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An introduction to Moreau’s sweeping
process



Notation

• The letter H stands for a real Hilbert space endowed with an inner
product 〈·, ·〉 and the associated norm ‖·‖.

• I := [0,T ] is a compact interval of R for some given real T > 0.

• C : I⇒H is a given multimapping with nonempty closed values
(="moving set").

• Distance from A⊂H to x ∈H is d(x ,A) := inf
a∈A
‖x−a‖.
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Mechanical point of view

Moreau’s sweeping process: find absolutely continuous mappings
u : I = [0,T ]→H satisfying for a given u0 ∈ C(0)
−u̇(t) ∈ N(C(t);u(t)) := {v ∈H : 〈v ,x−u(t)〉 ≤ 0, ∀x ∈ C(t)} λ -a.e. t ∈ I,

u(t) ∈ C(t) for all t ∈ I,

u(0) = u0.
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Applications

I Granular material

I Planning procedure

I Non-regular electrical circuits

I Crowd motion

I Hysteresis

I Evolution of sandpiles
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Variants

• Large number of variants:

I Stochastic (1973);

I State-dependent (1987/1998);

I Nonconvex (1988);

IWith perturbations (1984);

I In Banach spaces framework (2010);

I Second order (Schatzman’s sense (1978), Castaing’s sense
(1988));

I Controlled (2015).
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Handling sweeping process: the catching-up algorithm
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Handling sweeping process: the catching-up algorithm

I Step 1: Time discretization tn
i := i T

2n and iterations un
i+1 ∈ ProjC(tn

i )(u
n
i ) , /0.

↪→ Assumption on C(·) is needed here: convex-valued? ball-compact?...

I Step 2: Construction of step mappings

I := [0,T ] 3 t 7→ un(t) := un
i +

t− tn
i

tn
i+1− tn

i
(un

i+1−un
i ).

I Step 3: Convergence of (un(·))n to u(·) : [0,T ]→H .
↪→What kind of convergence? Assumption on the behavior of C(·) is
needed here:

∃L > 0,∀s, t ∈ I, sup
x∈H
|dC(t)(x)−dC(s)(y )| ≤ L |t− s| .

I Step 4: u(·) is a solution of the Moreau’s sweeping process.

↪→ It requires a closedness property: ∀tn ↓ t,∀C(tn) 3 xn→ x ,

limsup
n→+∞

σ (z,∂dC(tn)(xn))≤ σ (z,∂dC(t)(x)).
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Handling sweeping process: regularization

To solve the differential inclusion

(SP)


−u̇(t) ∈ N(C(t);u(t)) λ -a.e. t ∈ I,

u(t) ∈ C(t) for all t ∈ I,

u(0) = u0.

I Step 1: Find a family or ordinary differential equation

(Ej )

{
−u̇j (t) = fj (t,uj (t)),

uj (0) = u0.

I Step 2: Established a convergence

uj (·)
?→ u(·).

I Step 3: Show that u(·) is a solution of (SP).
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Handling sweeping process: reduction

Assume that there is a nondecreasing absolutely continuous mapping
v : I→R+ such that

haus(C(s),C(t)) := sup
x∈H
|d(x ,C(t))−d(x ,C(s))| ≤ v (t)− v (s) for all s ≤ t.

Idea: The following constrained differential inclusion is equivalent (under
assumptions!) 

−u̇(t) ∈ N(C(t);u(t)) λ -a.e. t ∈ I,

u(t) ∈ C(t) for all t ∈ I,

u(0) = u0,

to the unconstrained one{
−u̇(t) ∈ v̇ (t)∂d(u(t),C(t)) λ -a.e. t ∈ I,

u(0) = u0.
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Sweeping process with truncated
variation



First existence result

exc(A,B) := supx∈A d(x ,B).

Theorem (Moreau (1971))

Let u0 ∈ C(0). Assume that the multimapping C(·) is nonempty closed
convex valued and

exc(C(s),C(t))≤ v (t)− v (s) for all 0≤ s ≤ t ≤ T ,

for some nondecreasing absolutely continuous mapping v : [0,T ]→R+.

Then, there exists one and only one absolutely continuous mapping
u : [0,T ]→H satisfying

−u̇(t) ∈ N(C(t);u(t)) λ -a.e. t ∈ [0,T ],

u(t) ∈ C(t) for all t ∈ [0,T ],

u(0) = u0.
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Hausdorff-Pompeiu distance

Let S,S′ be nonempty subsets of H .

One defines the Hausdorff-Pompeiu distance as

haus(S,S′) = max
{

exc(S,S′),exc(S′,S)
}
,

where
exc(S,S′) = sup

x∈S
d(x ,S′).

One has the following equalities

exc(S,S′) = sup
x∈X

(
d(x ,S′)−d(x ,S)

)
and

haus(S,S′) = sup
x∈X

∣∣d(x ,S′)−d(x ,S)
∣∣ .
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Hyperplane case

Let ζ : I→H and β : I→R be two mappings. Consider the moving
hyperplane

C(t) := {x ∈H : 〈ζ (t),x〉−β (t)≤ 0} .

↪→ The Hausdorff-Pompeiu excess exc(·, ·) is not suitable to handle
unbounded sweeping process.
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Truncated Hausdorff-Pompeiu distance

ρ ∈]0,+∞]; B := {x ∈H : ‖x‖ ≤ 1}.

• The ρ-pseudo Hausdorff-Pompeiu distance is

hausρ (S,S′) := max
{

excρ (S,S′),excρ (S′,S)
}
,

with

excρ (S,S′) := sup
x∈S∩ρB

d(x ,S′).

• The ρ-Hausdorff-Pompeiu distance is defined as

ĥausρ (S,S′) := sup
x∈ρB

∣∣d(x ,S′)−d(x ,S)
∣∣ = max

{
êxcρ (S,S′), êxcρ (S′,S)

}
,

where

êxcρ (S,S′) := sup
x∈ρB

(
d(x ,S′)−d(x ,S)

)+
.
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êxcρ (S,S′) := sup
x∈ρB

(
d(x ,S′)−d(x ,S)

)+
.

13



Truncated Hausdorff-Pompeiu distance

ρ ∈]0,+∞]; B := {x ∈H : ‖x‖ ≤ 1}.

• The ρ-pseudo Hausdorff-Pompeiu distance is

hausρ (S,S′) := max
{

excρ (S,S′),excρ (S′,S)
}
,

with

excρ (S,S′) := sup
x∈S∩ρB

d(x ,S′).

• The ρ-Hausdorff-Pompeiu distance is defined as
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êxcρ (S,S′), êxcρ (S′,S)
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Existence under truncated excess

H =Rn, m(t) := projC(t)(0), K (t) := C(t)−m(t).

Theorem (Colombo, Henrion, Hoang, Mordukhovich (2015))

Let u0 ∈ C(0). Assume that C(·) is nonempty closed convex valued.
Assume also that m(·) is absolutely continous on [0,T ] and that for all real
ρ > 0, there exists a nondecreasing absolutely continuous mapping
vρ : [0,T ]→R+ such that

excρ (K (s),K (t))≤ vρ (t)− vρ (s) for all 0≤ s ≤ t ≤ T .

Then, there exists one and only one absolutely continuous mapping
u : [0,T ]→H satisfying

−u̇(t) ∈ N(C(t);u(t)) λ -a.e. t ∈ [0,T ],

u(t) ∈ C(t) for all t ∈ [0,T ],

u(0) = u0.
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Existence under truncated excess

Theorem (Thibault (2016))

Let u0 ∈ C(0). Assume that the multimapping C(·) is nonempty closed
convex valued. Assume also that there exist a real ρ0 ≥ ‖u0‖, a real
ρ > ρ0 and some nondecreasing absolutely continuous mapping
v : [0,T ]→R+ satisfying

excρ

(
C(s),C(t)

)
≤ v (t)− v (s) for all 0≤ s ≤ t ≤ T ,

and such that for all t1 < .. . < tk in I∥∥(projC(tk ) ◦ . . .◦projC(t1)

)
(u0)
∥∥≤ ρ0.

Then, there exists one and only one absolutely continuous mapping
u : [0,T ]→H satisfying

−u̇(t) ∈ N(C(t);u(t)) λ -a.e. t ∈ [0,T ],

u(t) ∈ C(t) for all t ∈ [0,T ],

u(0) = u0.
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Some consequences

If we assume one of the two following conditions, we can remove the
assumption ∥∥(projC(tk ) ◦ . . .◦projC(t1)

)
(a)
∥∥≤ ρ0.

• I. Time dependence on ρ0:

ρ0 ≥ ‖u0‖+ v (T )− v (T0).

• II. Bounded variation of projection mapping:

∃a∈H ,W := var(projC(·)(a); [0,T ]) := sup
n

∑
i=1

∥∥projC(ti+1)(a)−projC(ti )(a)
∥∥< +∞

and

ρ0 ≥ ‖u0−a‖+ W + sup
t∈I

∥∥projC(t)(a)
∥∥ .
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Half-space and hyperplane moving set

Let ζ : I→H and β : I→R be absolutely continuous mappings on I. Set

C1(t) := {x ∈H : 〈ζ (t),x〉 = β (t)} and C2(t) := {x ∈H : 〈ζ (t),x〉 ≤ β (t)} .

Assume the following normalization condition

‖ζ (t)‖ = 1 for all t ∈ I = [0,T ].

Proposition

Let i ∈ {1,2}. The mapping proj(0,Ci (·)) is of absolutely continuous on I.
Further, one has for every real ρ > 0,

excρ (Ci (s),Ci (t))≤ v (t)− v (s) for all s, t ∈ I with s ≤ t,

where v (t) :=
∫ t

T0
ρ

∥∥∥ζ̇ (τ)
∥∥∥+
∣∣β̇ (τ)

∣∣dτ for every t ∈ I.
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Some variants



Few words on second order theory

In order to obtain a trajectory u(·) satisfying
−ü(t) ∈ N

(
C(t,u(t)); u̇(t)

)
u̇(t) ∈ C(t,u(t))

u(0) = u0, u̇(0) = v0

S. Adly and B.K. Le (2016) required that

L(t,x ,s,y )≤ L(|t− s|+‖x− y‖),

where

L(t,x ,s,y ) :=


hausρ (C(t,x),C(s,y )) if C(t,x)∩ρB , /0,C(s,y )∩ρB , /0

excρ (C(t,x),C(s,y )) if C(t,x)∩ρB , /0,C(s,y )∩ρB = /0

0 if C(t,x)∩ρB = /0,C(s,y )∩ρB = /0

with ρ := 1 +‖u0‖+‖v0‖+ LT + e(L+1)T .
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with ρ := 1 +‖u0‖+‖v0‖+ LT + e(L+1)T .
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Prox-regular sets

Definition

Let S be a nonempty closed subset of H , r ∈]0,+∞]. The set S is
r -prox-regular if the mapping projS : Ur (S) := {x ∈H : dS(x) < r}→H
is well-defined and continuous.

19



Facts on prox-regularity

• S is convex⇔ S is ∞-prox-regular.

• S is r -prox-regular⇒ S is r ′-prox-regular for every 0 < r ′ < r

• S is r -prox-regular⇔ d2
S(·) is C1,1 on Ur (S).

• S is r -prox-regular if and only if for all x ,x ′ ∈ S and x? ∈ N(S;x) one has〈
x?,x ′− x

〉
≤ 1

2r
‖x?‖

∥∥x ′− x
∥∥2

• S is r -prox-regular⇒ S is tangentially and normally regular.
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Existence under truncated excess

Theorem (N., Thibault (2018))

Let u0 ∈ C(0). Assume that the multimapping C(·) is r -prox-regular valued.
Assume also that there exist a real ρ0 ≥ ‖u0‖, a real ρ > ρ0 and some
nondecreasing absolutely continuous mapping v : [0,T ]→R satisfying

hausρ

(
C(s),C(t)

)
≤ v (t)− v (s) for all 0≤ s ≤ t ≤ T ,

and such that for all t1 < .. . < tk in I∥∥(projC(tk ) ◦ . . .◦projC(t1)

)
(u0)
∥∥≤ ρ0

whenever projC(tk ) ◦ . . .◦projC(t1) is well-defined.

Then, there exists one and only one absolutely continuous mapping
u : [0,T ]→H satisfying

−u̇(t) ∈ N(C(t);u(t)) λ -a.e. t ∈ [0,T ],

u(t) ∈ C(t) for all t ∈ [0,T ],

u(0) = u0.

21



Existence under truncated excess

Theorem (N., Thibault (2018))

Let u0 ∈ C(0). Assume that the multimapping C(·) is r -prox-regular valued.
Assume also that there exist a real ρ0 ≥ ‖u0‖, a real ρ > ρ0 and some
nondecreasing absolutely continuous mapping v : [0,T ]→R satisfying

hausρ

(
C(s),C(t)

)
≤ v (t)− v (s) for all 0≤ s ≤ t ≤ T ,

and such that for all t1 < .. . < tk in I∥∥(projC(tk ) ◦ . . .◦projC(t1)

)
(u0)
∥∥≤ ρ0

whenever projC(tk ) ◦ . . .◦projC(t1) is well-defined.

Then, there exists one and only one absolutely continuous mapping
u : [0,T ]→H satisfying

−u̇(t) ∈ N(C(t);u(t)) λ -a.e. t ∈ [0,T ],

u(t) ∈ C(t) for all t ∈ [0,T ],

u(0) = u0.

21



State-dependent

Now, we focus on state-dependent sweeping process, i.e., we assume that
the moving set depends on both time t and state x . The problem can be be
written as 

−u̇(t) ∈ N
(
C(t,u(t));u(t)

)
λ -a.e. t ∈ I,

u(t) ∈ C(t,u(t)) for all t ∈ I,

u(0) = u0.

To construct a solution, we consider the following implicit scheme

xn
i = proj(xn

i−1,C(tn
i ,x

n
i )).

The well-posedness is based on the existence for each y of a fixed point xy

for
x 7→ proj(y ,C(t,x))

along with an uniform upper bound

‖xy − y‖ ≤M.
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Nonconvex, state-dependent

Theorem (N. (2018))

Let C : I×H ⇒H be a multimapping with r -prox-regular values for
some r ∈]0,+∞], u0 ∈H with u0 ∈ C(0,u0), ρ0 ∈]‖u0‖ ,+∞[. Assume that:

(i) there exist a real L1 ≥ 0, a real L2 ∈ [0,1[ and an extended real
ρ ≥ ρ0 + L1T (1−L2)−1 + r such that

hausρ (C(t,x),C(τ,y ))≤ L1 |t− τ|+ L2 ‖x− y‖ for all t,τ ∈ I,x ,y ∈H ;

(ii) there exists a real δ > ‖u0‖+ L1T (1−L2)−1 such that for every
bounded subset B of H with γ(B) > 0,

γ(C(t,B))∩δB) < γ(B).

Then, there exists a Lipschitz continuous mapping u : I→H satisfying
−u̇(t) ∈ N(C(t,u(t));u(t)) λ -a.e. t ∈ I,

u(t) ∈ C(t,u(t)) for all t ∈ I,

u(0) = u0.
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