

Florent Nacry - Institut Elie Cartan de Lorraine

joint works with

Lionel Thibault - Institut Montpelliérain Alexander Grothendieck

Journées annuelles du GdR MOA, Université de Pau et des Pays de l'Adour, 17-19 Octobre 2018

1. An introduction to Moreau's sweeping process

- Notation and preliminaries
- Introduction
- · Three ways to handle sweeping process

2. Sweeping process with truncated variation

- · First result of sweeping process theory
- Hausdorff-Pompeiu truncated distances
- Existence under truncated variation

3. Some variants

- Few words on second order theory
- Nonconvex possibly state-dependent

An introduction to Moreau's sweeping process

• The letter \mathscr{H} stands for a real Hilbert space endowed with an inner product $\langle \cdot, \cdot \rangle$ and the associated norm $\|\cdot\|$.

• I := [0, T] is a compact interval of \mathbb{R} for some given real T > 0.

• $C: I \Rightarrow \mathscr{H}$ is a given multimapping with nonempty closed values (="moving set").

• Distance from $A \subset \mathscr{H}$ to $x \in \mathscr{H}$ is $d(x, A) := \inf_{a \in A} ||x - a||$.

Moreau's sweeping process: find absolutely continuous mappings $u: I = [0, T] \rightarrow \mathscr{H}$ satisfying for a given $u_0 \in C(0)$ $\begin{cases}
-\dot{u}(t) \in N(C(t); u(t)) := \{ v \in \mathscr{H} : \langle v, x - u(t) \rangle \leq 0, \forall x \in C(t) \} & \lambda \text{-a.e. } t \in I, \\
u(t) \in C(t) & \text{for all } t \in I, \\
u(0) = u_0.
\end{cases}$

Mechanical point of view

Moreau's sweeping process: find absolutely continuous mappings $u : I = [0, T] \rightarrow \mathscr{H}$ satisfying for a given $u_0 \in C(0)$ $\begin{cases}
-\dot{u}(t) \in N(C(t); u(t)) := \{ \mathbf{v} \in \mathscr{H} : \langle \mathbf{v}, \mathbf{x} - u(t) \rangle \leq 0, \forall \mathbf{x} \in C(t) \} & \lambda \text{-a.e. } t \in I, \\
u(t) \in C(t) & \text{for all } t \in I, \\
u(0) = u_0.
\end{cases}$

- Granular material
- Planning procedure
- Non-regular electrical circuits
- Crowd motion
- Hysteresis
- Evolution of sandpiles

- Large number of variants:
 - Stochastic (1973);
 - State-dependent (1987/1998);
 - ▶ Nonconvex (1988);
 - With perturbations (1984);
 - ▶ In Banach spaces framework (2010);
 - Second order (Schatzman's sense (1978), Castaing's sense (1988));
 - ► Controlled (2015).

▶ Step 1: Time discretization $t_i^n := i \frac{T}{2^n}$ and iterations $u_{i+1}^n \in \operatorname{Proj}_{C(t_i^n)}(u_i^n) \neq \emptyset$. \hookrightarrow Assumption on $C(\cdot)$ is needed here: convex-valued? ball-compact?...

▶ Step 1: Time discretization $t_i^n := i \frac{T}{2^n}$ and iterations $u_{i+1}^n \in \operatorname{Proj}_{C(t_i^n)}(u_i^n) \neq \emptyset$. \hookrightarrow Assumption on $C(\cdot)$ is needed here: convex-valued? ball-compact?...

Step 2: Construction of step mappings

$$I := [0, T] \ni t \mapsto u_n(t) := u_i^n + \frac{t - t_i^n}{t_{i+1}^n - t_i^n} (u_{i+1}^n - u_i^n).$$

▶ Step 1: Time discretization $t_i^n := i \frac{T}{2^n}$ and iterations $u_{i+1}^n \in \operatorname{Proj}_{C(t_i^n)}(u_i^n) \neq \emptyset$. \hookrightarrow Assumption on $C(\cdot)$ is needed here: convex-valued? ball-compact?...

Step 2: Construction of step mappings

$$I := [0,T] \ni t \mapsto u_n(t) := u_i^n + \frac{t-t_i^n}{t_{i+1}^n - t_i^n} (u_{i+1}^n - u_i^n).$$

▶ Step 3: Convergence of $(u_n(\cdot))_n$ to $u(\cdot) : [0, T] \to \mathcal{H}$.

 \hookrightarrow What kind of convergence? Assumption on the behavior of $C(\cdot)$ is needed here:

$$\exists L > 0, \forall s, t \in I, \sup_{x \in \mathscr{H}} |d_{C(t)}(x) - d_{C(s)}(y)| \leq L |t - s|.$$

▶ Step 1: Time discretization $t_i^n := i \frac{T}{2^n}$ and iterations $u_{i+1}^n \in \operatorname{Proj}_{C(t_i^n)}(u_i^n) \neq \emptyset$. \hookrightarrow Assumption on $C(\cdot)$ is needed here: convex-valued? ball-compact?...

Step 2: Construction of step mappings

$$I := [0, T] \ni t \mapsto u_n(t) := u_i^n + \frac{t - t_i^n}{t_{i+1}^n - t_i^n} (u_{i+1}^n - u_i^n).$$

▶ Step 3: Convergence of $(u_n(\cdot))_n$ to $u(\cdot) : [0, T] \to \mathscr{H}$.

 \hookrightarrow What kind of convergence? Assumption on the behavior of $C(\cdot)$ is needed here:

$$\exists L > 0, \forall s, t \in I, \sup_{x \in \mathscr{H}} |d_{C(t)}(x) - d_{C(s)}(y)| \leq L |t - s|.$$

Step 4: $u(\cdot)$ is a solution of the Moreau's sweeping process.

 \hookrightarrow It requires a closedness property: $\forall t_n \downarrow t, \forall C(t_n) \ni x_n \to x$,

$$\limsup_{n\to+\infty} \sigma(z,\partial d_{C(t_n)}(x_n)) \leq \sigma(z,\partial d_{C(t)}(x)).$$

$$(SP) \begin{cases} -\dot{u}(t) \in N(C(t); u(t)) \quad \lambda \text{-a.e. } t \in I, \\ u(t) \in C(t) \quad \text{for all } t \in I, \\ u(0) = u_0. \end{cases}$$

$$(SP) \begin{cases} -\dot{u}(t) \in N(C(t); u(t)) \quad \lambda \text{-a.e. } t \in I, \\ u(t) \in C(t) \quad \text{for all } t \in I, \\ u(0) = u_0. \end{cases}$$

► Step 1: Find a family or ordinary differential equation

$$(E_j) \begin{cases} -\dot{u}_j(t) = f_j(t, u_j(t)), \\ u_j(0) = u_0. \end{cases}$$

$$(SP) \begin{cases} -\dot{u}(t) \in N(C(t); u(t)) \quad \lambda \text{-a.e. } t \in I, \\ u(t) \in C(t) \quad \text{for all } t \in I, \\ u(0) = u_0. \end{cases}$$

Step 1: Find a family or ordinary differential equation

$$(E_j) \begin{cases} -\dot{u}_j(t) = f_j(t, u_j(t)), \\ u_j(0) = u_0. \end{cases}$$

Step 2: Established a convergence

$$u_j(\cdot) \stackrel{?}{\rightarrow} u(\cdot).$$

$$(SP) \begin{cases} -\dot{u}(t) \in N(C(t); u(t)) \quad \lambda \text{-a.e. } t \in I, \\ u(t) \in C(t) \quad \text{for all } t \in I, \\ u(0) = u_0. \end{cases}$$

Step 1: Find a family or ordinary differential equation

$$(E_j) \begin{cases} -\dot{u}_j(t) = f_j(t, u_j(t)), \\ u_j(0) = u_0. \end{cases}$$

Step 2: Established a convergence

$$u_j(\cdot) \stackrel{?}{\rightarrow} u(\cdot)$$

Step 3: Show that $u(\cdot)$ is a solution of (*SP*).

Assume that there is a nondecreasing absolutely continuous mapping $v:I\to \mathbb{R}_+$ such that

 $\operatorname{haus}(C(s), C(t)) \coloneqq \sup_{x \in \mathscr{H}} |d(x, C(t)) - d(x, C(s))| \le v(t) - v(s) \quad \text{for all } s \le t.$

Assume that there is a nondecreasing absolutely continuous mapping $v:I\to \mathbb{R}_+$ such that

$$\operatorname{haus}(C(s), C(t)) := \sup_{x \in \mathscr{H}} |d(x, C(t)) - d(x, C(s))| \le v(t) - v(s) \quad \text{for all } s \le t.$$

Idea: The following constrained differential inclusion is equivalent (under assumptions!)

$$\begin{cases} -\dot{u}(t) \in N(C(t); u(t)) \quad \lambda \text{-a.e. } t \in I, \\ u(t) \in C(t) \quad \text{for all } t \in I, \\ u(0) = u_0, \end{cases}$$

to the unconstrained one

$$\begin{cases} -\dot{u}(t) \in \dot{\mathbf{v}}(t) \partial d(u(t), C(t)) & \lambda \text{-a.e. } t \in I, \\ u(0) = u_0. \end{cases}$$

Sweeping process with truncated variation

 $exc(A, B) := \sup_{x \in A} d(x, B).$

Theorem (Moreau (1971))

Let $u_0 \in C(0)$. Assume that the multimapping $C(\cdot)$ is **nonempty closed convex** valued and

$$\operatorname{exc}(C(s), C(t)) \leq v(t) - v(s)$$
 for all $0 \leq s \leq t \leq T$,

for some nondecreasing absolutely continuous mapping $v : [0, T] \rightarrow \mathbb{R}_+$.

 $exc(A, B) := \sup_{x \in A} d(x, B).$

Theorem (Moreau (1971))

Let $u_0 \in C(0)$. Assume that the multimapping $C(\cdot)$ is **nonempty closed convex** valued and

$$\exp(C(s), C(t)) \le v(t) - v(s)$$
 for all $0 \le s \le t \le T$,

for some nondecreasing absolutely continuous mapping $v:[0,T]
ightarrow \mathbb{R}_+.$

Then, **there exists one and only one** absolutely continuous mapping $u : [0, T] \rightarrow \mathscr{H}$ satisfying

$$\begin{cases} -\dot{u}(t) \in \mathcal{N}(\mathcal{C}(t); u(t)) & \lambda \text{-a.e. } t \in [0, T], \\ u(t) \in \mathcal{C}(t) & \text{ for all } t \in [0, T], \\ u(0) = u_0. \end{cases}$$

Let S, S' be **nonempty** subsets of \mathcal{H} .

One defines the Hausdorff-Pompeiu distance as

$$\operatorname{haus}(S, S') = \max\left\{\operatorname{exc}(S, S'), \operatorname{exc}(S', S)\right\},\$$

where

$$\exp(S,S') = \sup_{x \in S} d(x,S').$$

Let S, S' be **nonempty** subsets of \mathcal{H} .

One defines the Hausdorff-Pompeiu distance as

$$\operatorname{haus}(S, S') = \max\left\{\operatorname{exc}(S, S'), \operatorname{exc}(S', S)\right\},$$

where

$$\operatorname{exc}(S,S') = \sup_{x \in S} d(x,S').$$

One has the following equalities

$$\exp(S,S') = \sup_{x \in X} \left(d(x,S') - d(x,S) \right)$$

and

haus(S, S') =
$$\sup_{x \in X} |d(x, S') - d(x, S)|$$
.

Hyperplane case

Let $\zeta:I\to\mathscr{H}$ and $\beta:I\to\mathbb{R}$ be two mappings. Consider the moving hyperplane

$$C(t) \coloneqq \{x \in \mathscr{H} : \langle \zeta(t), x \rangle - \beta(t) \leq 0\}.$$

Hyperplane case

Let $\zeta:I\to\mathscr{H}$ and $\beta:I\to\mathbb{R}$ be two mappings. Consider the **moving** hyperplane

$$C(t) := \left\{ x \in \mathscr{H} : \langle \zeta(t), x \rangle - \beta(t) \leq 0 \right\}.$$

Hyperplane case

Let $\zeta: I \to \mathscr{H}$ and $\beta: I \to \mathbb{R}$ be two mappings. Consider the **moving** hyperplane

$$C(t) := \left\{ x \in \mathscr{H} : \langle \zeta(t), x \rangle - \beta(t) \leq 0 \right\}.$$

 \hookrightarrow The Hausdorff-Pompeiu excess $exc(\cdot, \cdot)$ is not suitable to handle unbounded sweeping process.

$$\rho \in]0, +\infty]; \mathbb{B} := \{x \in \mathscr{H} : \|x\| \le 1\}.$$

$$\rho \in]0, +\infty]; \mathbb{B} := \{x \in \mathscr{H} : ||x|| \le 1\}.$$

• The ρ -pseudo Hausdorff-Pompeiu distance is

$$\operatorname{haus}_{\rho}(S, S') := \max \left\{ \operatorname{exc}_{\rho}(S, S'), \operatorname{exc}_{\rho}(S', S) \right\}$$

with

$$\exp_{\rho}(S,S') := \sup_{x \in S \cap \rho \mathbb{B}} d(x,S').$$

$$\rho \in]0, +\infty]; \mathbb{B} := \{x \in \mathscr{H} : ||x|| \le 1\}.$$

• The ρ -pseudo Hausdorff-Pompeiu distance is

$$\operatorname{haus}_{\rho}(S, S') := \max \left\{ \operatorname{exc}_{\rho}(S, S'), \operatorname{exc}_{\rho}(S', S) \right\},$$

with

$$\exp_{\rho}(S, S') := \sup_{x \in S \cap \rho \mathbb{B}} d(x, S').$$

• The ρ -Hausdorff-Pompeiu distance is defined as

$$\widehat{\operatorname{haus}}_{\rho}(S,S') := \sup_{x \in \rho \mathbb{B}} \left| d(x,S') - d(x,S) \right| = \max \left\{ \widehat{\operatorname{exc}}_{\rho}(S,S'), \widehat{\operatorname{exc}}_{\rho}(S',S) \right\},$$

where

$$\widehat{\operatorname{exc}}_{\rho}(S,S') := \sup_{x \in \rho \mathbb{B}} (d(x,S') - d(x,S))^+.$$

$$\mathcal{H} = \mathbb{R}^n, \ m(t) := \operatorname{proj}_{C(t)}(0), \ K(t) := C(t) - m(t).$$

Theorem (Colombo, Henrion, Hoang, Mordukhovich (2015))

Let $u_0 \in C(0)$. Assume that $C(\cdot)$ is **nonempty closed convex valued**. Assume also that $m(\cdot)$ is absolutely continuous on [0, T] and that for all real $\rho > 0$, there exists a nondecreasing absolutely continuous mapping $v_{\rho} : [0, T] \rightarrow \mathbb{R}_+$ such that

 $\exp(K(s), K(t)) \le v_{\rho}(t) - v_{\rho}(s)$ for all $0 \le s \le t \le T$.

$$\mathcal{H} = \mathbb{R}^n, \ m(t) := \operatorname{proj}_{C(t)}(0), \ K(t) := C(t) - m(t).$$

Theorem (Colombo, Henrion, Hoang, Mordukhovich (2015))

Let $u_0 \in C(0)$. Assume that $C(\cdot)$ is **nonempty closed convex valued**. Assume also that $m(\cdot)$ is absolutely continuous on [0, T] and that for all real $\rho > 0$, there exists a nondecreasing absolutely continuous mapping $v_{\rho} : [0, T] \rightarrow \mathbb{R}_+$ such that

 $\exp(K(s), K(t)) \le v_{\rho}(t) - v_{\rho}(s)$ for all $0 \le s \le t \le T$.

Then, **there exists one and only one** absolutely continuous mapping $u : [0, T] \rightarrow \mathcal{H}$ satisfying

$$\begin{cases} -\dot{u}(t) \in N(C(t); u(t)) & \lambda \text{-a.e. } t \in [0, T], \\ u(t) \in C(t) & \text{for all } t \in [0, T], \\ u(0) = u_0. \end{cases}$$

Theorem (Thibault (2016))

Let $u_0 \in C(0)$. Assume that the multimapping $C(\cdot)$ is **nonempty closed convex valued**. Assume also that there exist a real $\rho_0 \ge ||u_0||$, a real $\rho > \rho_0$ and some nondecreasing absolutely continuous mapping $v : [0, T] \to \mathbb{R}_+$ satisfying

 $\exp\left(C(s), C(t)\right) \le v(t) - v(s) \text{ for all } 0 \le s \le t \le T,$

and such that for all $t_1 < \ldots < t_k$ in I

 $\left\|\left(\operatorname{proj}_{\mathcal{C}(t_k)}\circ\ldots\circ\operatorname{proj}_{\mathcal{C}(t_1)}\right)(u_0)\right\|\leq\rho_0.$

Theorem (Thibault (2016))

Let $u_0 \in C(0)$. Assume that the multimapping $C(\cdot)$ is **nonempty closed convex valued**. Assume also that there exist a real $\rho_0 \ge ||u_0||$, a real $\rho > \rho_0$ and some nondecreasing absolutely continuous mapping $v : [0, T] \to \mathbb{R}_+$ satisfying

 $\exp\left(C(s), C(t)\right) \le v(t) - v(s) \text{ for all } 0 \le s \le t \le T,$

and such that for all $t_1 < \ldots < t_k$ in I

$$\left\|\left(\operatorname{proj}_{\mathcal{C}(t_k)}\circ\ldots\circ\operatorname{proj}_{\mathcal{C}(t_1)}\right)(u_0)\right\|\leq\rho_0.$$

Then, **there exists one and only one** absolutely continuous mapping $u : [0, T] \rightarrow \mathcal{H}$ satisfying

$$\begin{cases} -\dot{u}(t) \in N(C(t); u(t)) & \lambda \text{-a.e. } t \in [0, T], \\ u(t) \in C(t) & \text{ for all } t \in [0, T], \\ u(0) = u_0. \end{cases}$$

If we assume one of the two following conditions, we can remove the assumption

$$\|(\operatorname{proj}_{C(t_k)} \circ \ldots \circ \operatorname{proj}_{C(t_1)})(a)\| \leq \rho_0.$$

If we assume one of the two following conditions, we can remove the assumption

$$\|(\operatorname{proj}_{C(t_k)} \circ \ldots \circ \operatorname{proj}_{C(t_1)})(a)\| \leq \rho_0.$$

• I. Time dependence on ρ_0 :

$$\rho_0 \geq ||u_0|| + v(T) - v(T_0).$$

If we assume one of the two following conditions, we can remove the assumption

$$\| (\operatorname{proj}_{C(t_k)} \circ \ldots \circ \operatorname{proj}_{C(t_1)})(a) \| \leq \rho_0.$$

• *I*. Time dependence on ρ_0 :

$$\rho_0 \geq ||u_0|| + v(T) - v(T_0).$$

• *II*. Bounded variation of projection mapping:

$$\exists a \in \mathcal{H}, W := \operatorname{var}(\operatorname{proj}_{C(\cdot)}(a); [0, T]) := \sup \sum_{i=1}^{n} \left\| \operatorname{proj}_{C(t_{i+1})}(a) - \operatorname{proj}_{C(t_i)}(a) \right\| < +\infty$$

and

$$\rho_0 \ge \|u_0 - a\| + W + \sup_{t \in I} \|\operatorname{proj}_{C(t)}(a)\|.$$

Let $\zeta : I \to \mathscr{H}$ and $\beta : I \to \mathbb{R}$ be **absolutely continuous** mappings on *I*. Set $C_1(t) := \{x \in \mathscr{H} : \langle \zeta(t), x \rangle = \beta(t)\}$ and $C_2(t) := \{x \in \mathscr{H} : \langle \zeta(t), x \rangle \le \beta(t)\}.$

Assume the following normalization condition

 $\|\zeta(t)\| = 1$ for all $t \in I = [0, T]$.

Let $\zeta : I \to \mathscr{H}$ and $\beta : I \to \mathbb{R}$ be **absolutely continuous** mappings on *I*. Set

 $C_1(t) := \left\{ x \in \mathscr{H} : \langle \zeta(t), x \rangle = \beta(t) \right\} \text{ and } C_2(t) := \left\{ x \in \mathscr{H} : \langle \zeta(t), x \rangle \leq \beta(t) \right\}.$

Assume the following normalization condition

 $\|\zeta(t)\| = 1$ for all $t \in I = [0, T]$.

Proposition

Let $i \in \{1,2\}$. The mapping $proj(0, C_i(\cdot))$ is of **absolutely continuous on** *I*. Further, one has for every real $\rho > 0$,

 $\exp_{\rho}(C_i(s), C_i(t)) \leq v(t) - v(s)$ for all $s, t \in I$ with $s \leq t$,

where $v(t) := \int_{T_0}^t \rho \left\| \dot{\zeta}(\tau) \right\| + \left| \dot{\beta}(\tau) \right| d\tau$ for every $t \in I$.

Some variants

In order to obtain a trajectory $u(\cdot)$ satisfying

$$\begin{cases} -\ddot{u}(t) \in N(C(t, u(t)); \dot{u}(t)) \\ \dot{u}(t) \in C(t, u(t)) \\ u(0) = u_0, \dot{u}(0) = v_0 \end{cases}$$

S. Adly and B.K. Le (2016) required that

$$L(t, x, s, y) \le L(|t - s| + ||x - y||),$$

In order to obtain a trajectory $u(\cdot)$ satisfying

$$\begin{cases} -\ddot{u}(t) \in N(\boldsymbol{C}(t,\boldsymbol{u}(t));\dot{u}(t))\\ \dot{u}(t) \in \boldsymbol{C}(t,\boldsymbol{u}(t))\\ \boldsymbol{u}(0) = \boldsymbol{u}_0, \dot{\boldsymbol{u}}(0) = \boldsymbol{v}_0 \end{cases}$$

S. Adly and B.K. Le (2016) required that

$$L(t, x, s, y) \le L(|t - s| + ||x - y||),$$

where

$$L(t, x, s, y) := \begin{cases} \mathsf{haus}_{\rho}(C(t, x), C(s, y)) & \text{if } C(t, x) \cap \rho \mathbb{B} \neq \emptyset, C(s, y) \cap \rho \mathbb{B} \neq \emptyset \\ \mathsf{exc}_{\rho}(C(t, x), C(s, y)) & \text{if } C(t, x) \cap \rho \mathbb{B} \neq \emptyset, C(s, y) \cap \rho \mathbb{B} = \emptyset \\ 0 & \text{if } C(t, x) \cap \rho \mathbb{B} = \emptyset, C(s, y) \cap \rho \mathbb{B} = \emptyset \end{cases}$$

with $\rho := 1 + ||u_0|| + ||v_0|| + LT + e^{(L+1)T}$.

Prox-regular sets

Definition

Let *S* be a nonempty closed subset of \mathcal{H} , $r \in]0, +\infty]$. The set *S* is r-**prox-regular** if the mapping $\operatorname{proj}_{S} : U_{r}(S) := \{x \in \mathcal{H} : d_{S}(x) < r\} \to \mathcal{H}$ is well-defined and continuous.

• S is convex \Leftrightarrow S is ∞ -prox-regular.

- *S* is *r*-prox-regular \Rightarrow *S* is *r*'-prox-regular for every 0 < *r*' < *r*
- *S* is *r*-prox-regular $\Leftrightarrow d_S^2(\cdot)$ is $C^{1,1}$ on $U_r(S)$.

• *S* is *r*-prox-regular if and only if for all $x, x' \in S$ and $x^* \in N(S; x)$ one has

$$\left\langle x^{\star}, x'-x\right\rangle \leq \frac{1}{2r} \left\|x^{\star}\right\| \left\|x'-x\right\|^{2}$$

• *S* is *r*-prox-regular \Rightarrow *S* is tangentially and normally regular.

Theorem (N., Thibault (2018))

Let $u_0 \in C(0)$. Assume that the multimapping $C(\cdot)$ is *r*-prox-regular valued. Assume also that there exist a real $\rho_0 \ge ||u_0||$, a real $\rho > \rho_0$ and some nondecreasing absolutely continuous mapping $v : [0, T] \to \mathbb{R}$ satisfying

 $\operatorname{haus}_{\rho}(C(s), C(t)) \leq v(t) - v(s) \quad \text{for all } 0 \leq s \leq t \leq T,$

```
and such that for all t_1 < \ldots < t_k in I
```

```
\left\|\left(\operatorname{proj}_{\mathcal{C}(t_k)}\circ\ldots\circ\operatorname{proj}_{\mathcal{C}(t_1)}\right)(u_0)\right\|\leq\rho_0
```

whenever $\operatorname{proj}_{C(t_k)} \circ \ldots \circ \operatorname{proj}_{C(t_1)}$ is well-defined.

Theorem (N., Thibault (2018))

Let $u_0 \in C(0)$. Assume that the multimapping $C(\cdot)$ is *r*-prox-regular valued. Assume also that there exist a real $\rho_0 \ge ||u_0||$, a real $\rho > \rho_0$ and some nondecreasing absolutely continuous mapping $v : [0, T] \to \mathbb{R}$ satisfying

 $\operatorname{haus}_{\rho}(C(s), C(t)) \leq v(t) - v(s) \quad \text{for all } 0 \leq s \leq t \leq T,$

and such that for all $t_1 < \ldots < t_k$ in I

$$\left\|\left(\operatorname{proj}_{\mathcal{C}(t_k)}\circ\ldots\circ\operatorname{proj}_{\mathcal{C}(t_1)}\right)(u_0)\right\|\leq\rho_0$$

whenever $\operatorname{proj}_{C(t_k)} \circ \ldots \circ \operatorname{proj}_{C(t_1)}$ is well-defined.

Then, **there exists one and only one** absolutely continuous mapping $u : [0, T] \rightarrow \mathcal{H}$ satisfying

$$\begin{cases} -\dot{u}(t) \in N(C(t); u(t)) & \lambda \text{-a.e. } t \in [0, T], \\ u(t) \in C(t) & \text{ for all } t \in [0, T], \\ u(0) = u_0. \end{cases}$$

State-dependent

Now, we focus on state-dependent sweeping process, i.e., we assume that the moving set depends on both time t and state x. The problem can be be written as

$$\begin{cases} -\dot{u}(t) \in N(C(t, u(t)); u(t)) & \lambda \text{-a.e. } t \in I, \\ u(t) \in C(t, u(t)) & \text{for all } t \in I, \\ u(0) = u_0. \end{cases}$$

To construct a solution, we consider the following implicit scheme

$$\boldsymbol{x_i^n} = \operatorname{proj}(x_{i-1}^n, C(t_i^n, \boldsymbol{x_i^n})).$$

The well-posedness is based on the existence for each y of a fixed point x_y for

$$x \mapsto \operatorname{proj}(y, C(t, x))$$

along with an uniform upper bound

$$\|x_y-y\|\leq M.$$

Let $C: I \times \mathscr{H} \rightrightarrows \mathscr{H}$ be a multimapping with *r*-prox-regular values for some $r \in]0, +\infty]$, $u_0 \in \mathscr{H}$ with $u_0 \in C(0, u_0)$, $\rho_0 \in] ||u_0||, +\infty[$. Assume that:

Let $C : I \times \mathscr{H} \rightrightarrows \mathscr{H}$ be a multimapping with *r*-prox-regular values for some $r \in]0, +\infty]$, $u_0 \in \mathscr{H}$ with $u_0 \in C(0, u_0)$, $\rho_0 \in] ||u_0||, +\infty[$. Assume that:

(*i*) there exist a real $L_1 \ge 0$, a real $L_2 \in [0, 1[$ and an extended real $\rho \ge \rho_0 + L_1 T (1 - L_2)^{-1} + r$ such that

 $\operatorname{haus}_{\rho}(C(t,x),C(\tau,y)) \leq L_1 |t-\tau| + L_2 ||x-y|| \quad \text{for all } t,\tau \in I, x,y \in \mathcal{H};$

Let $C : I \times \mathscr{H} \rightrightarrows \mathscr{H}$ be a multimapping with *r*-prox-regular values for some $r \in]0, +\infty]$, $u_0 \in \mathscr{H}$ with $u_0 \in C(0, u_0)$, $\rho_0 \in] ||u_0||, +\infty[$. Assume that:

(*i*) there exist a real $L_1 \ge 0$, a real $L_2 \in [0, 1[$ and an extended real $\rho \ge \rho_0 + L_1 T (1 - L_2)^{-1} + r$ such that

 $\operatorname{haus}_{\rho}(C(t,x),C(\tau,y)) \leq L_1 |t-\tau| + L_2 ||x-y|| \quad \text{for all } t,\tau \in I, x,y \in \mathcal{H};$

(*ii*) there exists a real $\delta > ||u_0|| + L_1 T (1 - L_2)^{-1}$ such that for every bounded subset *B* of \mathcal{H} with $\gamma(B) > 0$,

 $\gamma(C(t,B)) \cap \delta \mathbb{B}) < \gamma(B).$

Let $C : I \times \mathscr{H} \rightrightarrows \mathscr{H}$ be a multimapping with *r*-prox-regular values for some $r \in]0, +\infty]$, $u_0 \in \mathscr{H}$ with $u_0 \in C(0, u_0)$, $\rho_0 \in] ||u_0||, +\infty[$. Assume that:

(*i*) there exist a real $L_1 \ge 0$, a real $L_2 \in [0, 1[$ and an extended real $\rho \ge \rho_0 + L_1 T (1 - L_2)^{-1} + r$ such that

 $\operatorname{haus}_{\rho}(C(t,x),C(\tau,y)) \leq L_1 |t-\tau| + L_2 ||x-y|| \quad \text{for all } t,\tau \in I, x,y \in \mathcal{H};$

(*ii*) there exists a real $\delta > ||u_0|| + L_1 T (1 - L_2)^{-1}$ such that for every bounded subset *B* of \mathcal{H} with $\gamma(B) > 0$,

 $\gamma(C(t,B)) \cap \delta \mathbb{B}) < \gamma(B).$

Then, **there exists** a Lipschitz continuous mapping $u: I \rightarrow \mathcal{H}$ satisfying

$$\begin{cases} -\dot{u}(t) \in \mathcal{N}(\mathcal{C}(t, u(t)); u(t)) & \lambda \text{ -a.e. } t \in I, \\ u(t) \in \mathcal{C}(t, u(t)) & \text{ for all } t \in I, \\ u(0) = u_0. \end{cases}$$

- S. ADLY, B.K. LE, Unbounded second-order state-dependent Moreau's sweeping Processes in Hilbert spaces, J. Optim. Theory Appl. 169 (2016), 407-423.
- G. COLOMBO, R. HENRION, N.D. HOANG, B.S. MORDUKHOVICH, *Discrete approximations of a controlled sweeping process*, Set-Valued Var. Anal. 23 (2015), 69âĂŞ86.

- J.J. MOREAU, *Rafle par un convexe variable I*, Travaux Sém. Anal. Convexe Montpellier, 1971.
- F. NACRY, *Truncated nonconvex state-dependent sweeping process: implicit and semi-implicit adapted Moreau's catching-up algorithms*, J. Fixed Point Theory Appl. 20 (2018)

F. NACRY, L. THIBAULT, *BV prox-regular sweeping process with bounded truncated variation*, Optimization, doi.org/10.1080/02331934.2018.1514039

Thank you for your attention ! Any questions ?