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1. Introduction

Distance functions play a fundamental role in mathematical analysis, including con-
vex analysis ([10, 36, 40]), variational analysis ([15, 25, 31, 36, 40, 44]), differential
inclusions ([5, 16, 34, 43]), optimal control ([13, 32]), approximation theory ([20, 42]),
shape analysis and PDE ([3, 4, 19]), etc. It is well-known (and easily seen) that the
convexity of a given closed subset C in a normed space is equivalent to the convexity
of its associated (standard/usual) distance function, namely dC(x) := infc∈C ∥x−c∥.
In the Hilbertian setting M. V. Balashov [6] extended such a characterization for the
semiconvexity of the distance function (i.e., its convexity up to a square norm).
More precisely, Balashov [6] showed that, in a Hilbert space, the semiconvexity of
the distance function dC (on any convex subset of a suitable enlargement of C) is
equivalent to the uniform prox-regularity of the closed set C. Recall that a closed
subset C in a Hilbert space X is uniformly prox-regular ([37]) (also known as pos-
itively reached, weakly convex, φ−convex, O(2)-convex, proximally smooth, see,
e.g., [12, 17, 21, 41, 45] and the references therein) with constant r > 0 provided
that the nearest point mapping projC is well defined on a suitable enlargement of C
(more precisely on the set Ur(C) := {x ∈ X : dC(x) < r}) and continuous therein.
Prox-regularity has been recognized as a fundamental concept in variational analysis
ISSN 0944-6532 / $ 2.50 © Heldermann Verlag
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which allows to go beyond convexity in several aspects of mathematical analysis and
its applications (see, e.g., [9, 11, 18, 24, 26, 30] and the references therein).
In many situations, it is also of interest to strengthen the convexity property. This
can be achieved with R-strongly convex sets ([23, 26, 38, 45, 46]) which are basically
intersection of closed balls with common radius R > 0. For the use of such sets in
diverse applied mathematical problems, we refer, e.g., to [14, 33] for the sweeping
process, [22] for optimal control, [29, 39] for numerical optimization, [26, 28] for dif-
ferential games, etc. In the work [7], it is established that for any closed bounded set
in a Hilbert space X, the strong convexity property is equivalent to the semiconcav-
ity of the (convex) farthest distance function dfarC(x) := supc∈C ∥x− c∥. The first
aim of the present paper is to give an alternative proof of such a characterization
of strongly convex sets. Our approach is in the line of [35] based on the fact that
the complement of a prox-regular set is nothing but the union of a family of closed
balls with common radius.
The distance function from a convex set is known to admit diverse descriptions
involving duality relations from convex analysis. Namely, given a closed convex set
C in a Hilbert space X, the distance function dC has been described in the following
ways (see, e.g., [20]) :
(i) in terms of the support function σ(·, C): for an appropriate x⋆ ∈ X

dC(x) = ⟨x⋆, x⟩ − σ(x⋆, C);

(ii) by the duality property:
dC(x) = max

∥x̄∥=1
inf
y∈C

⟨x̄, x− y⟩ = inf
y∈C

max
∥x̄∥=1

⟨x̄, x− y⟩ ;

(iii) in terms of supporting hyperplanes: the distance of a point from a convex set
is the maximum of distances to appropriate hyperplanes separating the set and
the point.

Extensions of (i)–(ii) and (iii) to prox-regular sets have been recently considered in
[1]. The second aim of the present work is to provide in details the analysis of the
corresponding features (i), (ii) and (iii) when the set C satisfies the strengthened
condition of strong convexity.
The paper is organized as follows. In Section 2, we give some preliminaries and
notation needed for our analysis. Section 3 is devoted to the semiconcavity property
of the farthest distance function associated to a strongly convex set. In the last
section of the present work, we develop the analogs of the above properties (i)–(ii)
and (iii) for a strongly convex set C.

2. Notation and preliminaries
Throughout this section and the next ones, R+ := [0,+∞[ and X stands for a
(real) Hilbert space not reduced to zero endowed with the inner product ⟨·, ·⟩ and its
associated norm ∥ · ∥ given by ∥x∥2 = ⟨x, x⟩ for all x ∈ X.
The closed (resp. open) ball in X centered at x ∈ X with radius r > 0 is denoted
by B[x, r] (resp. B(x, r)). The letter B (resp. U) stands for the closed (resp.
open) unit ball in X, that is, B := B[0X , 1] (resp. U := B(0X , 1)). We also set
S := {x ∈ X : ∥x∥ = 1}, that is, the unit sphere of X. The interior (resp. the
closure) of a subset A of (X, ∥ · ∥) is denoted by intA (resp. clA).
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The distance function dS and the farthest distance function dfarS from a nonempty
subset S ⊂ X are defined for every x ∈ X by

dS(x) := d(x, S) := inf
y∈S

∥x− y∥

and dfarS(x) := dfar(x, S) := sup
y∈S

∥x− y∥ .

To those functions are naturally associated the multimappings ProjS : X ⇒ X of
nearest points in S and FarS : X ⇒ X of farthest points in S defined for every
x ∈ X by

ProjS(x) := Proj(S, x) := {y ∈ S : dS(x) = ∥x− y∥}

and FarS(x) := Far(S, x) := {y ∈ S : dfarS(x) = ∥x− y∥} .

Whenever ProjS(x) (resp. FarS(x)) is reduced to a singleton for some x ∈ X, that
is, ProjS(x) = {y} (resp. FarS(x) = {y}) the vector y ∈ S will be denoted by
projS(x) (resp. farS(x)).

2.1. Normal cones and subdifferentials

Let S be a nonempty set in X. The proximal normal cone of S at x ∈ S, denoted
by NP (S;x), is defined as

NP (S;x) :=
{
v ∈ X : ∃σ ≥ 0, ∀x′ ∈ S, ⟨v, x′ − x⟩ ≤ σ∥x′ − x∥2

}
.

If S is convex, it is known that the proximal normal cone NP (S;x) coincides with
the normal cone in the sense of convex analysis, that is,

NP (S;x) = {v ∈ X : ⟨v, x′ − x⟩ ≤ 0, ∀x′ ∈ S} =: N(S;x).

Through the equivalences valid for every x, y ∈ X

y ∈ ProjS(x) ⇔ y ∈ S and ⟨x− y, c− y⟩ ≤ 1

2
∥c− y∥2 for all c ∈ S

and
y ∈ FarS(x) ⇔ y ∈ S and ⟨y − x, c− y⟩ ≤ −1

2
∥c− y∥2 for all c ∈ S, (1)

we see that x− y ∈ NP (S; y) for all (x, y) ∈ gphProjS (2)

and y − x ∈ NP (S; y) for all (x, y) ∈ gphFarS, (3)

where gphProjS = {(x, y) ∈ X ×X : y ∈ ProjS(x)}

and gphFarS = {(x, y) ∈ X ×X : y ∈ FarS(x)}.

It is worth pointing out that for any (x, y) ∈ gphFarS

y = farS
(
x+ s(x− y)

)
for all s > 0. (4)

Notice also that both graphs gphProjS and gphFarS are closed in X ×X whenever
the set S is closed.
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Given a function f : X → R∪{+∞} and x ∈ X with |f(x)| < +∞, one defines the
proximal subdifferential of f at x as the set

∂Pf(x) :=
{
ζ ∈ X : (ζ,−1) ∈ NP

(
epi f ; (x, f(x))

)}
,

where as usual epi f := {(u, r) ∈ X × R : f(u) ≤ r} stands for the epigraph of the
function f . Of course, if f is convex then the latter subdifferential is nothing but
the Moreau-Rockafellar subdifferential, that is,

∂Pf(x) = {ζ ∈ X : ⟨ζ, x′ − x⟩ ≤ f(x′)− f(x) ∀x′ ∈ X} =: ∂f(x).

If f is convex near x and continuous at x, then

∂Pf(x) ̸= ∅ (5)

and f is Fréchet differentiable at x whenever ∂P (−f)(x) ̸= ∅. (6)

If f is C1,1 near x, it is an exercise to check that for a function g : X → R ∪ {+∞}
finite at x, one has

∂P (f + g)(x) = ∇f(x) + ∂Pg(x). (7)
Here the C1,1-property of f near x means (as usual) that f is differentiable on a
neighborhood of x with ∇f Lipschitz continuous there.
If f : X → R is convex and Fréchet differentiable a point x ∈ X with f(x) = 0 and
∇f(x) ̸= 0, then it is known that for S := {x ∈ X : f(x) ≤ 0} one has

N(S;x) = R+∇f(x). (8)

2.2. Strongly convex sets and prox-regular sets

This paragraph is devoted to the needed preliminaries on strong convexity and
prox-regularity of sets in Hilbert spaces. We start with the definition of a strongly
convex set. For more details on such a class of sets, we refer, e.g., to the book by
E. S. Polovinkin and M. V. Balashov [38], to the survey by G. E. Ivanov and V. V. Gon-
charov ([23]) and to the references therein.

Definition 2.1. Let C be a nonempty subset in X. One says that C is R-strongly
convex for some real R > 0 whenever there is a nonempty set L ⊂ X such that

C =
⋂
x∈L

B[x,R].

It is clear that every R-strongly convex set is closed with diameter less or equal
than 2R. Strongly convex sets can be characterized through the farthest distance
function. In the statement of next Theorem 2.2 and in the analysis of an R-strongly
convex set C of X in all the development of the paper, we will have to use the set

ER(C) := {x ∈ X : dfarC(x) > R}.

The statement of Theorem 2.2 collects certain characterizations of strongly convex
sets essentially taken from M. V. Balashov and G. E. Ivanov [8], V. V. Goncharov and
G. E. Ivanov [23], G. E. Ivanov [27] as explained in the arguments below.
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Theorem 2.2. Let C be a nonempty closed convex bounded subset not reduced to a
singleton in X and let R > 0 be a real. The following assertions are equivalent:
(a) the set C is R-strongly convex;
(b) for all x, x′ ∈ C and for all v ∈ N(C;x), one has

⟨v, x′ − x⟩ ≤ −∥v∥
2R

∥x′ − x∥2 ;

(c) the mapping farC is well defined on ER(C), and for every real s > R one has
for all x, x′ ∈ Es(C)

∥farC(x)− farC(x
′)∥ ≤ 1

(s/R)− 1
∥x− x′∥;

(d) the function dfar2C(·) is differentiable on ER(C) with a locally Lipschitz derivative
and ∇dfar2C(x) = 2

(
x− farC(x)

)
for all x ∈ ER(C);

(e) for any pair (u, x) with u ∈ ER(C) and x ∈ FarC(u) one has

x ∈ FarC
(
x+

R

dfarC(u)
(u− x)

)
;

(f) for any pair (u, x) with u ∈ ER(C) and x ∈ FarC(u) one has

x = farC
(
x+

t

dfarC(u)
(u− x)

)
for all t ∈]R,+∞[.

Proof. The equivalence (a)⇔(c) is shown in [8, Theorem 5] while an equivalent
form of (c)⇔(d) can be found in [27, Theorem 1]. For the equivalence (a)⇔(b) we
refer to [23, Theorem 2.1]. Regarding the equivalence (a)⇔(e), it is proved in [27,
Theorem 2]. To justify (e)⇔(f), assume (e) and take any pair (u, x) with u ∈ ER(C)
and x ∈ FarC(u) and take also any real t > R. By (e) we have

x ∈ FarC
(
x+

R

dfarC(u)
(u− x)

)
,

hence by (4) x = farC
(
x+

t

dfarC(u)
(u− x)

)
,

so the implication (e)⇒(f) holds. For the converse implication assume that (f)
holds. Let (u, x) be a pair with u ∈ ER(C) and x ∈ FarC(u). Take a real λ0 > 0
with uλ := u+ λ(u− x) ∈ ER(C) for every λ ∈]0, λ0[. By (4), for each λ ∈]0, λ0[ we
have x = farC(uλ), so by (f)

x = farC
(
uλ +

t

dfarC(uλ)
(uλ − x)

)
for every real t > R. Making t ↓ R yields by the closedness of gphFarC

x ∈ FarC
(
uλ +

R

dfarC(uλ)
(uλ − x)

)
,

which in turn gives by the closedness of gphFarC again

x ∈ FarC
(
u+

R

dfarC(u)
(u− x)

)
since uλ → u as λ ↓ 0. This confirms the other implication (f)⇒(e) end finishes the
proof.
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We now develop the concept of prox-regularity (see [37]). Historical comments and
applications can be found, e.g., in the survey [18] and the book [44].

Definition 2.3. Let S be a nonempty closed subset of X and r ∈]0,+∞]. One says
that S is r-prox-regular (or uniformly prox-regular with constant r) whenever, for all
x ∈ S, for all v ∈ NP (S;x)∩B and for every real t ∈]0, r], one has x ∈ ProjS(x+tv).

A crucial class of uniformly prox-regular sets is given by the complements of open
balls. More precisely, given any x ∈ X and any real r > 0, it is known (and not
difficult to check) that the set S := X \B(x, r) is r-prox-regular.
The next theorem provides some useful characterizations and properties of uniform
prox-regular sets. For its proof, we refer, e.g., to [18, 37, 44]. Given a subset S ⊂ X
and an extended real r > 0, we recall the notation in the introduction

Ur(S) := {x ∈ X : dS(x) < r}.

Theorem 2.4. Let S be a nonempty closed subset of X and let r ∈]0,+∞]. The
following assertions are equivalent:
(a) the set S is r-prox-regular;
(b) for all x, x′ ∈ S, for all v ∈ NP (S;x), one has

⟨v, x′ − x⟩ ≤ 1

2r
∥v∥ ∥x− x′∥2 ;

(c) the mapping projS(·) is well defined on Ur(S), and for every real s ∈]0, r[ one
has for all x, x′ ∈ Us(S)

∥projS(x)− projS(x
′)∥ ≤ 1

1− (s/r)
∥x− x′∥ ;

(d) the function d2S(·) is differentiable on Ur(S) with a locally Lipschitz derivative
and

∇d2S(x) = 2
(
x− projS(x)

)
for all x ∈ Ur(S);

(e) for any u ∈ Ur(S) \ S such that projS(u) =: x is well defined, one has

x = projS
(
x+

t

dS(u)
(u− x)

)
for all t ∈ [0, r[.

We end this section with two results on prox-regular sets which will be at the heart of
the development below. The first one is concerned with complements of prox-regular
sets.

Theorem 2.5. ([35]) Let S be an r-prox-regular subset of X with r ∈]0,+∞[.
Then, for all s ∈]0, r[, the set X \ S is the union of a family of closed balls of X of
radius s.

The second result by G. E. Ivanov [26, Theorem 1.12.3] gives a sufficient condition
ensuring the prox-regularity for the Minkowski sum.

Theorem 2.6. ([26]) Let C be an R-strongly convex subset of X with R ∈]0,+∞]
and let S be an r-prox-regular subset of X with r ∈]0,+∞] such that 0 < R < r.
Then, the set C + S is (r −R)-prox-regular, in particular closed.
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3. Semiconcavity of the farthest distance function

This section is devoted to the study of the semiconcavity property of the farthest
distance function. Given a real σ ≥ 0, a function f : U → R ∪ {+∞} defined
on a (not necessarily open) nonempty convex subset U of X is said to be linearly
σ-semiconvex (or semiconvex with constant σ) on U provided that for every t ∈]0, 1[
and every x, y ∈ U

f
(
tx+ (1− t)y

)
≤ tf(x) + (1− t)f(y) +

σ

2
t(1− t) ∥x− y∥2 .

It is well known (and not difficult to check) that the function f is σ-semiconvex on
U for some σ ≥ 0 if and only if the function f(·) + σ/2 ∥·∥2 is convex on the set U .
The function f is said to be locally semiconvex if f is semiconvex on a neighborhood
of each point of U . If −f is σ-semiconvex on U for some real σ ≥ 0, then f is
said to be σ-semiconcave on U . Similarly, f is said to be locally semiconcave if f is
semiconcave on a neighborhood of each point in the set U .
Proposition 18 in [18] proved that a closed set S of X is r-prox-regular if and only
if, for any positive real s < r, the square distance function d2S is s/(r−s)-semiconvex
on any convex set included in Us(S). Regarding the distance function dS itself,
it has been shown by M. V. Balashov [6] that the distance dS associated to an r-
prox-regular set S is (r−s)−1-semiconvex on any convex set included in the open
s-enlargement Us(S). Another different proof of this property has been recently
established by F. Nacry and L. Thibault [35] through Theorem 2.5 above and Lemma
3.1 below. The arguments for Lemma 3.1 are contained in [13, Proposition 2.2.2]
and [35, Proposition 7].

Lemma 3.1. ([13]) Let S be a nonempty subset of X. The following hold.
(a) The squared distance function d2S is linearly semiconcave with coefficient 2.
(b) For any nonempty convex subset U of X and for any real δ > 0 such that

U ∩
(
S + B(0, δ)

)
= ∅, the distance function dS is δ−1-semiconcave on U . So,

dS is locally linearly semiconcave on X \ S.
(c) If S is the union of a collection of closed balls with a common radius r > 0, then

on each nonempty convex set U included in cl(X \ S), the distance function dS
is r−1-semiconcave.

Our aim in this section is to show that such a lemma can also be successfully used to
establish the semiconcavity of the farthest distance function associated to a strongly
convex set. As said in the very introduction, our approach and proofs are quite
different from those involved in the work [7] by M. V. Balashov and M. O. Golubev;
notice that some results in certain Banach spaces are also contained in [7].
We start with the following result which has its own interest and where for a real
r > 0 and a function φ : X → R ∪ {+∞}, we use notation {φ ≤ r} := {x ∈ X :
φ(x) ≤ r} along with analogous one for {φ < r}, etc.

Proposition 3.2. Let C be a nonempty bounded subset of X and let R > 0 be a
positive real. The following hold.
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(a) The equalities

{dfarC ≤ R} =
⋂
c∈C

B[c, R] and {dfarC < R} = int
( ⋂

c∈C

B[c, R]
)
,

are satisfied, so in particular the sublevel set {dfarC ≤ R} is R-strongly convex.

(b) One has {dfarC > R} = (X \RB) + C.
(c) One has cl {dfarC > R} = {dfarC ≥ R},

or equivalently, int{dfarC ≤ R} = {dfarC < R}.
If in addition the set C is R-strongly convex, then the following assertions also hold
true:
(d) For every real s ≥ R, one has with Fs := {dfarC ≤ s} and Gs := {dfarC = s}

dfarC(u) = s+ dFs(u) = s+ dGs(u) for all u ∈ Es(C).

(e) For every real s > R, one has
{dfarC > s} = int {dfarC ≥ s} and {dfarC ≤ s} = cl {dfarC < s} .

(f) For every real s > R, one has
{dfarC ≥ s} = (X \ sU) + C,

in particular the set {dfarC ≥ s} is (s−R)-prox-regular.

Proof. (a) The first equality (on the left) being obvious, we only show the second
one. Consider first the inclusion of the left-hand side into the right-hand one. Set
K :=

⋂
c∈C B[c, R]. Let any x ∈ X with dfarC(x) < R. Choose some real η > 0

such that dfarC(x) + η < R. For all c ∈ C and all b ∈ B, it is readily seen that

∥c− (x+ ηb)∥ ≤ ∥c− x∥+ η∥b∥ ≤ dfarC(x) + η < R,

hence x+ ηB ⊂ K. This means that {dfarC < R} ⊂ intK.
Conversely, let z ∈ intK. Choose a real δ ∈]0, R[ such that z + δB ⊂ B[c, R] for
every c ∈ C. Then for each c ∈ C we have

z + δB ⊂ c+ (R− δ)B+ δB,

hence by the Rådström cancellation lemma (see, e.g., [44, Property (1.22)]) z ∈
c + (R − δ)B, that is, ∥z − c∥ ≤ R − δ. It ensues that dfarC(z) ≤ R − δ < R, so
intK ⊂ {dfarC < R}. This finishes the proof of (a).
(b) The inclusion ⊃ is obvious while the converse one ⊂ follows from the fact that
for any u ∈ X with dfarC(u) > R, we can find some c ∈ C with ∥u− c∥ > R, hence
u = (u− c) + c ∈ (X \RB) + C.
(c) The second claimed equality is a consequence of both equalities in (a), whereas
the first equality in (c) follows from the second by taking complements. Another
proof of the first equality in (c) can also be provided as follows. The inclusion ⊂
being obvious by continuity of dfarC , we only show the converse one ⊃. We may
suppose that C is not a singleton. Fix any x ∈ X with dfarC(x) = R. Take any real
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ε > 0. Using the definition of dfarC(x), we can find a sequence (cn)n≥1 in C such
that

Rn := ∥cn − x∥ → dfarC(x) = R.

Since C is not a singleton, we have Rn > 0 for n large enough, and this allows us to
choose some integer N ≥ 1 such that

a :=
R

RN
− 1 <

ε

RN
=: b.

Pick any t ∈]a, b[ and observe that

dfarC
(
− tcN + (1 + t)x

)
≥ (1 + t)∥x− cN∥ = (1 + t)RN > R

along with
∥ − tcN + (1 + t)x− x∥ = t∥x− cN∥ = tRN < ε.

Consequently, we have B(x, ε)∩ {dfarC > R} ̸= ∅ and this guarantees the inclusion
x ∈ cl{dfarC > R}. This finishes the other proof of the first equality in (c).
Assume now that C is R-strongly convex for a given real R > 0.
(d) Consider any real s ≥ R and put

Qs := {dfarC ≤ s} (resp. Qs := {dfarC = s}).

Fix any u ∈ X with dfarC(u) > s. Thanks to (c) in Theorem 2.2, we know that
z := farC(u) is well defined. Setting v := z−s z−u

∥z−u∥ , we also have (see (f) in Theorem
2.2) that farC(v) is well defined along with z = farC(v). Hence, we see that

dfarC(v) = ∥farC(v)− v∥ = ∥z − v∥ = s,

in particular v ∈ Qs. This and a direct computation give

dQs(u) ≤ ∥u− v∥ = ∥(u− z)
(
1− s

∥z − u∥
)
∥ = dfarC(u)− s. (9)

On the other hand, we observe that

dfarC(u) ≤ dfarC(x) + ∥u− x∥ ≤ s+ ∥u− x∥ for all x ∈ Qs,

and this obviously entails
dfarC(u) ≤ s+ dQs(u). (10)

It suffices then to put together the inequalities (9) and (10) to obtain the desired
equalities in (d).
(e) Fix any real s > R. Observe that the first claimed equality directly follows from
the second one by taking complements. Further, note that C := cl {dfarC < s} is
obviously included (keeping in mind the continuity of dfarC) in {dfarC ≤ s}. Then, it
remains to justify the inclusion {dfarC ≤ s} ⊂ C. Fix any u ∈ X with dfarC(u) ≤ s.
We may suppose that dfarC(u) = s (otherwise there is nothing to prove). Since C is
R-strongly convex and s > R, we know (see (c) in Theorem 2.2) that farC(u) is well
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defined. Take any sequence (sn)n≥1 of ]R, s[ with sn → s. The latter convergence
and the equality dfarC(u) = s obviously give

vn := farC(u)−
sn

dfarC(u)

(
farC(u)− u

)
→ u.

On the other hand, (f) in Theorem 2.2 guarantees that for every integer n ≥ 1, the
vector farC(vn) is well defined along with farC(u) = farC(vn). Hence, we can write
for every integer n ≥ 1

dfarC(vn) = ∥farC(vn)− vn∥ = ∥farC(u)− vn∥ = sn < s,

from which we derive that u ∈ cl {dfarC < s}, and hence the desired inclusion
{dfarC ≤ s} ⊂ C holds true.
(f) Fix any real s > R. According to (b) above, we have

{dfarC > s} = (X \ sB) + C,

hence by (c) {dfarC ≥ s} = cl {dfarC > s} = cl
(
(X \ sB) + C

)
. (11)

We claim that cl
(
(X \ sB) + C

)
= (X \ sU) + C.

First, note that the inclusion ⊃ holds by the obvious fact (X\sU)+C ⊂ {dfarC ≥ s}
and by (11). Let us justify the converse inclusion. The set S :=

(
X \ sU

)
+ C is

the Minkowski’s sum of an s-prox-regular set and an R-strongly convex set with
constant R < s. According to Theorem 2.6, we know that the set S is closed, so

cl
(
(X \ sB) + C

)
⊂ clS = S.

The proof is complete.

We are now in a position to provide our proof of the following characterizations of
R-strongly convex sets via the farthest distance function.

Theorem 3.3. Let C be a nonempty closed bounded subset of X and let R > 0 be
a positive real. The following assertions are equivalent:
(a) the set C is R-strongly convex;
(b) for any real s > R, the function −dfarC+

1
2(s−R)

∥·∥2 is convex on any nonempty
convex subset V of Es(C), that is, −dfarC is linearly semiconvex on V with
(s−R)−1 as coefficient;

(c) there exists a real s > R such that the function −dfarC + 1
2(s−R)

∥ · ∥2 is convex
on any nonempty convex subset V of Es(C);

(d) the function −dfarC is locally linearly semiconvex on ER(C), that is, linearly
semiconvex near each point in ER(C).

Proof. (a)⇒(b) Assume that C is R-strongly convex and fix any real s > R.
Let V be any nonempty convex subset of Es(C). Let t ∈]R, s[. According to (f)
in Proposition 3.2, the set D := {dfarC ≥ s} is (s − R)-prox-regular, hence (see
Theorem 2.5) the set S := X \ D = {dfarC < s} is the union of a collection of
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closed balls of common radius s− t. Thanks to (e) in Proposition 3.2, we know that
clS = {dfarC ≤ s}, so

d(·, S) = d(·, clS) = d
(
·, {dfarC ≤ s}

)
.

On the other hand, Lemma 3.1 says that d(·, S) is (s− t)−1-linearly semiconcave on
every nonempty convex set U ⊂ cl(X \S) = D, in particular on the set V . Further,
by virtue of Proposition 3.2(d), we can write

dfarC(u) = s+ d
(
u, {dfarC ≤ s}

)
for all u ∈ Es(C).

It follows that dfarC(·) is (s− t)−1-linearly semiconcave on V , that is, the function
dfarC(·)− 1

2(s−t)
∥ · ∥2 is concave on V . Since t has been arbitrarily choosen in ]R, s[,

the desired property is then justified.
(b)⇒(c) and (c)⇒(d): Obvious.
(d)⇒(a) Assume that −dfarC is locally linearly semiconvex on the set ER(C).
Fix any x ∈ ER(C). We can then find two reals ρ, δ > 0 such that the function
f := −dfarC(·) + ρ∥ · ∥2 is convex on B(x, δ) ⊂ ER(C). It directly follows from the
C1,1-property of ∥ · ∥2 (see (7)) that

∅ ̸= ∂Pf(x) = ∂P (−dfarC)(x) + ρ∇∥ · ∥2(x),

where the non-emptiness is due to (5). Therefore, we have ∂P (−dfarC)(x) ̸= ∅, so
−dfarC is Fréchet differentiable at x (see (6) at the end of Section 2). We conclude
that C is R-strongly convex according to (d) in Theorem 2.2. The proof is complete.

4. Farthest distance and separating balls

Given a nonempty closed convex set C in the Hilbert space X and an exterior point
of C, say x ∈ X \C, it is well-known (and not difficult to check) that we have with
x⋆ := dC(x)

−1
(
x− projC(x)

)
the following separation property for some real α

C ⊂ {⟨x⋆, ·⟩ < α} and ⟨x⋆, x⟩ > α. (12)

Replacing the above half-space {⟨x⋆, ·⟩ < α} by a set in the more general form{
⟨x⋆, x⟩− ∥x∥2

2r
< α

}
(which is nothing else but the complement of a closed ball (see

Proposition 4.4)) allows to extend such a separation property, with a suitable vector
x⋆, to the context of r-prox-regular sets.

Theorem 4.1. ([2]) Let S be an r-prox-regular subset of X with r ∈]0,+∞], x ∈ X
with δ := dS(x) ∈]0, r[. Then, one has with x⋆ := (1

r
− 1

δ
)projS(x)+

1
δ
x the following

separation property for some α ∈ R

S ⊂
{
⟨x⋆, ·⟩ −

∥·∥2

2r
< α

}
and ⟨x⋆, x⟩ −

∥x∥2

2r
> α. (13)

Our first aim in this section is to see how the above separation property can be
reinforced in the case of strongly convex sets.
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Lemma 4.2. Let C be an R-strongly convex subset of X for some real R > 0.
Let also (x, y) ∈ gphFarC with dfarC(x) > 0 and let ρ ∈]0, dfarC(x)[. Define
x⋆ := dfarC(x)

−1(x− y). Then, one has for every c ∈ C

⟨x⋆, x⟩ − 1

ρ
dfar2C(x) < ⟨x⋆, y⟩ ≤ ⟨x⋆, c⟩ − 1

2R
∥c− y∥2,

in particular there exists α ∈ R such that for every c ∈ C

⟨x⋆, x⟩ − 1

ρ
dfar2C(x) < α < ⟨x⋆, c⟩ − 1

2R
∥c− y∥2.

Proof. Fix any c ∈ C. Using the inclusion −x⋆ ∈ N(C; y) ∩ S (see (3)) and (b) in
Theorem 2.2, we obtain

⟨−x⋆, c− y⟩ ≤ − 1

2R
∥c− y∥2,

or equivalently, ⟨x⋆, y⟩ ≤ ⟨x⋆, c⟩ − 1

2R
∥c− y∥2. (14)

On the other hand, we easily see (thanks to the definition of x⋆ and the inclusion
ρ ∈]0, dfarC(x)[) that

⟨x⋆, x⟩ − 1

ρ
dfar2C(x) < ⟨x⋆, y⟩ . (15)

It then suffices to combine (14) and (15) to finish the proof.

In (12) and (13) we have a separation property with half-spaces and complements of
balls for convex sets and prox-regular sets, respectively. Here, we are in a position to
refine these results for strongly convex sets in establishing for such sets a separation
property with balls. Given any x⋆ ∈ X, any real R > 0 and any R-strongly convex
set C in X, it will be convenient for us to set

qx⋆,R(x) := ⟨x⋆, x⟩ − ∥x∥2

2R
for all x ∈ X, and (16)

ΥC,R(x) :=
( 1

R
− 1

dfarC(x)

)
farC(x) +

1

dfarC(x)
x for all x ∈ ER(C). (17)

Theorem 4.3. Let C be an R-strongly convex set in X for some real R > 0 and let
x ∈ X with δ := dfarC(x) > R. Then one has with

x⋆ = ΥC,R(x) :=
(
R−1 − δ−1

)
farC(x) + δ−1x

C ⊂
{
⟨x⋆, ·⟩ − ∥ · ∥2

2R
≥ inf

c∈C
qx⋆,R(c)

}
and qx⋆,R(x) ≤ inf

c∈C
qx⋆,R(c). (18)

If in addition δ > 2R (so x /∈ C), then one has the following strict separation
property for some α ∈ R,

C ⊂
{
⟨x⋆, ·⟩ − ∥ · ∥2

2R
> α

}
and qx⋆,R(x) < α ≤ inf

c∈C
qx⋆,R(c).

Proof. Set y := farC(x), δ := dfarC(x) and u⋆ := δ−1(x − y) (so x⋆ = u⋆ + R−1y).
Now assume first that δ > R. The inclusion in (18) is obvious since we have
κ := infc∈C qx⋆,R(c) < +∞.
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Noticing that u⋆ ∈ −N(C; y) ∩ S by (3) and using (b) in Theorem 2.2, we get

⟨u⋆, c− y⟩ ≥ 1

2R
∥c− y∥2 for all c ∈ C,

or equivalently,〈
u⋆ +

y

R
, c
〉
− ∥c∥2

2R
≥

〈
u⋆ +

y

R
, x
〉
− ∥x∥2

2R
= qx⋆,R(x) for all c ∈ C.

We then arrive to the inequality qx⋆,R(x) ≤ κ.
Now, assume that δ > 2R. Applying Lemma 4.2 with ρ := 2R gives some real β
such that for all c ∈ C

⟨u⋆, x⟩ − δ2

2R
< β < ⟨u⋆, c⟩ − 1

2R
∥c− y∥2. (19)

Fix any c ∈ C. Through elementary computations, we observe that

⟨u⋆, c⟩ − 1

2R
∥c− y∥2 = ⟨x⋆, c⟩ − 1

2R
(∥y∥2 + ∥c∥2) (20)

and ⟨u⋆, x⟩ − δ2

2R
= ⟨x⋆, x⟩ − 1

2R
(∥x∥2 + ∥y∥2). (21)

Putting together (19), (20) and (21) yields

⟨x⋆, x⟩ − ∥x∥2

2R
< β +

∥y∥2

2R
< ⟨x⋆, c⟩ − ∥c∥2

2R
.

It remains to set α := β + ∥y∥2
2R

to finish the proof.

Setting ΦC,R(x
⋆) := inf

c∈C
qx⋆,R(c) and Lx⋆,R,α := {qx⋆,R ≥ α} (22)

and noticing the elementary equalities

∥Rx⋆ − x∥2 = R2∥x⋆∥2 − 2R ⟨x⋆, x⟩+ ∥x∥2

along with

R2∥x⋆∥2 − 2RΦC,R(x
⋆) = R2∥x⋆∥2 + sup

c∈C

(
− 2R ⟨x⋆, c⟩+ ∥c∥2

)
= sup

c∈C
∥Rx⋆ − c∥2,

it is not difficult to establish the following important description of the upper level
set Lx⋆,R,α.

Proposition 4.4. Let x⋆ ∈ X, α ∈ R and R ∈]0,+∞[. Let also C be a nonempty
subset of X. The following hold with ρ := R2∥x⋆∥2 − 2Rα.

(a) One has Lx⋆,R,α =

{
B[Rx⋆,

√
ρ] if ρ ≥ 0,

∅ otherwise.

(b) If α = ΦC,R(x
⋆), then one has ρ = dfar2C(Rx

⋆), in particular

Lx⋆,R,ΦC,R(x⋆) = B[Rx⋆, dfarC(Rx
⋆)].
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Theorem 4.3 naturally leads to investigate some properties of ΥC,R(x). The following
lemma will be needed.

Lemma 4.5. Let x⋆ ∈ X, α ∈ R and R ∈]0,+∞[. Let x ∈ X with x ̸∈ Lx⋆,R,α

and let C be a nonempty subset of X such that C ⊂ Lx⋆,R,α. Then, one has
β := ΦC,R(x

⋆) ≥ α and

C ⊂ Lx⋆,R,β ⊂ Lx⋆,R,α and x /∈ Lx⋆,R,β,

where ΦC,R and Lx⋆,R,α are as defined in (22). In particular, one has

dfar(x,C) ≤ dfar(x, Lx⋆,R,β) ≤ dfar(x, Lx⋆,R,α).

Proof. Due to the definition of β, it is evident that C ⊂ Lx⋆,R,β. On the other
hand, we observe that

⟨x⋆, c⟩ − ∥c∥2

2R
≥ α for all c ∈ C,

hence β ≥ α. This obviously implies that Lx⋆,R,β ⊂ Lx⋆,R,α along with (keeping in
mind that x /∈ Lx⋆,R,α) x /∈ Lx⋆,R,β. The proof is complete.

Now, we can state and prove:

Proposition 4.6. Let C be an R-strongly subset of X with R ∈]0,+∞[ and let
x ∈ X with δ := dfarC(x) > R. Let ΥC,R(x) be as defined in (17). The following
hold with t := δ−1R ∈]0, 1[.
(a) The inclusion farC(x) ∈ FarC

(
RΥC,R(x)

)
is satisfied along with the equalities

RΥC,R(x) = tx+ (1− t)farC(x) and ∥RΥC,R(x)− x∥ = δ −R. (23)

(b) One has

{RΥC,R(u) : u ∈ ER(C)} = {dfarC = R} ∩DomFarC =: ΛR(C) (24)

along with cl∥.∥
(
ΛR(C)

)
= {dfarC = R}.

(c) One has with x⋆ := ΥC,R(x) and Lx⋆,R,ΦC,R(x⋆) as defined in (22)

R2∥x⋆∥2 − 2RΦC,R(x
⋆) = R2 and Lx⋆,R,ΦC,R(x⋆) = B[Rx⋆, R].

(d) One has ER(C) = {τRΥC,R(u) + (1− τ)farC(u) : u ∈ ER(C), τ ∈]1,+∞[}.

(e) For all τ ∈]1,+∞[, one has

ΥC,R

(
τRΥC,R(x) + (1− τ)farC(x)

)
= ΥC,R(x).

(f) One has C =
⋂

y∈ΛR(C)

B[y,R].

Proof. (a) The inclusion is a direct consequence of (e) in Theorem 2.2 while the
equalities directly follow from the definition of ΥC,R(x).
(b) Fix any u ∈ ER(C). Thanks to (c) in Theorem 2.2 and to (a) above we know
that farC(u) is well defined along with farC(u) ∈ FarC

(
RΥC,R(u)

)
.
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The latter inclusion and the definition of v := RΥC,R(u) easily give

dfarC(v) = ∥farC(u)− v∥ = R,

which justifies the inclusion ⊂ concerning the first equality in (b). Let us show
the converse inclusion. Fix any z ∈ DomFarC such that dfarC(z) = R. Pick any
v ∈ FarC(z) and any real λ > 1. It is easy to check that u := λz+(1−λ)v ∈ ER(C)
along with farC(u) = v (see (4)). Set σ := dfarC(u) and note that (having in mind
∥z − v∥ = R)

σ := dfarC(u) = ∥u− v∥ = λ∥z − v∥ = λR,

hence λ = σ/R. This and the obvious equality u− z = (λ− 1)(z − v) gives

∥u− z∥ =
σ −R

R
∥z − v∥ = σ −R

and ⟨v − z, z − u⟩ = (λ− 1)∥v − z∥2 = (λ− 1)R2 = (σ −R)R.

We then arrive at∥∥∥(1− R

σ
)v +

R

σ
u− z

∥∥∥2

=
∥∥∥(1− R

σ
)(v − z)− R

σ
(z − u)

∥∥∥2

=
(
1− R

σ

)2∥v − z∥2 + R2

σ2
∥z − u∥2 − 2

R

σ
(1− R

σ
)⟨v − z, z − u⟩

= (σ −R)2
R2

σ2
+

R2

σ2
(σ −R)2 − 2

R2

σ2
(σ −R)2 = 0,

that is, z = (1− R
σ
)v + R

σ
u. This means that z = RΥC,R(u) with u ∈ ER(C), which

confirms the desired inclusion ⊃ for the first equality in (b). The first equality in
(b) is then proved.
Regarding the second equality in (b), take any y ∈ X such that dfarC(y) = R.
According to Proposition 3.2, we can choose a sequence (un)n≥1 in {dfarC > R}
with un → y. Keeping in mind that C is bounded and dfarC(·) is continuous, we
easily see that vn := RΥC,R(un) → y. It remains to use (24) above to get that
dfarC(vn) = R for every integer n ≥ 1. This justifies the second equality in (b).
(c) According to Proposition 4.4, we have R2∥x⋆∥2−2RΦC,R(x

⋆) = dfar2C(Rx
⋆) and

Lx⋆,R,ΦC,R(x⋆) = B[Rx⋆, dfarC(Rx
⋆)].

It then suffices to use (a) above to get dfarC(Rx
⋆) = ∥Rx⋆ − farC(x)∥ = R.

(d) Since any u ∈ ER(C) can be written by the first equality in (23) as

u = θRΥC,R(u) + (1− θ) farC(u) with θ := dfarC(u)

R
> 1,

the inclusion ⊂ directly follows.
Conversely, fix u ∈ ER(C) and τ > 1. Set ω := τRΥC,R(u) + (1 − τ)farC(u). Using
the inclusion farC(u) ∈ C and the definition of ΥC,R, we easily see that

dfarC(ω) ≥ ∥ω − farC(u)∥ = τ∥RΥC,R(u)− farC(u)∥ = τR > R.

The desired equality is then established.
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(e) Fix any real τ > 1. According to (d) above we know that

y := τRΥC,R(x) + (1− τ)farC(x) ∈ ER(C).

Further, the inclusion farC(x) ∈ FarC
(
RΥC,R(x)

)
in (a) above combined with the

property (4) gives that

farC(x) = farC

(
RΥC,R(x) + (τ − 1)

(
RΥC,R(x)− farC(x)

))
= farC

(
τRΥC,R(x) + (1− τ)farC(x)

)
= farC(y). (25)

Hence, by definition of ΥC,R(x), elementary computations yield with δ′ := dfarC(y)
(recalling that δ := dfarC(x))

w := ΥC,R(x)− ΥC,R(y) =
( 1

δ′
− 1

δ

)
farC(x) +

x

δ
− y

δ′

=
( 1

δ′
− 1

δ

)(
farC(x)− x

)
+

1

δ′
(x− y). (26)

On the other hand, by the definitions of y and ΥC,R(x), we can easily check that

y − x =
δ − τR

δ

(
farC(x)− x

)
(27)

and y − farC(x) = y − x+ x− farC(x) =
τR

δ

(
x− farC(x)

)
. (28)

If δ − τR ≥ 0 (resp. δ − τR < 0), we have by (27) and (28) and by the equality
farC(x) = farC(y) in (25) that

∥y − x∥ = δ − τR = δ − ∥y − farC(x)∥ = δ − δ′

(resp. ∥y − x∥ = τR− δ = ∥y − farC(x)∥ − δ = δ′ − δ).

In both cases τR = δ′, so (26) and (27) easily give

w = (
1

τR
− 1

δ
+

τR− δ

δτR
)
(
farC(x)− x

)
= 0,

hence (e) holds true.
(f) Set C0 :=

⋂
x⋆∈ΛR(C)B[x⋆, R]. According to Theorem 4.3 and to (c) and (b)

above, we can write

C ⊂
⋂

x⋆∈ΥC,R(ER(C))

Lx⋆,R,ΦC,R(x⋆) =
⋂

x⋆∈ΥC,R(ER(C))

B[Rx⋆, R] = C0.

We are now going to show that C0 ⊂ C. By contradiction, suppose that there is
z ∈ C0 \ C. Set p := projC(z) and d := dC(z) > 0. Note first (see (2)) that we have
v := z−p

d
∈ N(C; p). Fix any real R′ > R and put q := p − R′v. Thanks to (b) in

Theorem 2.2, we see that for every c ∈ C

⟨p− q, c− p⟩ = R′ ⟨v, c− p⟩ ≤ − R′

2R
∥c− p∥2 ≤ −1

2
∥c− p∥2,

and this entails (see (1)) that p ∈ FarC(q). In fact, we have p = farC(q) since
dfarC(q) = ∥p− q∥ = R′ > R.
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Therefore, we can apply (e) in Theorem 2.2 to get

p = farC(q) ∈ FarC
(
p−R

p− q

dfarC(q)

)
= FarC

(
p− R

R′ (p− q)
)
.

Set w := p− R
R′ (p− q) and note that dfarC(w) = ∥p− w∥ = R

R′∥p− q∥ = R. Then,
it follows from the definition of C0 and from the definition of ΛR(C) in (24) that
z ∈ B[w,R]. On the other hand, we easily observe that

z − w = z − p+
R

R′ (p− q) = z − p+Rv =
(
1 +

R

d

)
(z − p),

hence d+R =
(
1 +

R

d

)
∥z − p∥ = ∥z − w∥ ≤ R.

Consequently, we obtain d = 0, and this is the desired contradiction. The equality
C = C0 is then established and the proof of the proposition is complete.

Our second aim in the present section is to provide some analytic formulation for
the farthest distance function from a strongly convex set. Doing so, we complement
the following well known formula (see, e.g., [20, Theorem 6.23])

dC(x) = ⟨x⋆, x⟩ − σ(x⋆, C), (29)

where x is an exterior point of a convex set C and σ(x⋆, C) denotes the support
function of the set C at x⋆ := dC(x)

−1(x − projC(x)). We point out that such an
equality has been extended to the context of a prox-regular set in [35]. Keeping
notation of Theorem 4.1, the equality analogous to (29) for an r-prox-regular set S
is given by

dS(x)
(
1− dS(x)

2r

)
= qx⋆,r(x)− ϕS,r(x⋆),

where ϕS,r(x⋆) := supu∈S qx⋆,r(u). A result similar to the latter equality is furnished
in the next theorem for the farthest distance function from R-strongly convex sets.

Theorem 4.7. Let C be an R-strongly convex subset of X for some real R > 0 and
let x ∈ X with dfarC(x) > R. Then, there exists one and only one x⋆ ∈ X with
∥x⋆ −R−1x∥ = R−1dfarC(x)− 1 (namely, x⋆ := ΥC,R(x) as in (17)) such that

dfarC(x)
(
1− dfarC(x)

2R

)
= qx⋆,R(x)− ΦC,R(x

⋆),

where qx⋆,R and ΦC,R are as defined in (16) and (22), respectively.

Proof. Set v := farC(x) by (c) in Theorem 2.2 and set also δ := dfarC(x). The
proof is divided into two parts.
Existence. Putting together the inclusion v − x ∈ N(C; v) (see (1)) and (b) in
Theorem 2.2, we see that for every c ∈ C

⟨v − x, c− v⟩ ≤ − δ

2R
∥c− v∥2,

or equivalently, δ

2R
∥c− v∥2 + ⟨v − x, c− x⟩ ≤ ∥v − x∥2 = δ2.
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This inequality and the inclusion v ∈ C easily give

δ2 ≤ sup
c∈C

(
δ

2R
∥c− v∥2 + ⟨v − x, c− x⟩

)
≤ δ2,

that is, δ = sup
c∈C

(∥c− v∥2

2R
+ δ−1 ⟨v − x, c− x⟩

)
.

Keeping in mind the definition of x⋆ := ΥC,R(x) in (17) and the definition of qx⋆,R(x)
in (16), it remains to write

δ − δ2

2R
= sup

c∈C

(
1

2R
(∥c− v∥2 − ∥x− v∥2) + δ−1 ⟨v − x, c− x⟩

)
=

〈
δ−1(v − x)−R−1v,−x

〉
− ∥x∥2

2R
+ sup

c∈C

( 〈
δ−1(v − x)−R−1v, c

〉
+

∥c∥2

2R

)
= qx⋆,R(x)− inf

c∈C

(
⟨x⋆, c⟩ − ∥c∥2

2R

)
= qx⋆,R(x)− ΦC,R(x

⋆).

Uniqueness. Let x⋆1, x⋆2 ∈ X be such that for each i ∈ {1, 2}∥∥∥x⋆i − x

R

∥∥∥ =
δ

R
− 1 and δ

(
1− (2R)−1δ

)
= qx⋆

i ,R
(x)− ΦC,r(x

⋆
i ).

It is readily seen with u⋆ := 2−1(x⋆1 + x⋆2) that∥∥u⋆ −R−1x
∥∥ ≤ 2−1

∥∥x⋆1 −R−1x
∥∥+ 2−1

∥∥x⋆2 −R−1x
∥∥ =

δ

R
− 1. (30)

Setting qi := qx⋆
i ,R

for each i ∈ {1, 2}, it is also straightforward to check that

qu⋆,R(x) = 2−1[q1(x) + q2(x)].

We deduce from what precedes

qu⋆,R(x)− ΦC,R(u
⋆) = 2−1

[
q1(x) + q2(x)− inf

c∈C

(
q1(c) + q2(c)

)]
≤ 2−1

[
q1(x) + q2(x)− inf

c∈C
q1(c)− inf

c∈C
q2(c)

]
= 2−1

(
q1(x)− ΦC,R(x

⋆
1) + q2(x)− ΦC,R(x

⋆
2)
)

= δ
(
1− δ

2R

)
. (31)

Combining (31), the definition of qu⋆,R and Proposition 4.4(b), we obtain

δ(2R− δ) ≥ 2R
(
qu⋆,R(x)− ΦC,R(u

⋆)
)

= 2Rqu⋆,R(x)−R2∥u⋆∥2 +R2∥u⋆∥2 − 2RΦC,R(u
⋆)

= −∥Ru⋆ − x∥2 + dfar2C(Ru
⋆). (32)

Using (32), the 1-Lipschitz property of dfarC , the inequality δ−∥Ru⋆ − x∥ ≥ 0 and
(30), we get

δ(2R− δ) ≥ −∥Ru⋆ − x∥2 +
(
δ − ∥Ru⋆ − x∥

)2
= δ2 − 2δ∥Ru⋆ − x∥
≥ δ2 − 2δ(δ −R) = δ(2R− δ). (33)
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Through (33), we then see that ∥Ru⋆ − x∥ = δ −R, or equivalently,

∥u⋆ − x

R
∥ =

δ

R
− 1 =: κ.

We conclude that x⋆1, x⋆2, u⋆ lie on the sphere R−1x+ κSX with u⋆ = (x⋆1 + x⋆2)/2. It
remains to invoke the strict convexity of the Hilbert norm ∥ · ∥ to obtain x⋆1 = x⋆2.
The proof is complete.

Next we provide, in addition to the preceding theorem, a proposition describing
(for a strongly convex set C) the farthest distance dfarC(x) in terms of the unique
function qx⋆,R. The expression also reverses appropriate supremum and minimum.

Proposition 4.8. Let C be an R-strongly convex subset of X for some real R > 0,
x ∈ X with δ := dfarC(x) > R and L := {y⋆ ∈ X : ∥y⋆ −R−1x∥ = R−1δ − 1}.
Then, one has with qy⋆,R as defined in (16)

δ
(
1− δ

2R

)
= min

y⋆∈L
sup
c∈C

(
qy⋆,R(x)− qy⋆,R(c)

)
= sup

c∈C
min
y⋆∈L

(
qy⋆,R(x)− qy⋆,R(c)

)
.

Proof. For every y⋆ ∈ X, set

µ(y⋆) := sup
c∈C

(∥c∥2 − ∥x∥2

2R
+ ⟨y⋆, x− c⟩

)
= sup

c∈C

(
qy⋆,R(x)− qy⋆,R(c)

)
.

Thanks to Theorem 4.7, we have with x⋆ := ΥC,R(x)

µ(x⋆) = sup
c∈C

(
qx⋆,R(x)− qx⋆,R(c)

)
= qx⋆,R(x)− ΦC,R(x

⋆) = δ
(
1− δ

2R

)
. (34)

We obviously have for every y⋆ ∈ L

sup
c∈C

(∥c∥2 − ∥x∥2

2R
+ ⟨y⋆, x− c⟩

)
= sup

c∈C

(〈
y⋆ − x

R
, x− c

〉
+

∥x− c∥2

2R

)
≥ sup

c∈C

(
−∥y⋆ − x

R
∥∥x− c∥+ ∥x− c∥2

2R

)
= sup

c∈C

((
1− δ

R

)
∥x− c∥+ ∥x− c∥2

2R

)
=: κ,

so infy⋆∈L µ(y
⋆) ≥ κ. On the other hand, by (c) in Theorem 2.2 put c0 := farC(x).

It is clear that (
1− δ

R

)
∥x− c0∥+

∥x− c0∥2

2R
≤ κ,

hence by (34)

µ(x⋆) = δ
(
1− δ

2R

)
=

(
1− δ

R

)
δ +

δ2

2R
≤ κ ≤ inf

y⋆∈L
µ(y⋆).

This and the inclusion x⋆ ∈ L ensure that

µ(x⋆) = δ
(
1− δ

2R

)
= κ = min

y⋆∈L
µ(y⋆). (35)
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The left desired equality of the proposition is then established. Regarding the right
equality, let us first write

inf
y⋆∈L

(∥c∥2 − ∥x∥2

2R
+ ⟨y⋆, x− c⟩

)
=

∥c∥2 − ∥x∥2

2R
+ inf

y⋆∈L
⟨y⋆, x− c⟩

=
∥c∥2 − ∥x∥2

2R
+
〈
x

R
, x− c

〉
+ inf

y⋆∈L

〈
y⋆ − x

R
, x− c

〉
,

which yields

inf
y⋆∈L

(∥c∥2 − ∥x∥2

2R
+ ⟨y⋆, x− c⟩

)
=

∥x− c∥2

2R
+ inf

∥y⋆∥=R−1δ−1
⟨y⋆, x− c⟩

=
∥x− c∥2

2R
−

( δ

R
− 1

)
sup

∥y⋆∥=1

⟨y⋆, c− x⟩ = ∥x− c∥2

2R
+
(
1− δ

R

)
∥x− c∥.

Therefore, we have for every c ∈ C,

inf
y⋆∈L

(∥c∥2 − ∥x∥2

2R
+ ⟨y⋆, x− c⟩

)
= min

y⋆∈L

(∥c∥2 − ∥x∥2

2R
+ ⟨y⋆, x− c⟩

)
=

∥x− c∥2

2R
+
(
1− δ

R

)
∥x− c∥,

where the above minimum is justified by reflexivity of X since the first term is the
infimum of a continuous affine functional over the sphere L of X. We deduce that

sup
c∈C

min
y⋆∈L

(∥c∥2 − ∥x∥2

2R
+ ⟨y⋆, x− c⟩

)
= κ,

and this finishes the proof according to (35).

Remark 4.9. Let C be an R-strongly convex subset of X for some real R > 0.
Consider any real ρ > R and any nonempty convex set V with V ⊂ Eρ(C). Ac-
cording to Theorem 3.3, we know for σ := (ρ − R)−1 that the function −dfarC is
σ−semiconvex on the set V , or equivalently, −dfarC + ψV is σ-semiconvex on the
whole space X. Proceeding as in [2, Remark 3.2], we can easily establish that

−dfarC(x)= sup
x⋆∈X

inf
y∈V

(
qx⋆,ρ−R(x)− qx⋆,ρ−R(y)− dfarC(y)

)
for all x ∈ C.

Another important result, which can be seen as a geometrical characterization of
the farthest distance from a strongly convex set, is presented in Theorem 4.10. It is
the analog for strongly convex sets of a similar result for convex sets [20, Chapter 6]
recently extended to prox-regular sets in [1, Theorem 7]. It tells us that the farthest
distance of a given point x from a strongly convex set is the minimum of the farthest
distance from x to suitable closed balls separating the set and the point x.

Theorem 4.10. Let C be an R-strongly subset of X for some real R ∈]0,+∞[ and
let x ∈ X with δ := dfar(x,C) > 2R. Then, one has with Ly⋆,R,α as defined above
in (22)

δ = min {dfar(x, Ly⋆,R,α) : (y
⋆, α) ∈ X × R, C ⊂ Ly⋆,R,α, x /∈ Ly⋆,R,α} . (36)

The minimum is attained at (x⋆, β) with x⋆ := ΥC,R(x) and β := ΦC,R(x
⋆) (see (17)

and (22)).
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Further, for all y⋆ ∈ X with ∥y⋆ −R−1x∥ = R−1δ − 1 and all α ∈ R, one has the
following implication

δ = d(x, Ly⋆,r,α),
C ⊂ Ly⋆,r,α, x /∈ Ly⋆,r,α

}
⇒ (y⋆, α) =

(
x⋆,ΦC,R(x

⋆)
)
.

Proof. Set v := farC(x). Thanks to Lemma 4.5, we have

inf {dfar(x, Ly⋆,R,α) : (y
⋆, α) ∈ X × R, C ⊂ Ly⋆,R,α, x /∈ Ly⋆,R,α} ≥ δ. (37)

On the other hand, Theorem 4.3 gives some real κ such that C ⊂ Lx⋆,R,κ and
x /∈ Lx⋆,R,κ. Lemma 4.5 again says that C ⊂ Lx⋆,R,β =: L and x /∈ Lx⋆,R,β with
β := ΦC,R(x

⋆). According to Proposition 4.6(c), we have L = B[Rx⋆, R], hence (see
Proposition 4.6(a))

dfar(x, L) = R + ∥Rx⋆ − x∥ = R + (δ −R) = δ. (38)

The desired equality (36) directly follows from (37) and (38).
Fix any y⋆ ∈ X satisfying ∥y⋆ − R−1x∥ = R−1δ − 1. Let t ∈ R be chosen such that
dfar(x,C) = dfar(x, Ly⋆,R,t) along with

C ⊂ Ly⋆,R,t and x /∈ Ly⋆,R,t =: Lt. (39)

According to Lemma 4.5, we have with θ := ΦC,R(y
⋆)

C ⊂ Ly⋆,R,θ ⊂ Lt and x /∈ Ly⋆,R,θ =: Lθ.

Hence, we get δ ≤ dfar(x, Lθ) ≤ dfar(x, Lt) = δ.
From Proposition 4.4, we then see that ρ := R2∥y⋆∥2 − 2Rθ = dfar2C(Ry

⋆) along
with

δ = dfar(x, Lθ) = dfar
(
x,B[Ry⋆,

√
ρ]
)
=

√
ρ+ ∥Ry⋆ − x∥.

This and the equality ∥Ry⋆ − x∥ = δ −R furnish

R2∥y⋆∥2 − 2Rθ = ρ =
(
δ − ∥Ry⋆ − x∥

)2
= R2,

or equivalently, θ =
R

2

(
∥y⋆∥2 − 1

)
.

From the definitions of qy⋆,R(x) and θ, we obtain that

qy⋆,R(x)− ΦC,R(y
⋆) = qy⋆,R(x)− θ = ⟨y⋆, x⟩ − ∥x∥2

2R
− R

2

(
∥y⋆∥2 − 1

)
= −R

2
∥y⋆ − x

R
∥2 + R

2
= −R

2
(R−1δ − 1)2 +

R

2
= δ

(
1− δ

2R

)
.

The equality above and Theorem 4.7 yield y⋆ = x⋆ = ΥC,R(x). It remains to show
that t = ΦC,R(y

⋆). Note that the inclusion in (39) and the definition of ΦC,R in (22)
easily give ΦC,R(y

⋆) ≥ t.
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If t < ΦC,R(y
⋆), then Proposition 4.4 and Proposition 4.6(c) would entail

δ = dfar(x, Lx⋆,R,t) =
√
R2∥x⋆∥2 − 2Rt+ ∥Rx⋆ − x∥

>
√
R2∥x⋆∥2 − 2RΦC,R(x⋆) + ∥Rx⋆ − x∥

= R + ∥Rx⋆ − x∥ = dfar(x, L) = δ,

which obviously leads to a contradiction. We conclude that t = ΦC,R(y
⋆). The proof

is then complete.
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