and locally Lipschitz
on this open set.

Proof. (a) Fix any real γ ≥ 1. It follows from (24) and from (i) in Theorem 3.9
that

Dγ
ρ(·)(C) ⊂ {u ∈ H : ∃y ∈ FarC(u),dfarC(u) > γρ(y)} ⊂ Eγ

ρ(·)(C). (27)

Fix any u ∈ Eγ
ρ(·)(C). There are a real γ′ and two sequences (un)n∈N and (yn)n∈N

of H with un → u and yn ∈ FarC(un) ⊂ bdryC for every integer n ≥ 1 (see (2) for
the second inclusion) such that

lim
n→∞

∥un − yn∥
ρ(yn)

= lim sup
DomFarC ∋ u′ → u

q ∈ FarC(u
′)

∥q − u′∥
ρ(q)

> γ′ > γ.

Without loss of generality, we may suppose that

∥un − yn∥
ρ(yn)

> γ′ for all n ∈ N. (28)

Let u′ ∈ DomFarC , y
′ ∈ FarC(u

′) and z ∈ C. Through the inclusion y′ − u′ ∈
NP (C; y′) (see (6)) and the elementary equality

∥u′ − z∥2 = ∥u′ − y′∥2 + ∥y′ − z∥2 + 2 ⟨y′ − u′, z − y′⟩
we see that the ρ(·)-strong convexity of C gives by the equivalence (a) ⇔ (f) in
Theorem 3.3 that

∥u′ − z∥2 ≤ ∥u′ − y′∥2 + ∥y′ − z∥2 − ∥y′ − u′∥
ρ(y′)

∥z − y′∥2,

or equivalently, (∥y′ − u′∥
ρ(y′)

− 1
)
∥z − y′∥2 ≤ ∥u′ − y′∥2 − ∥u′ − z∥2. (29)

Then, the latter inequality and (28) ensure that we obtain for all integers m,n ∈ N

(γ′ − 1)∥ym − yn∥2 ≤
(∥yn − un∥

ρ(yn)
− 1
)
∥ym − yn∥2

≤ ∥yn − un∥2 − ∥un − ym∥2

≤ dfar2C(un)−
(
∥um − ym∥ − ∥un − um∥

)2
= dfar2C(un)−

(
dfarC(um)− ∥un − um∥

)2
.

Therefore, it is readily seen that (yn)n∈N is a Cauchy sequence of H which converges
to some y ∈ H. This and the equality ∥un−yn∥ = dfarC(un) ensure that ∥u−y∥ =
dfarC(u). Further, the closedness of C implies that y ∈ C, hence y ∈ FarC(u) ⊂
bdryC. Keeping in mind (28) and using the fact that the function ρ(·) is continuous
relative to bdryC and takes positive values, we can write

dfarC(u)

ρ(y)
= lim

n→∞

∥un − yn∥
ρ(yn)

= lim
n→∞

dfarC(un)

ρ(yn)
≥ γ′ > γ. (30)

Let (cn)n∈N be a sequence of bdryC with ∥cn − u∥ → dfarC(u) such that

lim
n→∞

∥cn − u∥
ρ(cn)

= lim inf
∥q−u∥→dfarC(u)

q∈bdry C

∥q − u∥
ρ(q)

.
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In view of (29), we have(∥y − u∥
ρ(y)

− 1
)
∥cn − y∥2 ≤ ∥y − u∥2 − ∥u− cn∥2,

hence by (30)

(γ′ − 1)∥cn − y∥2 ≤ dfar2C(u)− ∥u− cn∥2.
Then, we see that the sequence (cn)n∈N converges to y (since ∥cn−u∥ → dfarC(u)),
in particular (by the continuity of the function ρ(·))

lim inf
∥q−u∥→dfarC(u)

q∈bdry C

∥q − u∥
ρ(q)

= lim inf
n→∞

∥cn − u∥
ρ(cn)

=
∥y − u∥
ρ(y)

=
dfarC(u)

ρ(y)
≥ γ′ > γ,

where the first inequality is due to (30) again. This gives u ∈ Dγ
ρ(·)(C). Then, it is

established that the inclusions in (27) are in fact equalities, that is,

Dγ
ρ(·)(C) = {u ∈ H : ∃y ∈ FarC(u),dfarC(u) > γρ(y)} = Eγ

ρ(·)(C). (31)

(b) We conclude the proof by noting that (b) is a direct consequence of the openness
property given in Proposition 3.8 and of the implications (h) ⇒ (i) in Theorem 3.9
and (a) ⇒ (h) in Theorem 3.3.

Given a nonempty closed bounded convex subset C of the Hilbert space H, it

is well-known that S =
{

u−projC(u)
dC(u) : u ∈ H \ C

}
. We now show that a similar

equality holds whenever C is assumed in addition to be ρ(·)-strongly convex, where
the nearest point projC(u) is replaced by the farthest point farC(u). We need first
the following lemma which is in the line of [1, Proposition 3.3].

Lemma 3.11. Let ρ(·) be a function (resp. lower semicontinuous function) from
bdryC into ]0,+∞[ and let C be a ρ(·)-strongly convex set in the Hilbert space H.
Let x, x′ ∈ H with x′ − x ∈ N(C;x′) and ∥x− x′∥ ≥ ρ(x′) (resp. ∥x− x′∥ > ρ(x′)).
Then, one has x′ ∈ FarC(x) (resp. x′ = farC(x)).

Proof. First, note that in both cases x′ ∈ bdryC. Consider any y ∈ C. According
to Theorem 3.3 we have

⟨x′ − x, y − x′⟩ ≤ − 1

2ρ(x′)
∥x′ − x∥∥y − x′∥2.

If ρ(x′) ≤ ∥x− x′∥, then

⟨x′ − x, y − x′⟩ ≤ −1

2
∥y − x′∥2,

and this translates (see (5)) the inclusion x′ ∈ FarC(x).
Assume now that ρ(x′) < ∥x− x′∥, so by what precedes x′ ∈ FarC(x). We then

have

dfarC(x) = ∥x− x′∥ > ρ(x′)

and this guarantees (20) the inclusion x′ ∈ Dρ(·)(C). It remains to apply Theorem
3.9 to conclude that farC(x) is well defined, that is, x

′ = farC(x).

We are now in a position to establish the description of the unit sphere through
farthest points as stated above.
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Proposition 3.12. Let C be a subset of the Hilbert space H which is ρ(·)-strongly
convex for some lower semicontinuous function ρ(·) : bdryC →]0,+∞[ and which
is not a singleton. Let also (x′, v) ∈ H2 with x′ ∈ bdryC and v ∈ N(C;x′)∩S. For
every real α > ρ(x′), one has with x := x′ − αv

dfarC(x) = α and v =
farC(x)− x

dfarC(x)
.

Further, one has

S =

{
farC(u)− u

dfarC(u)
: u ∈ H

}
.

Proof. We have x′ − x ∈ N(C;x′) and ∥x′ − x∥ = α > ρ(x′), so Lemma 3.11 tells
us that x′ = farC(x). This ensures the first two desired equalities.

Let v ∈ S. According to Proposition 3.5, there is c ∈ C such that v ∈ N(C; c).
Choosing some real α > ρ(c) and setting u := c − αv, we arrive by what precedes
to

v =
farC(u)− u

dfarC(u)
.

The proof is then complete.

Our aim is now to provide besides Theorem 3.3 several characterizations of ρ(·)-
strongly convex sets through either the regularity of the farthest distance function
or the existence of farthest points. We start with the lemma below which is an
adaptation of Lemma 3.4 of M.V. Balashov and G.E. Ivanov [3] (see also Lemma
10 in [18]). The context here of Hilbert spaces allow us to obtain more accurate
estimates.

Lemma 3.13. Let r > 0 be a positive real and let a, b, x in the Hilbert space H be
such that

∥a− x∥ ≤ r ≤ ∥b− x∥.
Then, one has with z := a+ r

∥a−b∥ (a− b) and m := min{r, ∥a− b∥}

2m

(
1−

√
1− ∥z − x∥2

4r2

)
≤ ∥a− b∥+ r − ∥b− x∥, (32)

in particular

m
∥z − x∥2

4r2
≤ ∥a− b∥+ r − ∥b− x∥. (33)

Proof. First, we note that ∥z − x∥ ≤ 2r (since ∥a − x∥ ≤ r), so (33) is a direct
consequence of (32) thanks to the elementary inequality

2
√
1− t ≤ 2− t

valid for every real t ≤ 1.
Now, let us establish (32). Set u := a−x

r ∈ B and v := b−a
∥b−a∥ ∈ S. It is clear that

∥u+ v∥2 + ∥v − u∥2 = 2(∥u∥2 + ∥v∥2) ≤ 4,

or equivalently,

∥u+ v∥2 ≤ 4− ∥v − u∥2. (34)

We also easily observe that

u− v =
1

r
(a− x+ z − a) =

z − x

r
.



22 FLORENT NACRY AND LIONEL THIBAULT

Coming back to (34), we then get

∥u+ v∥ ≤
√
4− ∥z − x∥2

r2
=: δ.

Let us distinguish two cases:

Case 1. m = ∥a− b∥. It is then easy to check

b− x = m(u+ v) +
r − ∥a− b∥

r
(a− x)

from which we derive (keeping in mind that m ≤ r)

∥b− x∥ ≤ mδ + r − ∥a− b∥,

and this can be rewritten as

m(2− δ) ≤ 2m+ r − ∥a− b∥ − ∥b− x∥ = ∥a− b∥+ r − ∥b− x∥.

Case 2. m = r. We then have

b− x = r(u+ v) +
∥a− b∥ − r

∥a− b∥
(b− a),

hence (using ∥a− b∥ ≥ r)

∥b− x∥ ≤ rδ + ∥a− b∥ − r.

We then arrive to

r(2− δ) ≤ ∥a− b∥+ r − ∥b− x∥.
We conclude that the desired inequality (32) holds in both cases. The proof of the
lemma is complete.

The next proposition provides a crucial estimate on the diameter of the set
FarC,η(x) (see (3)) for a ρ(·)-strongly convex set C. We refer to Ivanov [18, Lemma
11] for the constant case ρ(·) ≡ R. It will be convenient for the statement of the
proposition to denote

LC,ρ(·)(u) := lim sup
DomFarC ∋ u′ → u

y ∈ FarC(u
′)

∥y − u′∥
ρ(y)

,

so u ∈ Eρ(·)(C) means LC,ρ(·)(u) > 1.

Proposition 3.14. Let C be a nonempty bounded subset not reduced to a single-
ton of the Hilbert space H for which there exists a function ρ : bdryC →]0,+∞[
satisfying

y ∈ FarC

(
y +

ρ(y)

∥x− y∥
(x− y)

)
for all (x, y) ∈ gphFarC with x ∈ Eρ(·)(C). (35)

Assume that the set Eρ(·)(C) is open in H along with κ := infFarC(H) ρ > 0.
Then, given any x ∈ Eρ(·)(C), i.e. LC,ρ(·)(x) > 1, there exists a real r ∈

]0,dfarC(x)[ such that for every real η > 0 with 1+2η/κ < LC,ρ(·)(x) (or equivalently

x ∈ E1+2η/κ
ρ(·) (C)), one has

diamFarC,η(x) ≤
4r√

min {r, dfarC(x)− r}
√
η.
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Proof. Fix any x ∈ Eρ(·)(C). Thanks to the definition and to the openness of
the set U := Eρ(·)(C), we can find some sequence ((un, qn))n∈N of gphFarC with
U ∋ un → x and

LC,ρ(·)(x) := lim sup
DomFarC ∋ u′ → x

q ∈ FarC(u
′)

∥q − u′∥
ρ(q)

= lim
n→∞

∥qn − un∥
ρ(qn)

> 1. (36)

Extracting a subsequence if necessary we may suppose that (qn)n∈N weakly con-

verges to some q̂ ∈ H (denoted qn
w→ q̂) along with the convergence ρ(qn) → r for

some real r ∈ [κ,+∞[, where the inequality r < ∞ is due to (36) and to the bound-
edness of C. In view of (36), consider any real η > 0 such that LC,ρ(·)(x) > 1+2η/κ.
There is no loss of generality by writing

dfarC(un) = ∥qn − un∥ > ρ(qn)(1 +
2η

κ
) and σn := ∥x− un∥ <

η

2
(37)

for every integer n ≥ 1. Passing to the limit as n → ∞ in the first inequality gives

dfarC(x)− r ≥ 2rη/κ > 0. (38)

Let c ∈ FarC,η(x). Note that the inequalities in (38) obviously ensure that dfarC(x)
> r. Fix for a moment an integer n ∈ N. Using the 1-Lipschitz property of dfarC
(see (1)), the first inequality in (37) and the definitions of κ and σn, we obtain

dfarC(x) ≥ dfarC(un)− σn ≥ (1 +
2η

κ
)ρ(qn)− σn ≥ ρ(qn) + 2η − σn. (39)

Keeping in mind the inclusion c ∈ FarC,η(x), it follows from this and the second
inequality in (37) that

∥c−un∥ ≥ ∥c−x∥−∥x−un∥ ≥ dfarC(x)−η−σn ≥ ρ(qn)+η−2σn ≥ ρ(qn). (40)

On the other hand, applying the assumptions (35) gives

qn ∈ FarC(xn) with xn := qn +
ρ(qn)

∥qn − un∥
(un − qn),

and this obviously entails

∥xn − c∥ ≤ dfarC(xn) = ρ(qn). (41)

By definition of xn and by the first inequality in (37) we also have

∥xn − un∥ = |∥qn − un∥ − ρ(qn)| = ∥qn − un∥ − ρ(qn) = dfarC(un)− ρ(qn). (42)

This and the 1-Lipschitz property of dfarC ensure that

∥xn − un∥ ≤ dfarC(x) + ∥x− un∥ − ρ(qn) = dfarC(x) + σn − ρ(qn). (43)

Further, letting n → ∞ in (42) furnishes ∥xn − un∥ → dfarC(x)− r, thus

mn := min{ρ(qn), ∥xn − un∥} → min{r, dfarC(x)− r} > 0, (44)

where the latter inequality is due to (38). From the definition of xn again, it is also
easily seen that

qn = xn +
ρ(qn)

∥xn − un∥
(xn − un).

The latter equality combined with (40) and (41) allows us to apply Lemma 3.13
with mn = min{ρ(qn), ∥xn − un∥} to get

mn∥qn − c∥2

4ρ(qn)2
≤ ∥xn − un∥+ ρ(qn)− ∥un − c∥ =: αn. (45)
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Further, from (43) and (40) we have

αn ≤ dfarC(x) + σn − ρ(qn) + ρ(qn)− dfarC(x) + η + σn = 2σn + η. (46)

Coming back to (39), we also have

dfarC(x)− ρ(qn)− σn ≥ 2(η − σn) > 0.

According to this and to the fact that

dfarC(x)− ∥qn − un∥ = dfarC(x)− dfarC(un) ≤ ∥x− un∥ = σn,

it follows that

0 < 2(η − σn) ≤ dfarC(x)− ρ(qn)− σn ≤ ∥qn − un∥ − ρ(qn) = ∥xn − un∥,

where the latter equality is due to (42). We note by (45) and (46) that

∥qn − c∥ ≤ 2ρ(qn)

√
2σn + η

mn
=: sn.

Using the weak lower semicontinuity of ∥ · ∥ and the convergences qn
w→ q̂ and

ρ(qn) → r, we arrive by (44) to

∥q̂ − c∥ ≤ lim inf
n→+∞

sn = 2r

√
η

min{r, dfarC(x)− r}
=: β.

Therefore, we have for all c1, c2 ∈ FarC,η(x)

∥c1 − c2∥ ≤ ∥c1 − q̂∥+ ∥c2 − q̂∥ ≤ 2β.

This finishes the proof of the proposition.

The condition κ > 0 in the above proposition holds true whenever C is ρ(·)-
strongly convex as shown below.

Proposition 3.15. If a nonempty closed bounded subset C of the Hilbert space H is
ρ(·)-strongly convex for some lower semicontinuous function ρ : bdryC →]0,+∞[,
then infbdryC ρ > 0.

Proof. By contradiction, suppose that infbdryC ρ = 0. Let (cn)n≥1 be a sequence
in bdryC with limn→∞ ρ(cn) = 0. Fix some pair (x, v) such that x ∈ bdryC and
v ∈ N(C;x) ∩ S. Since ρ(·) is lower semicontinuous and ρ(x) > 0, we must have
cn ̸→ x, so there exist a real α > 0 and a subsequence (cs(n))n≥1 such that

∥cs(n) − x∥ ≥ α for all n ∈ N.

We deduce for each integer n ∈ N, by the equivalence (a) ⇔ (e) in Theorem 3.3,
that 〈

v,
cs(n) − x

∥cs(n) − x∥

〉
≤ − 1

2ρ(cs(n))
∥cs(n) − x∥,

and this leads to the desired contradiction since∣∣∣∣〈v, cs(n) − x

∥cs(n) − x∥

〉∣∣∣∣ ≤ 1

while − 1
2ρ(cs(n))

∥cs(n) − x∥ ≤ − α
2ρ(cs(n))

→ −∞.

We can now prove the following theorem providing a series of properties of ρ(·)-
strongly convex sets through the differentiability of farthest distance function.
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Theorem 3.16. Let C be a nonempty closed bounded subset not reduced to a sin-
gleton of the Hilbert space H and let ρ(·) : bdryC →]0,+∞[ be a function which is
continuous relative to bdryC. Let also

Iγ
ρ(·)(C) := {u ∈ H : ∃y ∈ FarC(u), dfarC(u) > γρ(y)}.

Consider the following assertions:
(a) The set C is ρ(·)-strongly convex.
(b) For any real γ > 1, the set Eγ

ρ(·)(C) is open in H and the mapping farC is well

defined on Eγ
ρ(·)(C) and (γ − 1)−1-Lipschitz continuous therein, that is,

∥farC(u1)− farC(u2)∥ ≤ (γ − 1)−1∥u1 − u2∥ for all u1, u2 ∈ Eγ
ρ(·)(C).

(c) For any real γ > 1, the set Eγ
ρ(·)(C) coincides with both Iγ

ρ(·)(C) and Dγ
ρ(·)(C)

and the mapping farC is well defined on Eρ(·)(C) along with

∥farC(u1)− farC(u2)∥ ≤
( dfarC(u1)

2ρ(farC(u1))
+

dfarC(u2)

2ρ(farC(u2))
− 1
)−1∥u1 − u2∥,

for all u1, u2 ∈ Eρ(·)(C).
(d) The set Eρ(·)(C) is open in H and the mapping farC is well defined on Eρ(·)(C)
and locally Lipschitz continuous on Eρ(·)(C).
(e) The set Eρ(·)(C) is open in H and the mapping farC is well defined on Eρ(·)(C)
and norm-to-norm continuous on Eρ(·)(C).
(f) The set Eρ(·)(C) is open in H and the mapping farC is well defined on Eρ(·)(C)
and norm-to-weak continuous on Eρ(·)(C).

(g) The set Eρ(·)(C) is open in H and the function dfarC is of class C1,1 on Eρ(·)(C).
(h) The set Eρ(·)(C) is open in H and dfarC is Fréchet differentiable on Eρ(·)(C).
(i) The set Eρ(·)(C) is open in H and the function dfarC is Gâteaux differentiable
on Eρ(·)(C) and FarC(u) ̸= ∅ for all u ∈ Eρ(·)(C).
(j) The set Eρ(·)(C) is open in H and the function dfarC is Gâteaux differentiable

on Eρ(·)(C) and ∥∇GdfarC(u)∥ = 1 for all u ∈ Eρ(·)(C).
(k) The set Eρ(·)(C) is open in H and dfarC(u) is strongly attained for all u ∈
Eρ(·)(C).
(l) The set Eρ(·)(C) is open in H and for any u ∈ Eρ(·)(C) such that the element
y := farC(u) is well defined one has

farC(u) = farC
(
y − t

y − u

∥y − u∥
)

for all t ∈]ρ(y),+∞[.

(m) The set Eρ(·)(C) is open in H and for any (u, y) ∈ gphFarC with u ∈ Eρ(·)(C)
one has

y ∈ FarC
(
y − ρ(y)

∥y − u∥
(y − u)

)
.

Then, the implications (a) ⇒ (c) ⇒ (b) ⇒ (d) hold, the assertion (d) is equivalent
to anyone of (e) − (k), and the implications (h) ⇒ (l) ⇒ (m) also hold. If in
addition, infc∈FarC(H) ρ(c) > 0, then (m) ⇒ (k).

Proof. First observe that Theorem 2.3 guarantees that (d)−(k) are pairewise equiv-
alent.

The implication (a) ⇒ (c) directly follows from Theorem 3.10 and from the fact
that the ρ(·)-strong convexity of C implies (k) in Theorem 3.9. On the other hand,
we obviously have (c) ⇒ (b) and (b) ⇒ (d).
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To show that (h) implies (l) suppose that Eρ(·)(C) is open and dfarC(·) is Fréchet
differentiable on Eρ(·)(C). According to Theorem 2.3, we know that the mapping
farC(·) is well defined on the open set Eρ(·)(C) and continuous therein. Fix any
u ∈ Eρ(·)(C). Choose a real γ > 1 such that u ∈ Eγ

ρ(·)(C). By definition of Eγ
ρ(·)(C),

we can find two sequences (u′
n)n∈N and (yn)n∈N of H with yn ∈ FarC(u

′
n) for every

integer n ∈ N such that

u′
n → u and

∥yn − u′
n∥

ρ(yn)
> γ for all n ≥ 1.

Taking into account the latter convergence and the openness of the set Eρ(·)(C), we
may suppose without loss of generality that u′

n ∈ Eρ(·)(C) for every integer n ∈ N,
and this allows us to write

yn = farC(u
′
n) → farC(u) =: y and

∥y − u∥
ρ(y)

≥ γ.

Applying Lemma 2.4 provides some real τ0 ∈]0, 1[ such that

farC(u) = farC
(
u+ s(farC(u)− u)

)
for all s ≤ τ0.

Put us := u + s farC(u)−u
∥y−u∥ for every s ∈ R (keeping in mind that x ̸= u since C is

not reduced to a singleton). Fix any t ∈]ρ(x),+∞[. If t > dfarC(u), we have with
τ := t

dfarC(u) > 1 (see (7))

y = farC
(
farC(u)− τ(farC(u)− u)

)
= farC

(
farC(u)− t

y − u

∥y − u∥
)
. (47)

Consider now the case when t ≤ dfarC(u). Define the set

Qt := {s ∈]−∞,dfarC(u)− t] : us ∈ Eρ(·)(C), farC(u) = farC(us)}

which is nonempty since 0 ∈ Qt. Set κ := supQt ≤ dfarC(u) − t and choose a
sequence (sn)n∈N of Qt such that sn → κ. For every integer n ∈ N we can write

dfarC(usn) = ∥farC(usn)− usn∥

=

∥∥∥∥farC(u)− (u+ sn
farC(u)− u

∥y − u∥
)∥∥∥∥

=

∣∣∣∣1− sn
∥y − u∥

∣∣∣∣ ∥farC(u)− u∥

= |∥y − u∥ − sn|
= dfarC(u)− sn (48)

and

∥usn − y∥ = ∥usn − farC(u)∥ = ∥usn − farC(usn)∥ = dfarC(usn). (49)

Putting together (48), (49) and the convergence usn → uκ we get

∥uκ − y∥ = dfarC(uκ) = dfarC(u)− κ ≥ t > ρ(y),

hence y ∈ FarC(uκ) and

lim sup
DomFarC ∋ u′ → uκ

z ∈ FarC(u
′)

∥z − u′∥
ρ(z)

≥ ∥y − uκ∥
ρ(y)

> 1.



STRONGLY CONVEX SETS WITH VARIABLE RADII 27

This says that uκ ∈ Eρ(·)(C). Then, we know that dfarC(·) is Fréchet differentiable
at uκ along with

y = farC(uκ).

Now, we are going to show that κ = dfarC(u) − t. By contradiction, suppose that
κ ̸= dfarC(u) − t, that is, κ < dfarC(u) − t. Thanks to Lemma 2.4, we can find
some θ ∈]0, 1[ such that

farC(uκ) = farC
(
uκ + θ′(farC(uκ)− uκ)

)
= farC

(
uκ + θ′(farC(u)− uκ)

)
, (50)

for every real θ′ ≤ θ. Let us choose some real η ∈]0, θ] small enough such that

κ+ η(dfarC(u)− κ) < dfarC(u)− t and uκ + η(farC(u)− uκ) ∈ Eρ(·)(C). (51)

Putting α := κ+ η(dfarC(u)− κ) > κ, simple calculations show that

uκ + η(farC(u)− uκ) = uα,

which gives by (50) and (51) that α ∈ Qt. The latter inclusion is a contradiction
since α > κ = supQt. Then, it is established that

κ = dfarC(u)− t.

Combining this and the equality farC(u) = y, we obtain

uκ = u+ (dfarC(u)− t)
y − u

∥y − u∥
= y − t

y − u

∥y − u∥
.

According to this and to (47), we have for any t ∈]ρ(y),+∞[

y = farC(uκ) = farC(y − t
y − u

∥y − u∥
),

so the implication (h) ⇒ (l) is established.
Let us show (l) ⇒ (m). Take any (u, y) ∈ gphFarC with u ∈ Eρ(·)(C) and any

real t > ρ(y). For every real θ > 0 put uθ := u+ θ(u− y), so y = farC(uθ). Fix any
real θ > 0. By (l) we have

y = farC

(
y − t

y − uθ

∥y − uθ∥

)
= farC

(
y − t

y − u

∥y − u∥

)
,

hence dfarC

(
y − t y−u

∥y−u∥

)
= t. Then, the limit as t ↓ ρ(y) ensures that we have

dfarC(y−ρ(y) y−u
∥y−u∥ ) = ρ(y). This means y ∈ FarC

(
y − ρ(y) y−u

∥y−u∥

)
, which justifies

(m).
Assume in addition that infFarC(H) ρ > 0. Let us establish the implication (m) ⇒

(k). Fix any u ∈ Eρ(·)(C). According to Proposition 3.14, under (m) we have

lim
η↓0

diamFarC,η(u) = 0,

and this ensures (see (4)) that dfarC(u) is strongly attained. The proof of the
theorem is complete.

Remark 3.17. It should be noted that there are nonconvex sets C such that
dfarC(·) is Fréchet differentiable on Eρ(·)(C) for ρ(·) ≡ R > 0 large enough. Indeed,
setting C := S∪{0} ⊂ H, we observe that dfarC(·) = 1+∥·∥ is Fréchet differentiable
on H \ {0} ⊃ ER(C) = H \ (R− 1)B for every real R > 1.

We end the paper with the next proposition which provides, in addition to Theo-
rem 3.3(c), another description of ρ(·)-strongly convex sets as intersection of closed
balls.
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Proposition 3.18. Let C be a ρ(·)-strongly convex subset of the Hilbert space H for
some continuous function ρ(·) : bdryC →]0,+∞[. Assume that C is not reduced to
a singleton. Then, one has ΩC,ρ(·) :=

{
(u, y) ∈ H2 : y ∈ FarC(H),dfarC(u) = ρ(y)

}
̸= ∅ and

C =
⋂

(u,y)∈L

B[u, ρ(y)],

for every set L such that ΩC,ρ(·) ⊂ L ⊂
{
(u, y) ∈ H2 : dfarC(u) = ρ(y)

}
.

Proof. Fix any x ∈ Eρ(·)(C). According to Theorem 3.16, we know that y := farC(x)
is well defined along with

y ∈ FarC

(
y − ρ(y)

y − x

∥y − x∥

)
.

Setting u := y − ρ(y) y−x
∥y−x∥ we then see that

(u, y) ∈ gph FarC and dfarC(u) = ∥y − u∥ = ρ(y),

that is, (u, y) ∈ ΩC,ρ(·) ̸= ∅.
Let L be a set such that ΩC,ρ(·) ⊂ L ⊂

{
(u, y) ∈ H2 : dfarC(u) = ρ(y)

}
. We are

going to show that D = C with D :=
⋂

(u,y)∈L B[u, ρ(y)]. Given any c ∈ C, we see

that
∥c− u∥ ≤ dfarC(u) = ρ(y) for all (u, y) ∈ L,

or equivalently, c ∈
⋂

(u,y)∈L B[u, ρ(y)]. This translates the inclusion C ⊂ D. Let

us show the converse inclusion. By contradiction, suppose that we can find some
z ∈ D \C. Set p := projC(z), d := dC(z) > 0 and v := z−p

d ∈ N(C; p). Fix any real
κ > ρ(p) and set q := p− κv. We obtain by Theorem 3.9 that for every c ∈ C

⟨p− q, c− p⟩ = κ ⟨v, c− p⟩ ≤ − κ

2ρ(p)
∥c− p∥2 ≤ −1

2
∥c− p∥2.

By (5) we have the inclusion p ∈ FarC(q). It follows from this

dfarC(q) = ∥p− q∥ = κ > ρ(p),

hence (see Theorem 3.10) q ∈ Eρ(·)(C). This inclusion allows us to apply Theorem
3.16 to get

p = farC(q) ∈ FarC

(
p− ρ(p)

p− q

∥p− q∥

)
.

Thus, the point w := p− ρ(p) p−q
∥p−q∥ satisfies

(w, p) ∈ gphFarC and dfarC(w) = ∥p− w∥ = ρ(p),

in particular, (w, p) ∈ ΩC,ρ(·) ⊂ L. We deduce from this and the definition of D
that

z ∈ D ⊂ B[w, ρ(p)].

On the other hand, we also have

z − w = z − p+ ρ(p)
κv

∥κv∥
= z − p+ ρ(p)v =

d+ ρ(p)

d
(z − p).

Taking the norm ∥·∥ of the extreme members in what precedes and keeping in mind
that z ∈ B[w, ρ(p)], we then arrive to

d+ ρ(p) ≤ ρ(p).

This must imply d = 0, that is, z ∈ C since C is closed in H, which contradicts the
fact that z ∈ D \ C. The proof of the proposition is complete.
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[7] H. Bückner, Über Fläche fesler Breile, Jahr. Deul. Math. Ver., 4 (1936), 96-139.
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