
REGULARIZATION OF SWEEPING PROCESS: OLD AND

NEW

FLORENT NACRY AND LIONEL THIBAULT

Abstract. The paper surveys in great generality several fundamental
contributions in the literature on regularization of sweeping processes
under the control of the moving set via the Hausdorff-Pompeiu distance.
In addition, a large complete new study is provided for the regularization
of prox-regular sweeping processes in the significantly weaker situation
when merely a suitable truncated Hausdorff distance is involved for the
control of the moving set.

Dedicated to Boris Mordukhovich
on the occasion of his seventieth birthday

Contents

1. Introduction 2
2. Preliminaries 4
2.1. Proximal and Mordukhovich normal cones 4
2.2. Vector measures 7
2.3. Bounded variation along ρ-truncation 11
2.4. Prox-regular sets in Hilbert spaces 14
3. Regularization of convex sweeping process under absolute

continuity 15
4. Regularization of convex sweeping process under continuous

variation 21
5. Regularization under prox-regularity and Lipschitz continuity 37
6. Regularization under prox-regularity and bounded truncated

variation 38
7. The case of sweeping process under compactness and α-far

property 56
References 61

2010 Mathematics Subject Classification. 34A60, 49J52, 49J53.
Key words and phrases. Moreau’s sweeping process, differential inclusion, regulariza-

tion, normal cone, prox-regular set.

1



2 FLORENT NACRY AND LIONEL THIBAULT

1. Introduction

Sweeping process has been introduced by J.J. Moreau in his 1971 paper
[36] as the mathematical model of various elastoplastic mechanical systems.
Its formulation is the differential inclusion

(1.1)

{
−du
dt (t) ∈ N (C(t);u(t))

u(T0) = a ∈ C(T0),

where C(t) is a nonempty closed set in a Hilbert space H for every t ∈
I := [T0, T ], and N (C(t);x) is the normal cone (in a given sense) to C(t) at
x ∈ H, with N (C(t);x) = ∅ whenever x ∈ H \ C(t). The name ”sweeping
process” coined by J.J. Moreau came from the understanding that the point
u(t) is swept by the moving set C(t). The situation when external forces
are present as well as certain other models (in economy, electrical circuit,
etc.) require the addition of a mapping depending on the state to the second
member of (1.1). So, the new differential inclusion (which is an extended
sweeping process) takes the form

(1.2)

{
−du
dt (t) ∈ N (C(t);u(t)) + f(t, u(t))

u(T0) = a ∈ C(T0),

where f : I × H → H is a mapping Lebesgue measurable with respect to
the time-variable and Lipschitz with respect to the state-variable. Both
differential inclusions (1.1) and (1.2) are clearly differential inclusions with
constraints, say u(t) ∈ C(t) for all t ∈ I. The concept of solution of either
(1.1) or (1.2) generally depends on the way that the set C(t) moves with
respect to time t ∈ I. Among those concepts, ”absolutely continuous so-
lution” is one at the heart of the theory. A mapping u : I → H is called
an absolutely continuous solution of (1.2) provided that u(·) is (of course)
absolutely continuous on I with u(t) ∈ C(t) for all t ∈ I and the inclusion

−du
dt

(t) ∈ N (C(t);u(t)) + f(t, u(t))

is satisfied for Lebesgue almost every t ∈ I. In fact, it should be noted
that the latter inclusion property for Lebesgue almost every t ∈ I plus the
continuity of t 7→ d(x,C(t)) (for each x ∈ H) entails the aforementioned
required inclusion u(t) ∈ C(t) for all t ∈ I. Indeed, fixing any t ∈ I and
taking a sequence (tn)n in I tending to t with u(tn) ∈ C(tn) for all integers
n, we see from the inequality

|d(u(tn), C(tn))−d(u(t), C(t))| ≤ ‖u(tn)−u(t)‖+|d(u(t), C(tn))−d(u(t), C(t))|
that d(u(tn), C(tn))→ d(u(t), C(t)), hence d(u(t), C(t)) = 0, or equivalently
u(t) ∈ C(t). For the notion of solution with bounded variation we refer to
Section 4.

Actually, diverse approaches for existence of solutions of (1.1) and (1.2)
are available in the literature: Catching-up method (see, e.g., [39]), reg-
ularization procedure (see, e.g., [36]), reduction to unconstrained differ-
ential inclusion (see, e.g., [47]), etc. Putting ϕt(x) := (1/2)d2C(t)(x) for
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all (t, x) ∈ I × H, the function ϕt(·) is of class C1,1 on H (resp. on
{x ∈ H : dC(t)(x) < r}) if C(t) is convex (resp. if C(t) is r-prox-regular,
where r ∈]0,+∞]; see Subsection 2.4 for the definition). For each real λ > 0,
the classical differential equation (under Lebesgue measurability in time and
appropriate growth condition){

duλ
dt (t) = − 1

λ∇ϕt(uλ(t))− f(t, uλ(t))
uλ(T0) = a

admits a unique solution uλ(·). The regularization procedure then consists in
showing (when possible) that (uλ(·))λ>0 converges in a certain sense as λ ↓ 0
to a mapping U(·) on an interval J := [T0, T ] ⊂ I, and that U(·) or another
mapping u(·) easily related to U(·) is a solution on J of the extended sweep-
ing process. Error estimates are also generally investigated. Even when the
existence of a solution is obtained via any approach, it is of great interest in
theoretical and practical/numerical point of view to know whether this so-
lution is a certain limit of suitable regularized classical differential equations
associated to either (1.1) or (1.2). This clearly offers the privilege to take
advantage of the very large knowledge of theoretical and practical/numerical
features in the literature on classical differential equations.

The aim of the present paper is twofold. On the one hand we survey
in great generality several developments in the literature on regulariza-
tion of sweeping processes under the control of the moving set C(t) via
the Hausdorff-Pompeiu distance, and on the other hand we provide a com-
plete new study of the regularization in the significantly weaker situation
when merely a suitable truncated Hausdorff distance (see Subsection 2.3
for definition) is involved for the control of the moving set C(t). Section 2
contains all the preliminaries on variational notions as: normal cones of sets
and subdifferentials of functions, variation and variation along ρ-truncation
of multimappings, bounded variation along ρ-truncation and connections
with measure theory, prox-regularity of sets. Section 3 reviews Moreau’s
basic result in [36] on regularization of (1.1) under the convexity of the
sets C(t) and the absolute continuity of the multimapping C(·) with respect
to the Hausdorff-Pompeiu distance. The deep works [30, 31] by M.D.P.
Monteiro Marques, concerning the case when the sets C(t) are convex and
ball-compact but the multimapping C(·) is merely of bounded variation, are
analyzed and developed in Section 4. Concerning the situation of nonconvex
sets C(t), we begin by recalling in Section 5 the results of L. Thibault ([48])
for (1.1) and M. Sene and L. Thibault ([46]) for (1.2), both dealing with the
context where the sets C(t) are r-prox-regular and the multimapping C(·) is
still absolutely continuous with respect to the Hausdorff-Pompeiu distance.
The long Section 6, which is completely new, studies the regularization pro-
cedure of (1.2) with r-prox-regular sets C(t) under the significantly weaker
assumption of absolute continuity of C(·) with respect to the more flexible
ρ-truncated Hausdorff distance for a suitable real ρ > 0. The paper fin-
ishes with the recent nice regularization of A. Jourani and E. Vilches ([28])
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for (1.2) with ball-compact α-far sets C(t) (see the definition in the same
section).

2. Preliminaries

Throughout the paper, I := [T0, T ] is an interval of R with T0 < T and
H is a real Hilbert space with the inner product 〈·, ·〉 and the associated

norm ‖·‖ :=
√
〈·, ·〉. The closed (resp. open) ball of H centered at x ∈ H of

radius r ∈]0,+∞] is denoted by B[x, r] (resp. B(x, r)), and we will use the
notation B for the closed unit ball centered at zero, that is, B := B[0, 1]. By
convention, we will set rB = H when r = +∞. Let S be a subset of H. As
usual, dS (or d(·, S)) is the distance function from S, i.e.,

dS(x) :=: d(x, S) := inf
y∈S
‖x− y‖ for all x ∈ H,

and the convex hull (resp. closed convex hull) of S is denoted by co S
(resp. co S). The support function of S is the function from H into R :=
R ∪ {−∞,+∞} given by

σS(h) :=: σ(h;S) := sup
x∈S
〈x, h〉 for all h ∈ H.

The multimapping (which is obviously graph-closed in H2 endowed with the
usual Hilbert norm) ProjS : H⇒ H of nearest points in S is defined by

ProjS(x) := {y ∈ S : ‖x− y‖ = dS(x)} for all x ∈ H.
Whenever the latter set is reduced to a singleton for some x ∈ H, that is
ProjS(x) = {y}, the vector y ∈ S is denoted by projS(x) or PS(x). One says
that S is (strongly) ball-compact if the intersection of S with any closed ball
of H is compact. In such a case, the set S is obviously closed along with
ProjS(x) 6= ∅ for every x ∈ H whenever S 6= ∅.

Given an extended real-valued function f : H → R, the effective domain
of f is denoted by

dom f := {x ∈ H : f(x) < +∞}.

2.1. Proximal and Mordukhovich normal cones. Let S be a closed
subset of H. A vector ζ ∈ H is a proximal normal vector to the set S ⊂ H
at a point x ∈ S provided that there exists a real r > 0 such that x ∈
ProjS(x + rζ). The set NP (S;x) (which is a convex cone containing zero
but not necessarily closed) of all proximal normal vectors of S at x is called
the proximal normal cone of S at x. By convention, if x ∈ H \ S, we will
put NP (S;x) := ∅. It is worth pointing out that for each v ∈ H with
ProjS(v) 6= ∅,

(2.1) v − w ∈ NP (S;w) for all w ∈ ProjS(v).

Following [33], a vector ζ ∈ H belongs to the Mordukhovich limiting (or
basic) normal cone NL(S;x) to the closed set S at x ∈ S provided that
there are a sequence (xn)n∈N in S with xn → x and a sequence (ζn)n∈N in
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H with ζn
w→ ζ such that ζn ∈ NP (S;xn) for every n ∈ N. Here and below,

the letter N denotes the set of integers starting from 1 and
w→ stands for the

weak convergence in H.
The closed convex hull of NL(S;x) (see [34]) is known to coincide with

the Clarke normal cone N(S;x), that is,

N(S;x) = co
(
NL(S;x)

)
.

Of course, NL(S;x) and N(S;x) are empty whenever x ∈ H \ S. It will
be convenient sometimes, to write NP

S (x) for the proximal, NL
S (x) for the

Mordukhovich limiting and NS(x) for the Clarke normal cone to S at x.
It is worth pointing out that the above concepts of normal cones are local,

in the sense that for any neighborhood V in H of x ∈ S
(2.2) N (S ∩ V ;x) = N (S;x),

where N stands for any of NP , NL and N . If S is convex, it is known (and
easily seen) that the three normal cones NP (S;x), NL(S;x) and N(S;x)
coincide with the normal cone in the sense of convex analysis, that is,

(2.3) NP (S;x) = NL(S;x) = N(S;x) = {ζ ∈ H : 〈ζ, y − x〉 ≤ 0,∀y ∈ S} .

Given a lower semicontinuous function f : H → R and x ∈ H with
|f(x)| < +∞, the proximal ∂P f(x), Mordukhovich limiting ∂Lf(x) and
Clarke ∂f(x) subdifferential of f at x is defined as the set of ζ ∈ H such
that (ζ,−1) lies in the proximal, Mordukhovich limiting, and Clarke nor-
mal cone respectively of the epigraph of f at (x, f(x)). By convention,
these subdifferentials at x are empty whenever |f(x)| = +∞. Clearly,
∂P f(x) ⊂ ∂Lf(x) ⊂ ∂f(x). The subdifferential ∂Lf(x) can also be de-
rived more directly from the proximal subdifferential: A vector ζ ∈ ∂Lf(x)
if and only if there are sequences (xn)n∈N in H with (xn, f(xn))→ (x, f(x))
and (ζn)n∈N converging weakly to ζ such that ζn ∈ ∂P f(xn) for all n ∈ N.

It is known that, for the closed set S ⊂ H and x ∈ S
∂PdS(x) = B ∩NP

S (x), R+∂LdS(x) = NL
S (x), cl

(
R+∂dS(x)

)
= NS(x);

see [34] for the middle equality and [16] for the others. When x 6∈ S, the
equality

(2.4) ∂PdS(x) = NP (Sr;x) ∩ {ζ ∈ H : ‖ζ‖ = 1}
holds for the closed set S (see [9]), where r := d(x, S) and Sr denotes the
closed r-enlargement of S, that is, Sr := {x ∈ H : dS(x) ≤ r}; such a
property is not true in general for ∂LdS(x) and ∂dS(x).

When f is Lipschitz near x ∈ H (in particular finite at x), the Clarke
subdifferential ∂f(x) can be described analytically by

∂f(x) = {ζ ∈ H : 〈ζ, h〉 ≤ fo(x;h), ∀h ∈ H},
where fo(x;h) := lim sup

t↓0,u→x
t−1[f(u + th) − f(u)], so ∂f(x) is a nonempty

weakly compact convex set in H and the continuous sublinear function
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fo(x; ·) is its support function, that is,

fo(x;h) = σ(h; ∂f(x)) for all h ∈ H.
From this, it is easily seen for the local Lipschitz function f near x that on
the one hand

∂(−f)(x) = −∂f(x),

and on the other hand that the multimapping x′ 7→ ∂f(x′) is scalarly upper
semicontinuous at x, in the sense that x′ 7→ σ(h; ∂f(x′)) is upper ‖ · ‖-
semicontinuous at x, which is also equivalent to the property that x′ 7→
∂f(x′) is upper semicontinuous at x from (H, ‖ · ‖) into (H, w(H,H)) in
the sense of set-valued analysis, where as usual w(H,H) denotes the weak
topology on H. Under the Lipschitz property of f near x one also has (see
[34, Theorem 3.57])

(2.5) ∂f(x) = co
(
∂Lf(x)

)
.

For the function f Lipschitz near x, if fo(x; ·) coincides with the usual
directional derivative f ′(x; ·), one says that the function f is tangentially
regular at x. We recall that the directional derivative f ′(x; ·), when it exists,
is given by

f ′(x;h) := lim
t↓0

[f(x+ th)− f(x)] for all h ∈ H.

For the closed subset S of H, we know by J.M. Borwein, S. Fitzpatrick
and J. Giles [7, Theorem 8] that the function −dS is tangentially regular
on H \ S. From this, it is not difficult to derive that the function −d2S is
tangentially regular on H. This can also be seen from the fact (see, [26,
Theorem 3.2]) that the opposite of the Moreau envelope ϕ�1

2‖ · ‖
2 of any

proper lower semicontinuous function ϕ : H → R ∪ {+∞} bounded from
below is tangentially regular on H (i.e., at each point in H), where

(ϕ�
1

2
‖ · ‖2)(x) := inf

y∈H
[ϕ(y) +

1

2
‖x− y‖2] for all x ∈ H.

Indeed, taking ϕ as the indicator function ψS of the closed set S, defined
by ψS(x) = 0 if x ∈ S and ψS(x) = +∞ otherwise, gives the tangential
regularity of −d2S . We state this property in the following proposition.

Proposition 2.1. For any nonempty closed set S in the Hilbert space H,
the function −d2S is tangentially regular on H.

Let S be a nonempty closed set of the Hilbert space H and x ∈ H\S. One
knows (see, e.g., [17, Lemma 5]) that, for any x′ ∈ H\S with ∂PdS(x′) 6= ∅,
the unique nearest point PS(x′) exists and ∂P ((1/2)d2S)(x′) = {x′−PS(x′)}.

Let ζ ∈ ∂L((1/2)d2S)(x). Taking any sequences (ζn)n∈N, (xn)n∈N ofH with
ζn ∈ ∂P ((1/2)d2S)(xn) for every n ∈ N and xn ∈ H \ S along with xn → x

and ζn
w→ ζ, we have ζn = xn − PS(xn) for all n ∈ N. So, (PS(xn))n∈N

converges weakly to x− ζ. Now assume in addition that the nonempty set
S is strongly ball-compact. Then we have ‖PS(xn)− (x− ζ)‖ → 0 according
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to the fact that the topology induced on the compact set S ∩ rB by the
weak and strong topologies coincide, where r := sup

n∈N
(‖xn‖ + dS(xn)). The

closedness (for H ×H endowed with its natural norm) of the graph of the
multimapping ProjS entails that x − ζ ∈ ProjS(x). From this we see that
∂L((1/2)d2S)(x) ⊂ x− ProjS(x).

Now, let any u ∈ H where PS(u) =: v exists, and let us still keep S as
strongly ball-compact. Fixing any h ∈ H we note that for every real t > 0

1

2t
[d2S(u+ th)− d2S(u)] ≤ 1

2t
[‖u+ th− v‖2 −‖u− v‖2] = 〈u− v, h〉+ t

2
‖h‖2.

Further, for each real t > 0 choosing vt ∈ ProjS(u + th), it is easily seen
from the ball-compactness of S that vt → v as t ↓ 0, and we also observe
that for every real t > 0,

1

2t
[d2S(u+ th)− d2S(u)] =

1

2t
[‖u+ th− vt‖2 − d2S(u)]

= 〈u− vt, h〉+
t

2
‖h‖2 +

1

2t
[‖u− vt‖2 − d2S(u)]

≥ 〈u− vt, h〉+
t

2
‖h‖2.

It results that (1/2)d2S is Gâteaux differentiable at u with u− v = u−PS(u)
as Gâteaux gradient at u. Then, considering any y ∈ ProjS(x) and noting
(as in [45, Example 8.53]), for every t ∈]0, 1[ that y = PS(xt), where xt :=
x+t(y−x) 6∈ S, we obtain that (1/2)d2S is Gâteaux differentiable at xt, with
xt − y as its Gâteaux gradient at xt. Since xt → x as t ↓ 0, it ensues that
x − y ∈ ∂L((1/2)d2S)(x) (see, e.g., (3.62) in [34, Theorem 3.59], keeping in
mind that H is a Hilbert space). This yields x−ProjS(x) ⊂ ∂((1/2)d2S)(x).

Taking also (2.5) into account, we have then proved the following:

Proposition 2.2. Let S be a nonempty strongly ball-compact set of the
Hilbert space H, which holds in particular whenever H is finite dimensional
and S is nonempty and closed. For any x ∈ H \ S one has

∂L((1/2)d2S)(x) = x− ProjS(x) and ∂((1/2)d2S)(x) = x− co (ProjS(x)) .

We also mention [33, Proposition 2.7] and [45, Example 8.53] for the
finite-dimensional version of Proposition 2.2.

For further properties of the above normal cones and subdifferentials, we
refer the reader to the monographs [33, 34] for the proximal and limiting
objects and to [16] for the proximal and Clarke ones.

2.2. Vector measures. In all the paper, any positive measure µ (resp.
vector measure m with values in H) on I = [T0, T ] will be a Radon measure,
in particular µ(I) < +∞. When a property holds on the complement of a
Lebesgue negligible set of I, we merely say that it holds for almost every
(a.e., for short) t ∈ I, in particular we do not specify the Lebesgue measure.

In order to deal with differential measure inclusions (namely, bounded
variation sweeping process) some preliminaries on vector measure theory
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are necessary. Throughout this subsection, ν and ν̂ are positive Radon
measures on I = [T0, T ]. For each t ∈ I, r ∈]0,+∞[, one sets

I(t, r) := I ∩ [t− r, t+ r] , I+(t, r) := I ∩ [t, t+ r] and I−(t, r) := I ∩ [t− r, t].

For a subset A of I, we denote by 1A the characteristic function (in the
sense of measure theory) of A relative to I, i.e., for all t ∈ I, 1A(t) = 1
if t ∈ A and 1A(t) = 0 otherwise. Let X be a Hilbert space and J be a
subinterval of I. For any real p ≥ 1, Lp(J,X, ν) stands for the real space of
(classes of) Bochner ν-measurable mappings from J to X for which the p-th
power of their norm value is ν-integrable on J . If ν is the Lebesgue measure
on J , we denote Lp(J,X) instead of Lp(J,X, ν) and if in addition X = R,
we merely write Lp(J).

With the convention 0
0 = 0, the derivative of the measure ν̂ with respect

to ν is defined as the following limit

(2.6)
dν̂

dν
(t) := lim

r↓0

ν̂(I(t, r))

ν(I(t, r))

which exists for ν-almost every t ∈ I. Further, it is worth mentioning that
dν̂
dν (·) is a nonnegative Borel function. Coming back to a general Radon
measure ν̂ on I, it is known that the measure ν̂ is absolutely continuous
with respect to ν if and only if ν̂ = dν̂

dν (·)ν (i.e., dν̂
dν (·) is a density relative to

ν). If the latter equality holds, a mapping u(·) : I → H is ν̂-integrable on I
if and only if u(·)dν̂dν (·) is ν-integrable on I. In such a case, one has∫

I
u(t)dν̂(t) =

∫
I
u(t)

dν̂

dν
(t)dν(t).

If the two Radon measures ν and ν̂ are each one absolutely continuous with
respect to the other one, one says that ν and ν̂ are absolutely continuously
equivalent.

Now, let us consider a Radon vector measure m on I with values in the
real Hilbert space H. The variation measure |m| of m is defined for any
Borel set A ⊂ I by

|m| (A) := sup
(Bn)n∈N∈B

+∞∑
n=1

‖m(Bn)‖ ,

where B is the set of all sequences (Bn)n∈N of Borel mutually disjoint subsets
of I such that A =

⋃
n∈N

Bn. The vector measure m is said to be absolutely

continuous with respect to ν whenever the positive measure |m| is absolutely
continuous with respect to ν. Since H has the Radon-Nikodým property,
under such an absolute continuity assumption, the vector measure m has
a density ζ : I → H relative to ν, i.e., m = ζ(·)ν (or equivalently, ζ(·) ∈
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L1(I,H, ν) and for all Borel sets A ⊂ I,

m(A) =

∫
A
ζ(t)dν(t)).

In the rest of this section, we focus on mappings with bounded variation.
Let u : I → H be a mapping. Any σ = (t0, . . . , tk) ∈ Rk+1 with k ∈ N such
that T0 = t0 < . . . < tk = T is called a subdivision σ of [T0, T ] = I and to

such a subdivision σ, one associates the real Sσ :=
k∑
i=1
‖u(ti)− u(ti−1)‖. If

S denotes the set of all subdivisions of I, one defines the variation of u as
the extended real

var(u; I) := sup
σ∈S

Sσ.

The mapping u is said to be of bounded variation on I if var(u; I) < +∞.
It is well-known that u(·) has one sided limits at each point of I whenever
it is of bounded variation on I. In such a case, one defines the mappings
u−, u+ : I := [T0, T ]→ H by

u−(τ) := lim
t↑τ

u(t) for all t ∈]T0, T ] and u+(τ) := lim
t↓τ

u(t) for all τ ∈ [T0, T [,

with the conventions u−(T0) := u(T0), u
+(T ) := u(T ). The mapping u+

(resp. u−) is easily seen to be of bounded variation and right-continuous
(resp. left-continuous) on I, and it is called the right-continuous (resp. left-
continuous) with bounded variation envelope of u. Further, it is known (and
not difficult to see) that

u+(τ) = (u+)+(τ) and u−(τ) = (u−)−(τ) for all τ ∈ [T0, T ]

and

(2.7) (u−)+(τ) = u+(τ) ∀τ ∈ [T0, T [, and (u+)−(τ) = u−(τ) ∀τ ∈]T0, T ].

Assume that u(·) is of bounded variation on I. The differential measure
du associated to u(·) (see, e.g., [22]) is defined through the equality∫

[s,t]
du = u+(t)− u−(t) for all s, t ∈ I with s ≤ t.

In particular, the following relation holds for every τ ∈ I and every s, t ∈ I
with s ≤ t,∫

{τ}
du = u+(τ)− u−(τ) and

∫
]s,t]

du = u+(t)− u+(s).

For the differential measure d(u+), abbreviated as du+ as usual, we can
write (by what precedes) for all s, t ∈ I with s ≤ t∫

[s,t]
du+ = (u+)+(t)− (u+)−(s) = u+(t)− (u+)−(s).

Using the aforementioned equality (u+)−(s) = u−(s) for all s ∈]T0, T ], we see
that

∫
[s,t] du

+ =
∫
[s,t] du for all s, t ∈ I with s ≤ t, if and only if (u+)−(T0) =
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u−(T0), or equivalently u+(T0) = u(T0). This and the similar property for
du− := d(u−) mean that

(2.8) du = du+ ⇔ u+(T0) = u(T0), and du = du− ⇔ u−(T ) = u(T ).

On the other hand, if there is a ν-integrable mapping û : I → H on I
satisfying

u(t) = u(T0) +

∫
]T0,t]

û(t)dν(t) for all t ∈ I,

then u(·) is of bounded variation and right continuous on I. In such a case,
one has

|du| (]s, t]) =

∫
]s,t]
‖û(τ)‖ dν(τ) for all s, t ∈ I with s ≤ t

and du is absolutely continuous with respect to ν and has û(·) as a density
relative to ν, i.e.,

du = û(·)dν.
According to J.J. Moreau and M.Valadier ([41]), for ν-almost every t ∈ I,
the following limits exists in H,
(2.9)

û(t) =
du

dν
(t) := lim

r↓0

du(I(t, r))

ν(I(t, r))
= lim

r↓0

du(I+(t, r))

ν(I(t, r))
= lim

r↓0

du(I−(t, r))

ν(I(t, r))
.

Consider again a mapping of bounded variation u : I → H, the Radon-
Nikodym property of the Hilbert space H ensures that du has a density with
respect to |du|, denoted as du

|du| , that is du = du
|du|(·) |du|. A vector-valued

mapping φ : I → H is known to be du-integrable on I if and only if it is
Bochner |du|-integrable on I, and in this case its du-integral (relative to the
inner product of H) on a subinterval J ⊂ I, denoted as

∫
J φ · du, is given by∫

J
φ · du =

∫
J
〈φ(t),

du

|du|
(t)〉 |du|(t).

Concerning this integral, we have the following convergence result for which
we refer to M.D.P. Monteiro Marques [31, Chapter 0, Theorem 2.1(ii-iii)];
in fact this follows from the proof of (ii) in Theorem 2.1 in [31, Chapter 0].

Proposition 2.3. Let I := [T0, T ] and u, un : I → H, n ∈ N, be mappings
of bounded variation into the Hilbert space H such that the sequence (un)n∈N
converges pointwise to u for H endowed with the weak topology, that is, for
every t ∈ I

un(t)
w→ u(t) as n→ +∞.

(a) If the mappings u and un, n ∈ N, are left-continuous on I, then for any
mapping φ : I → H which is either continuous on I, or right-continuous
with bounded variation on I, one has for all s, t ∈ I with s < t,∫

[s,t[
φ · dun →

∫
[s,t[

φ · du as n→ +∞.
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(b) If the mappings u and un, n ∈ N, are right-continuous on I, then for
any mapping φ : I → H which is either continuous on I, or left-continuous
with bounded variation on I, one has for all s, t ∈ I with s < t,∫

]s,t]
φ · dun →

∫
]s,t]

φ · du as n→ +∞.

Vector-valued mappings with bounded variation enjoys the following Helly-
type compactness property for which we refer to V. Barbu and T. Precupanu
[6, Theorem 1.126] and to M.D.P. Monteiro Marques [31, Chapter 0, Theo-
rem 2.1(i)].

Theorem 2.4. Let I := [T0, T ] and (un)n∈N be a sequence of mappings of
bounded variation from I into the Hilbert space H such that

sup
n∈N

sup
t∈I
‖un(t)‖ < +∞ and sup

n∈N
var(un; I) < +∞.

Then, the sequence (un)n∈N admits a subsequence (us(n))n∈N converging
pointwise, for H endowed with the weak topology, to some mapping u : I →
H of bounded variation, that is, for every t ∈ I

us(n)(t)
w→ u(t) as n→ +∞,

and in addition var(u; I) ≤ sup
n∈N

var(un; I).

When the mapping u : I → H is absolutely continuous, denoting as usual
by u̇ its derivative defined Lebesgue almost everywhere and denoting by L
the Lebesgue measure on I, we have

du =
du

dL
(·)dL = u̇(·)dL.

So, for the above integral with respect to the differential measure du we
obtain for φ : I → H Bochner L-integrable on I

(2.10)

∫
J
φ · du =

∫
J
〈φ(t), u̇(t)〉 dt

for any subinterval J ⊂ I.

2.3. Bounded variation along ρ-truncation. Let ρ ∈]0,+∞] be a given
extended real and let S and S′ be nonempty subsets of H.

One defines the ρ-pseudo excess of S over S′ (also called the pseudo excess
of the ρ-truncation of S over S′) as the extended real

excρ(S, S
′) := sup

x∈S∩ρB
d(x, S′).

If ρ = +∞, remembering the convention ρB = H, we see in this case that
the ρ-pseudo excess of S over S’ is the usual excess of S over S′, that is,

exc∞(S, S′) = sup
x∈S

d(x, S′) =: exc(S, S′).
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It is readily seen that for every x′ ∈ H,

d(x′, S′) ≤ d(x′, x) + excρ(S, S
′) for all x ∈ S ∩ ρB,

i.e.,
d(x′, S′) ≤ d(x′, S ∩ ρB) + excρ(S, S

′) for all x′ ∈ H.
With the above concept at hand, one can define the Hausdorff ρ-pseudo
distance between S and S′ as

hausρ(S, S
′) := max

{
excρ(S, S

′), excρ(S
′, S)

}
.

If ρ = +∞, hausρ(S, S
′) coincides with haus(S, S′), the usual Hausdorff-

Pompeiu distance between S and S′, i.e.,

haus∞(S, S′) = max
{

exc(S, S′), exc(S′, S)
}

=: haus(S, S′).

It is worth pointing out that

(2.11) hausρ(S, S
′) ≤ sup

x∈ρB

∣∣d(x, S)− d(x, S′)
∣∣ =: ĥausρ(S, S

′).

Further, for any extended real ρ′ such that ρ′ ≥ 2ρ + max {dS(0), dS′(0)},
one has

ĥausρ(S, S
′) ≤ hausρ′(S, S

′).

Before recalling the variations of multimappings, let us state the following
lemma on the Hölder property with exponent 1/2 of metric projections onto
convex sets with respect to the Hausdorff-Pompeiu distance haus(·, ·) over
those sets. The statement is exactly the one by J.J. Moreau in [39, Inequality
(2.17) in Lemma p. 362]. A previous result for the Hölder continuity with
respect to haus(·, ·) has been established by J. W. Daniel [20, Theorem 2.2].
The exponent in the result in [20] is also 1/2 but the Hölder constant therein
is less accurate than the one in [39]. The proof below follows the one by
M.D.P. Monteiro Marques [31, Proposition 4.7].

Lemma 2.5. Let S, S′ be two nonempty closed convex subsets of H and
x, x′ ∈ H. Then, one has∥∥projS(x)− projS′(x

′)
∥∥2 ≤ ‖x− x′‖2 + 2dS(x)exc (S′, S) + 2dS′(x

′)exc(S, S′)

≤
∥∥x− x′∥∥2 + 2

(
dS(x) + dS′(x

′)
)

haus(S, S′).

Proof. The inequality valid for all a, b ∈ H, ‖a‖2−‖b‖2 ≤ 2〈a, a− b〉 entails,
with p := projS(x) and p′ := projS′(x

′), that

‖p− p′‖2 − ‖x− x′‖2 ≤ 2〈p− p′, p− p′ − x+ x′〉
= 2〈p′ − p, x− p〉+ 2〈p− p′, x′ − p′〉.

On the other hand, noting for q := projS(p′) that 〈q − p, x − p〉 ≤ 0 (since
p = projS(x) and q ∈ S), we also have

〈p′ − p, x− p〉 ≤ 〈p′ − q, x− p〉 ≤ ‖x− p‖ dS(p′) ≤ ‖x− p‖ exc(S′, S).

Interchanging, we also have 〈p − p′, x′ − p′〉 ≤ ‖x′ − p′‖ exc(S, S′), which
combined with what precedes finishes the proof. �
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Figure 1. Daniel’s example

The following example is due to J.W. Daniel [20, p. 235].

Example 2.6. The exponent 1/2 in the above Hölder property is sharp.
Indeed, let S := {(x, y) ∈ R2 : 0 ≤ x ≤ 1, 1 ≤ y ≤ 2} and Sε := {(x, y) ∈
S : x

√
ε + y ≥ 1 + ε} for ε ∈]0, 1[ (see Figure 1). It is easily seen that for

any ε ∈]0, 1[, projS(0, 0) = (0, 1), projSε(0, 0) = (
√
ε, 1), so ‖projS(0, 0) −

projSε(0, 0)‖ =
√
ε, whereas haus(Sε, S) = ε/

√
1 + ε. �

Now, let us consider an extended real ρ ∈]0,+∞] and a multimapping
C : I = [T0, T ] ⇒ H. To each subdivision σ0 = (t0, . . . , tk) of I (with
k ∈ N), one associates the extended real

hσ0,ρ :=
k−1∑
i=0

hausρ(C(ti), C(ti+1)).

The ρ-pseudo variation (or the pseudo variation along ρ-truncation) of C(·)
on I = [T0, T ] is defined as the extended real

varρ(C; [T0, T ]) := sup
σ∈S

hσ,ρ,

where S is the set of all subdivisions of I. When varρ(C; I) < +∞, one says
that C(·) is of pseudo bounded ρ-variation (or pseudo bounded variation
along ρ-truncation) on I. Assume for a moment that there is a positive
Radon measure µ on I such that

(2.12) hausρ(C(s), C(t)) ≤ µ(]s, t]) for all s, t ∈ I.
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It is then readily seen that C(·) is of pseudo bounded ρ-variation since

varρ(C; I) ≤ µ(]T0, T ]) < +∞.

Furthermore, for every t ∈ [T0, T [ the inequalities

0 ≤ varρ(C; [T0, t])− varρ(C; [T0, t]) ≤ µ(]t, t]) for all t ∈]t, T ]

say in particular that t 7→ varρ(C; [T0, t]) is right-continuous at t.
Conversely, assume that C(·) has a pseudo bounded variation on I along

ρ-truncation and that the function varρ(C; [T0, ·]) is right-continuous on I.
Since the latter function is nondecreasing on I, it is of bounded variation on
I. So, if we denote by µC,ρ the differential Radon measure associated with
it, we have

varρ(C; [T0, t])− varρ(C; [T0, s]) = µC,ρ(]s, t]) for all s, t ∈ I with s ≤ t,
which entails in a straightforward way the inequality (2.12) with µ := µC,ρ.

2.4. Prox-regular sets in Hilbert spaces. In addition to the assumption
(2.12), that is, the inequality

hausρ(C(s), C(t)) ≤ µ(]s, t]) for all s, t ∈ I with s ≤ t,
for a given positive Radon measure µ on I and an extended real ρ > 0, the
multimapping C(·) will be assumed to be uniformly prox-regular valued. Let
us thus give the definition of prox-regular sets.

Definition 2.7. Let S be a nonempty closed subset of H, r ∈]0,+∞]. One
says that S is r-prox-regular (or uniformly prox-regular with constant r)
whenever, for all x ∈ S, for all v ∈ NP (S;x)∩B and for every real t ∈]0, r],
one has x ∈ ProjS(x+ tv).

The following theorem recalls some useful characterizations and properties
of uniform prox-regular sets (see, e.g., [42, 17]). Before stating it, define for
any extended real r > 0, the r-open enlargement of a subset S of H as

Ur(S) := {x ∈ H : dS(x) < r}.

Theorem 2.8. Let S be a nonempty closed subset of H. Consider the
following assertions.
(a) The set S is r-prox-regular.
(b) For all x, x′ ∈ S, for all v ∈ N(S;x), one has〈

v, x′ − x
〉
≤ 1

2r
‖v‖

∥∥x− x′∥∥2 .
(c) For all x, x′ ∈ S, for all v ∈ N(S;x) ∩ rB, for all v′ ∈ N(S;x′) ∩ rB,〈

v′ − v, x′ − x
〉
≥ −

∥∥x′ − x∥∥2 .
(d) For any real γ ∈]0, 1[, for all x, x′ ∈ Urγ(S),∥∥projS(x)− projS(x′)

∥∥ ≤ 1

1− γ
∥∥x− x′∥∥ .
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(e) For all u ∈ Ur(S) \ S, one has (with x = projS(u))

x = projS

(
x+ t

u− x
‖u− x‖

)
for all t ∈ [0, r[.

(f) The function d2S is C1,1 on Ur(S) and

∇d2S(x) = 2(x− projS(x)) for all x ∈ Ur(S).

(g) The set S is normally regular in the sense that

NP (S;x) = NL(S;x) = N(S;x) for all x ∈ H;

further, ∂PdS(x) = ∂LdS(x) = ∂dS(x) for all x ∈ Ur(S).
Then, the assertions (a), (b), (c), (d), (e) and (f) are pairwise equivalent

and each one implies (g).

3. Regularization of convex sweeping process under absolute
continuity

Let f : H → R ∪ {+∞} be a proper lower semicontinuous convex func-
tion and let f∗ : H → R be its Legendre-Fenchel conjugate defined by
f∗(x∗) := sup

x∈H
[〈x∗, x〉 − f(x)] for all x∗ ∈ H. Since f is proper and lower

semicontinuous, it is known that f∗ takes its values in R ∪ {+∞} and is
also proper and lower semicontinuous. For each z ∈ H, the function x 7→
Φ(x) := 1

2‖z − x‖
2 + f(x) is weakly lower semicontinuous with Φ(x)→ +∞

as ‖x‖ → +∞, hence Φ attains its minimum. In fact, by strict convexity
Φ posseses one and only one minimizer denoted by proxf (z) and called by
Moreau [38, 3.b Notation] the proximal point of z relative to f . Clearly, for
a nonempty closed convex set S of H the proximal point of z relative to the
indicator function ψS of S coincides with the projection of z onto S, that
is, proxψS (z) = projS(z). Given x, y, z ∈ H it is known by [38, Proposition
4.a] that(
x = proxf (z) and y = proxf∗(z)

)
⇔
(
z = x+y and f(x)+f∗(y) = 〈x, y〉

)
.

By [38, Proposition 5.b] the mapping proxf : H → H is nonexpansive
(like the mapping projS with S nonempty closed convex) in the sense that
‖proxf (z) − proxf (z′)‖ ≤ ‖z − z′‖ for all z, z′ ∈ H. We also note that for
the function Φ above inf

x∈H
Φ(x) = −Φ∗(0) (by the definition of Φ∗). Fix

for a moment any z ∈ H. Denoting q := (1/2)‖ · ‖2 and qz := q(· − z),
by the continuity of qz we have Φ∗ = (q∗z�f

∗) (see, e.g., [35]). Since
q∗z(x

∗) = q∗(x∗) + 〈x∗, z〉 for every x∗ ∈ H (as known and easily seen for the
conjugate of h(· − z)), we deduce

Φ∗(0) = inf
x∗∈H

[q∗z(−x∗) + f∗(x∗)] = inf
x∗∈H

[q∗(−x∗)− 〈x∗, z〉+ f∗(x∗)].

Using the well-known equality q∗ = q (see [38, Proposition 9.a]), it ensues
that (

1

2
‖ · ‖2�f

)
(z) = − inf

x∗∈H

[
1

2
‖x∗‖2 + f∗(x∗)− 〈x∗, z〉

]
,
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so in the particular case of the indicator function f = ψS of a nonempty
closed convex set S of H we obtain

(3.1)
1

2
d2S(z) = − inf

x∈H

[
1

2
‖x‖2 + σS(x)− 〈z, x〉

]
.

Let be given a multimapping C : [T0, T ] ⇒ H with nonempty closed
convex values. Throughout this section, we assume that the multimap-
ping C is absolutely continuous, that is, the variation function I 3 t 7→
var(C; [T0, t]) := var∞(C; [T0, t]) is absolutely continuous on I := [T0, T ].
For convenience, we will denote v(t) := var(C; [T0, t]) for all t ∈ I. Consider
the sweeping differential inclusion

u̇(t) ∈ −NC(t)(u(t)) with initial condition u(T0) = a,

where u̇(·) := du
dt (·). Given any pair of absolutely continuous solutions u,w,

if any, by the monotonicity ofNC(t)(·), putting ξ(t) := (1/2)‖u(t)−w(t)‖2 for

all t ∈ I, we have ξ̇(t) = 〈u̇(t)− ẇ(t), u(t)−w(t)〉 ≤ 0 for almost every t ∈ I.
The function ξ(·) is then nonincreasing on I = [T0, T ] with ξ(T0) = 0 and
ξ(·) ≥ 0, so ξ(t) = 0 for all t ∈ I, hence the sweeping differential inclusion
with initial condition u(T0) = a has at most one absolutely continuous
solution.

Now, let the function ϕ : I ×H → R be defined by

ϕ(t, x) :=
1

2
d2C(t)(x) for all (t, x) ∈ I ×H.

In some places it will be convenient, for each t ∈ I, to denote as usual by ϕt
the function ϕ(t, ·), that is, ϕt(x) := ϕ(t, x) for all x ∈ H. For each t ∈ I, by
[38, Proposition 7.d] (see also Theorem 2.8(f) with r = +∞) the function
ϕ(t, ·) is of class C1 on H with

∇ϕt(x) = x− projC(t)(x) for all x ∈ H.

We also notice from the latter equality that for each t ∈ I the mapping
x 7→ ∇ϕt(x) is Lipschitz on H, and for each x ∈ H the mapping t 7→ ∇ϕt(x)
is continuous according to the Hölder property of S 7→ projS(x) with respect
to haus(·, ·) on the space of nonempty closed convex subsets ofH (see Lemma
2.5). Furthermore, for any absolutely continuous mapping z : I → H,
writing

|dC(t)(z(t))− dC(s)(z(s))| ≤ ‖z(t)− z(s)‖+ |v(t)− v(s)| for all s, t ∈ I,

we see that t 7→ dC(t)(z(t)), and hence also t 7→ ϕ(t, z(t)), is absolutely
continuous on I.

Let S, S′ be nonempty closed convex subsets of H. It is known that

exc(S, S′) = sup
u∈B∩domσS′

(
σS(u)− σS′(u)

)
.

If exc(S, S′) < +∞, it then follows that B ∩ domσS′ ⊂ domσS , hence
domσS′ ⊂ domσS because domσS is a cone. Since haus(C(s), C(t)) < +∞
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for any s, t ∈ I, by the absolute continuity of C(·), it results that

(3.2) dom σC(s) = dom σC(t) =: D for all s, t ∈ I.

We then see that for every x ∈ D and any s, t ∈ I,

|σC(t)(x)− σC(s)(x)| ≤ ‖x‖ haus(C(s), C(t)) ≤ ‖x‖ |v(t)− v(s)|.

This implies for each x ∈ D that t 7→ σC(t)(x) is absolutely continuous and

(3.3)

∣∣∣∣ ddt σC(t)(x)

∣∣∣∣ ≤ ‖x‖ v̇(t) a.e. t ∈ I.

The proofs of the next lemma and of Theorem 3.2 follow the development
of Moreau [38].

Lemma 3.1. For any absolutely continuous mapping z : I → H the function
g : I → R, defined by g(t) := ϕ(t, z(t)) = (1/2)d2C(t)(z(t)) for all t ∈ I is

absolutely continuous on I and

|ġ(t)− 〈ż(t),∇ϕt(z(t))〉| ≤ v̇(t) dC(t)(z(t)) a.e. t ∈ I.

Proof. By what precedes the lemma the function g is absolutely continuous
on I. On the other hand, by (3.1) we can write for every t ∈ I,

1

2
d2C(t)(z(t)) =

(
1

2
‖ · ‖2�ψC(t)

)
(z(t)) = − inf

x∈H

[
1

2
‖x‖2 + σC(t)(x)− 〈z(t), x〉

]
=

1

2
‖z(t)‖2 − inf

x∈H

[
1

2
‖z(t)− x‖2 + σC(t)(x)

]
,

and by the definition of proxf both latter infima are attained at the unique
point

y(t) := proxσC(t)
(z(t)) = z(t)− projC(t)(z(t)) = ∇ϕt(z(t)),

where the second equality is due to the equality valid for any w ∈ H
proxf (w) + proxf∗(w) = w recalled above. The mapping y(·) being con-
tinuous on I by what precedes the lemma, for each fixed t ∈ I and any real
ε > 0 there exists a real η > 0 such that for any reals r, s ∈ I ∩ [t− η, t+ η]
with r ≤ s and for G(t, ε) := D ∩ B(y(t), ε) (with D as in (3.2)) one has
y(r) ∈ G(t, ε) and y(s) ∈ G(t, ε), hence in particular

g(s) = − inf
x∈G(t,ε)

[
1

2
‖x‖2 + σC(s)(x)− 〈z(s), x〉

]
= sup

x∈G(t,ε)

[
−1

2
‖x‖2 − σC(s)(x) + 〈z(s), x〉

]
along with a similar equality for g(r). We derive that for r, s as above

g(s)− g(r) ≤ sup
x∈G(t,ε)

[
σC(r)(x)− σC(s)(x) + 〈z(s)− z(r), x〉

]
.
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On the other hand, for each x ∈ G(t, ε) we saw that τ 7→ σC(τ)(x) is abso-
lutely continuous on I, so by (3.3) we have for r, s as above

σC(r)(x)− σC(s)(x) = −
∫ s

r

d

dτ
σC(τ)(x) dτ

≤ ‖x‖
∫ s

r
v̇(τ) dτ ≤ (‖y(t)‖+ ε)

∫ s

r
v̇(τ) dτ

along with 〈z(s)− z(r), x− y(t)〉 ≤ ε
∫ s
r ‖ż(τ)‖ dτ . It follows that for r, s as

above∫ s

r
[ġ(τ)− 〈ż(τ), y(t)〉] dτ = g(s)− g(r)− 〈z(s)− z(r), y(t)〉

≤ ‖y(t)‖
∫ s

r
v̇(τ) dτ + ε

∫ s

r
(‖ż(τ)‖+ v̇(τ)) dτ.

This being true for every ε > 0 it readily ensues that for almost every t ∈ I

E(t) := ġ(t)− 〈ż(t), y(t)〉 ≤ ‖y(t)‖ v̇(t).

The above development with s < r also gives for almost every t ∈ I that
−E(t) ≤ ‖y(t)‖ v̇(t), thus |E(t)| ≤ ‖y(t)‖ v̇(t) for almost every t ∈ I, which
finishes the proof. �

Theorem 3.2 (Moreau). Let C : I = [T0, T ] ⇒ H be a multimapping with
nonempty closed convex values and let a ∈ C(T0). Assume that the variation
t 7→ v(t) := var(C; [T0, t]) of C is absolutely continuous on I with v̇ ∈ L2(I).
For each real λ > 0, let uλ be the unique C1-solution of the differential
equation

u̇λ(t) = −∇(
1

2λ
d2C(t))(uλ(t)) with initial condition uλ(T0) = a.

Then, the family (uλ)λ>0 converges uniformly on I as λ ↓ 0 to the absolutely
continuous solution u of the sweeping differential inclusion

u̇(t) ∈ −NC(t)(u(t)) with initial condition u(T0) = a.

Futher, the family of derivatives (u̇λ)λ>0 converges strongly as λ ↓ 0 to u̇ in
L2(I,H).

Proof. Fix for a moment any real λ > 0. Remembering the notation ϕ(t, x) :=
(1/2)d2C(t)(x) and the equality ∇ϕt(x) = x − projC(t)(x) for every (t, x) ∈
I × H, the mapping t 7→ ∇ϕt(x) is continuous on I for each x ∈ H, and
for each t ∈ I the function ∇ϕt(·) is Lipschitz on H. The differential equa-
tion in the statement then has a unique C1 solution uλ, so the equality
u̇λ(t) = −λ−1∇ϕt(uλ(t)) holds for all t ∈ I. To simplify notation put

hλ(t) := ‖∇ϕt(uλ(t))‖ = [2ϕ(t, uλ(t))]1/2 for all t ∈ I. By Lemma 3.1 the
function gλ := (1/2)h2λ is absolutely continuous on I with

|ġλ(t)− 〈u̇λ(t),∇ϕt(uλ(t))〉| ≤ hλ(t) v̇(t) a.e. t ∈ I,
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which (by the equality hλ(t) := ‖∇ϕt(uλ(t))‖ valid for all t ∈ I) is equivalent
to

|ġλ(t) +
1

λ
(hλ(t))2| ≤ hλ(t) v̇(t) a.e. t ∈ I.

Since gλ(T0) = (1/2)d2C(T0)
(a) = 0, the latter inequality entails that

gλ(T ) + λ−1
∫ T

T0

(hλ(t))2 dt ≤
∫ T

T0

hλ(t) v̇(t) dt.

Let us denote ‖·‖L2
H

(resp. ‖·‖L2) the usual norm on L2(H, I) (resp. L2(I)).

The latter inequality and the inequality gλ(T ) ≥ 0 yield λ−1‖hλ‖2L2 ≤
‖hλ‖L2‖v̇‖L2 , which gives

(3.4) ‖hλ‖L2 ≤ λ ‖v̇‖L2 and ‖u̇λ‖L2
H
≤ ‖v̇‖L2 .

Fix any reals µ, ν > 0 and any t ∈ I, and note that

d

dt
(
1

2
‖uµ − uν‖2)(t) = 〈uµ(t)− uν(t), u̇µ(t)− u̇ν(t)〉

= −〈uµ(t)− uν(t),
1

µ
∇ϕt(uµ(t))− 1

ν
∇ϕt(uν(t))〉.(3.5)

On the other hand, the equality uµ(t)−∇ϕt(uµ(t)) = projC(t)(uµ(t)) assures

us that µ−1∇ϕt(uµ(t)) ∈ NC(t) (uµ(t)−∇ϕt(uµ(t))), which entails by the
monotonicity of NC(t)(·) that〈
uµ(t)−∇ϕt(uµ(t))− uν(t) +∇ϕt(uν(t)),

1

µ
∇ϕt(uµ(t))− 1

ν
∇ϕt(uν(t))

〉
≥ 0,

or equivalently〈
uµ(t)− uν(t),

1

µ
∇ϕt(uµ(t))− 1

ν
∇ϕt(uν(t))

〉
≥
〈
∇ϕt(uµ(t))−∇ϕt(uν(t)),

1

µ
∇ϕt(uµ(t))− 1

ν
∇ϕt(uν(t))

〉
.

Combining this with (3.5) and integrating on I we obtain

1

2
‖uµ(T )− uν(T )‖2

≤ −
∫ T

T0

〈
∇ϕt(uµ(t))−∇ϕt(uν(t)),

1

µ
∇ϕt(uµ(t))− 1

ν
∇ϕt(uν(t))

〉
dt.

It follows with the inner product 〈·, ·〉L2
H

in L2(I,H) that

(3.6) 〈µ u̇µ − ν u̇ν , u̇µ − u̇ν〉L2
H
≤ 0.

This combined with the second inequality in (3.4) entails by Lemma 3.3(b)
(with µ � ν if ν ≥ µ in J :=]0,+∞[) that the family (u̇λ)λ>0 converges
strongly in L2(I,H) to some ζ(·) as λ ↓ 0. Defining u : I → H by u(t) :=
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a +
∫ t
T0
ζ(s) ds for all t ∈ I, we see that u(·) is absolutely continuous on I

and u̇ = ζ almost everywhere. Further, writing for any t ∈ I

‖u(t)− uµ(t)‖ =

∥∥∥∥∫ t

T0

(u̇(s)− u̇µ(s)) ds

∥∥∥∥ ≤√T − T0 ‖u̇− u̇µ‖L2
H
,

shows that the family (uλ)λ>0 converges uniformly on I to u as λ ↓ 0.
Now take any sequence (λn)n∈N in ]0,+∞[ tending to 0 and for all n ∈ N

and t ∈ I put wn(t) := uλn(t) and pn(t) := projC(t)(wn(t)), so

wn(t)− pn(t) = ∇ϕt(wn(t)) = −λnẇn(t) and − ẇn(t) ∈ NC(t)(pn(t)),

for all n ∈ N and all t ∈ I. The equality wn−pn = −λn ẇn and the inequality
‖ẇn‖L2

H
≤ ‖v̇‖L2 for all n ∈ N in (3.4) ensure that (pn)n∈N converges strongly

to u in L2(I,H). Then there is a Lebesgue negligible set N ⊂ I such that for
every t ∈ I \N the sequences (pn(t))n∈N and (ẇn(t))n∈N converge strongly
in H to u(t) and u̇(t) respectively, so in particular u(t) ∈ C(t). Fix any
t ∈ I \N and n ∈ N. For any x ∈ C(t) writing 〈−ẇn(t), x − pn(t)〉 ≤ 0 by
the inclusion in −ẇn(t) ∈ NC(t)(pn(t)), and passing to the limit we obtain
〈−u̇(t), x− u(t)〉 ≤ 0. This tells us that −u̇(t) ∈ NC(t)(u(t)), and the proof
is complete. �

We now prove for completeness the result related to (3.6) used in the
proof of Theorem 3.2. This result as well as its proof below are due to M.
G. Crandall and A. Pazy [19, Lemma 2.4].

Lemma 3.3 (Crandall-Pazy [19]). Let X be a real Hilbert space endowed
with an inner product 〈·, ·〉X and its associated norm ‖·‖X . Let (J,�) be
a directed set, (rj)j∈J and (zj)j∈J be nets in ]0,+∞[ and X respectively.
Assume that

〈zj − zi, rjzj − rizi〉X ≥ 0 for all i, j ∈ J.

(a) If the net (rj)j∈J is increasing, then the net (‖zj‖X)j∈J is nonincreasing
and the net (zj)j∈J strongly converges in X.
(b) If the net (rj)j∈J is decreasing and the net (‖zj‖X)j∈J is bounded, then
the net (zj)j∈J srongly converges in X.

Proof. Writing for any i, j ∈ J

0 ≥ 2〈zj − zi, rjzj − rizi〉X = (rj + ri)‖zj − zi‖2X + (rj − ri)(‖zj‖2X −‖zi‖2X),

we derive on the one hand that the net (‖zj‖X)j∈J is nonincreasing (resp.
nondecreasing) whenever the net (rj)j∈J is increasing (resp. decreasing).
On the other hand, we also derive that for any i, j ∈ J

‖zj−zi‖2X ≤
rj − ri
rj + ri

(‖zi‖2X−‖zj‖2X) =
|rj − ri|
rj + ri

| ‖zj‖2X−‖zi‖2X | ≤ | ‖zj‖2X−‖zi‖2X |.

This entails that (zj)j∈J is a Cauchy net in X, since in either (a) or (b) the
net (‖zj‖X)j∈J converges in R. �
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4. Regularization of convex sweeping process under
continuous variation

In this section, we are concerned with the regularization of Moreau’s
sweeping process with bounded variation. Let us first recall the concept of
solutions for such a problem.

Let C : I ⇒ H be an r-prox-regular valued multimapping with r ∈]0,+∞]
and for which there exists a positive Radon measure µ on I := [T0, T ] such
that (2.12) holds for some extended real ρ > 0. Given u0 ∈ C(T0), a mapping
u : I → H is a solution of the measure differential inclusion

(P)

{
−du ∈ N(C(t);u(t))

u(T0) = u0,

whenever:
(a) the mapping u(·) is of bounded variation on I, right-continuous on I and
satisfies u(T0) = u0 and u(t) ∈ C(t) for all t ∈ I;
(b) there exists a positive Radon measure ν on I, absolutely continuously
equivalent to µ and with respect to which the differential measure du of u
is absolutely continuous with du

dν (·) as an L1(I,H, ν)-density and

(4.1)
du

dν
(t) ∈ −N(C(t);u(t)) ν-a.e. t ∈ I.

It is known (see, e.g., [49]) that the concept of solution does not depend on
the measure ν, i.e., a mapping u(·) : I → H satisfying (a) above is a solution
of (P) if and only if (4.1) holds for any positive Radon measure ν which is
absolutely continuously equivalent to µ.

The first existence result for such a differential inclusion is due to J.J.
Moreau and can be stated in the following form.

Theorem 4.1 (Moreau [39]). Let C : I = [T0, T ] ⇒ H be a nonempty closed
convex valued multimapping for which there exists a positive Radon measure
µ on I such that

(4.2) d(y, C(t)) ≤ d(y, C(s)) + µ(]s, t]) for all s, t ∈ I with s ≤ t.
Then, for each u0 ∈ C(T0), the measure differential sweeping process{

−du ∈ N(C(t);u(t))

u(T0) = u0

admits one and only one right-continuous with bounded variation solution.

We derive from the well-posedness of right-continuous bounded variation
Moreau’s sweeping process the following result concerned with selections of
multimappings.

Corollary 4.2. Let τ0, τ1 ∈ R with τ0 < τ1 and let C : [τ0, τ1] ⇒ H be a
multimapping with nonempty closed convex values satisfying (4.2). Then,
for every x0 ∈ C(τ0), there exists a right-continuous with bounded variation
selection φ(·) of C(·) satisfying the initial condition φ(τ0) = x0.
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Although H is possibly infinite-dimensional, (as Theorem 3.2) Theorem
4.1 does not require any compactness assumption on the sets C(t). The proof
of the latter Moreau’s result is no longer based on a regularization technique
but on the so-called Moreau’s catching-up algorithm which consists in a time
discretization (tni )i of I := [T0, T ] setting (with un0 := u0)

uni := projC(tni )
(uni−1).

Many variants, extensions and applications of the latter Moreau’s result
have been developed over the years in various contexts (see, e.g., [31, 23, 32,
1, 27, 49, 28, 43, 52] and the references therein).

Later, in [30], M.D.P. Monteiro Marques showed that a regularization
technique can also be used to handle measure differential inclusions as (P)
in certain situations. Observe that the development of such a regularization
must differ from Section 3 concerning both approaches and hypotheses. In-
deed, it is clear that in the right-continuous bounded variation case, no uni-
form convergence for (uλ(·))λ>0 as λ ↓ 0 to u(·) could be expected (otherwise
the solution mapping u(·) would be continuous). The crucial assumptions
here will be on one hand the continuity of var(C; [T0, ·]) at the endpoint T
of I = [T0, T ] and on the other hand the strongly ball-compact values of the
moving set C(·).

The following result is a partial form of the main result of [30]. Almost all
the proof given below follows the one of M.D.P. Monteiro Marques in [30].
The approach in this section uses essentially Measure Theory arguments.

Theorem 4.3 (Monteiro Marques [30]). Let C : I ⇒ H be a multimapping
with nonempty ball-compact convex values and a ∈ C(T0). Assume that C
has a bounded variation on I and var(C; [T0, ·]) is right-continuous on I and
continuous at T .

Then, for any real λ > 0, the (classical) differential equation over I{
U̇λ(t) = − 1

2λ∇d
2
C(t)(Uλ(t)) a.e. t ∈ I

Uλ(T0) = a

has a unique absolutely continuous solution Uλ(·) on I and the family (Uλ(·))λ>0

converges pointwise on I as λ ↓ 0 to a mapping U : I → H of bounded vari-
ation whose right-continuous envelope u := U+ is the right-continuous with
bounded variation solution of the differential inclusion sweeping process

(4.3)

{
−du ∈ N(C(t);u(t))

u(T0) = a.

Furthermore, the pointwise limit U(·) of (Uλ(·))λ>0 is the left-continuous
envelope of the solution u(·), that is, u(t) = U−(t) for all t ∈ I.

Proof. The uniqueness of right-continuous with bounded variation solution
for (4.3) can be seen as a direct consequence of Theorem 4.1. We also refer
to [49, Proposition 3.16] for a general result of uniqueness of solution of
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this type for perturbed right-continuous bounded variation sweeping process
described by a prox-regular moving set. Let us define v(·) : I → R+ by

v(t) := var(C; [T0, t]) for all t ∈ I = [T0, T ].

We may and do suppose that v([T0, T ]) > 0, otherwise C(t) = C(T0) for all
t ∈ I, and everything is obvious.

Denote by µ := µC the differential measure associated to v(·), hence (see
Section 2) we have

(4.4) haus(C(s), C(t)) ≤ µ(]s, t]) for all s, t ∈ I.

Let (εn)n∈N be a sequence of positive real numbers with εn ↓ 0. Choose for
each integer n ≥ 1, an integer qn ≥ 1 and 0 = Mn

0 < Mn
1 < . . . < Mn

qn =
M =: v(T ) satisfying the two following conditions:
(a) for all j ∈ {0, . . . , qn − 1}, Mn

j+1 −Mn
j ≤ εn ;

(b) for all integer k ≥ 1,
{
Mk

0 , . . . ,M
k
qk

}
⊂
{
Mk+1

0 , . . . ,Mk+1
qk+1

}
.

For each integer n ≥ 1, set Mn
1+qn := M + εn and consider the partition

(Jnj )j∈{0,...,qn−1} of I where for each j ∈ {0, . . . , qn − 1}

Jnj := v−1(
[
Mn
j ,M

n
j+1

[
) = {t ∈ I : Mn

j ≤ v(t) < Mn
j+1}.

Note that (Jmj )0≤j≤qm is a refinement of (Jnj )0≤j≤qn for any integers 1 ≤ n ≤
m. Let n ≥ 1 be an integer. Thanks to the fact that v(·) is nondecreasing
and right-continuous on I, we can check that for each j ∈ {0, . . . qnn−1}, either
Jnj = ∅ or Jnj = [τ, τ ′[ with τ < τ ′. Further, we observe that Jnqn = {T}.
Hence, we have an integer p(n) ≥ 1 and

T0 =: tn0 < . . . < tnp(n) := T

such that for each i ∈ {0, . . . , p(n)− 1}, there is some ji ∈ {0, . . . , qn − 1}
satisfying Jnji =

[
tni , t

n
i+1

[
. Without loss of generality, we will assume that

p(n) > 2 for every integer n ≥ 1. It follows from what precedes that for all
i ∈ {0, · · · , p(n)− 1} and t ∈

[
tni , t

n
i+1

[
, one has

µ(]tni , t]) = v(t)− v(tni ) ≤ εn,

so in particular

(4.5) µ(
]
tni , t

n
i+1

[
) ≤ εn.

Fix for a moment any integer n ≥ 1 and any real λ > 0. Let us consider
the multimapping Dn : I ⇒ H defined by Dn(T ) := C(T ) and by

Dn(t) := C(tni ),

for all t ∈ [tni , t
n
i+1[ where i ∈ {0, · · · , p(n)−1}. Note by (4.4) and (4.5) that

(4.6) hn(t) := haus(Dn(t), C(t)) ≤ εn for all t ∈ I.

Let any b ∈ H. According to [10, Théorème 1.4], we know that there is
one (and only one) absolutely continuous mapping V n

λ,b(·) : I → H (resp.
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Uλ,b(·) : I → H) satisfying

(4.7)

{
V̇ n
λ,b(t) = − 1

2λ∇d
2
Dn(t)

(V n
λ,b(t)) a.e. t ∈ I

V n
λ,b(T0) = b

(resp.

(4.8)

{
U̇λ,b(t) = − 1

2λ∇d
2
C(t)(Uλ,b(t)) a.e. t ∈ I

Uλ,b(T0) = b).

It is known and not difficult to check (see, e.g., the proof of [10, Théorème
1.4]) that for every t ∈ [T0, T ],

(4.9) Uλ,b(t) = e−
t−T0
λ b+

1

λ

∫ t

T0

e
s−t
λ projC(s)(Uλ,b(s))ds

and

(4.10) V n
λ,b(t) = e−

t−T0
λ b+

1

λ

∫ t

T0

e
s−t
λ projDn(s)(V

n
λ,b(s))ds.

Set xni := V n
λ,b(t

n
i ) and yni := projC(tni )

(xni ) for every i ∈ {0, . . . , p(n)}. In

particular, we have b = V n
λ,b(T0) = xn0 . Set also c := yn0 = projC(T0)(b).

The use of any element b ∈ H and the choice of such an element c as above
will be crucial for (4.22) in Lemma 4.8, which is at the heart of the proof
of Lemma 4.11. These lemmas are parts of a series of Lemmas constituting
the elaboration of the rest of the proof of the theorem.

The first of the series of lemmas is devoted to compute V n
λ,b(·) explicitly.

Lemma 4.4. For every i ∈ {0, . . . , p(n)− 1}, for every t ∈ [tni , t
n
i+1[, one

has

V n
λ,b(t) = yni + e−

t−tni
λ (xni − yni ).

Proof. Fix any i ∈ {0, . . . , p(n)− 1}. Recall that Dn(t) = C(tni ) and define
θ : [tni , t

n
i+1[→ H by

θ(t) := yni + e−
t−tni
λ (xni − yni ) for all t ∈ [tni , t

n
i+1[.

It is clear that θ(t) ∈ [xni , y
n
i ] for all t ∈ [tni , t

n
i+1[. This and the definition of

yni ensure that

projDn(t)(θ(t)) = projC(tni )
(θ(t)) = yni .

Then, it is routine to check that θ(·) satisfies (4.7) on [tni , t
n
i+1[. On the

other hand, the restriction of V n
λ,b(·) to [tni , t

n
i+1[ also satisfies the Cauchy

problem (4.7). It follows that θ(·) = V n
λ,b(·) on [tni , t

n
i+1[. The proof is then

complete. �

Our goal is now to establish that (V k
λ,b(·))k≥1 converges to Uλ,b(·) as k →

+∞. A lemma is needed first.
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Lemma 4.5. For every i ∈ {0, . . . , p(n)− 1} and every t ∈ [tni , t
n
i+1[, one

has∥∥∥V n
λ,b(t)− projDn(t)(V

n
λ,b(t))

∥∥∥ ≤ e− t−tn0λ ‖b− c‖+
i∑

j=1

e−
t−tnj
λ µ(]tnj−1, t

n
j ]),

where by convention the latter sum is equal to 0 when i = 0.

Proof. By (finite) induction, let us show that for every i ∈ {1, . . . , p(n)−1},

(4.11) ‖xni − yni ‖ ≤ e−
tni −t

n
0

λ ‖b− c‖+
i∑

j=1

e−
tni −t

n
j

λ µ(]tnj−1, t
n
j ]).

Observe first that for any integer k ∈ {0, . . . , p(n) − 1} the continuity of
V n
λ,b(·) at tnk+1 (as solution of (4.7)) along with Lemma 4.4 ensure that∥∥xnk+1 − ynk

∥∥ = e−
tnk+1−t

n
k

λ ‖xnk − ynk‖ .
It follows that for any k ∈ {1, . . . , p(n) − 1} (keeping in mind that ynk−1 ∈
C(tnk−1))

‖xnk − ynk‖ = dC(tnk )
(xnk) ≤

∥∥xnk − ynk−1∥∥+ dC(tnk )
(ynk−1)

≤ e−
tnk−t

n
k−1
λ

∥∥xnk−1 − ynk−1∥∥+ haus(C(tnk−1), C(tnk))

≤ e−
tnk−t

n
k−1
λ

∥∥xnk−1 − ynk−1∥∥+ µ(]tnk−1, t
n
k ]).(4.12)

A particular case of the latter inequality (4.12) is

‖xn1 − yn1 ‖ ≤ e−
tn1−t

n
0

λ ‖b− c‖+ µ(]T0, t
n
1 ]).

Now, assume that (4.11) holds up to step i ∈ {1, . . . , p(n)−2}. Using (4.12),
we get∥∥xni+1 − yni+1

∥∥ ≤ e− tni+1−t
n
i

λ ‖xni − yni ‖+ µ(]tni , t
n
i+1])

≤ e−
tni+1−t

n
0

λ ‖b− c‖+
i∑

j=1

e−
tni+1−t

n
j

λ µ(]tnj−1, t
n
j ]) + µ(]tni , t

n
i+1])

≤ e−
tni+1−t

n
0

λ ‖b− c‖+

i+1∑
j=1

e−
tni+1−t

n
j

λ µ(]tnj−1, t
n
j ]),

which completes the induction. Now, consider any i ∈ {0, . . . , p(n)− 1} and
t ∈ [tni , t

n
i+1[. Lemma 4.4 says that

V n
λ,b(t) = yni + e−

t−tni
λ (xni − yni ),

in particular V n
λ,b(t) ∈ [xni , y

n
i ]. This and the equalities Dn(t) = C(tni ) and

yni = projC(tni )
(xni ) then give

projDn(t)(V
n
λ,b(t)) = projC(tni )

(V n
λ,b(t)) = yni .
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Consequently, we have∥∥∥V n
λ,b(t)− projDn(t)(V

n
λ,b(t))

∥∥∥ = e−
t−tni
λ ‖xni − yni ‖ .

It remains to put together the latter equality and (4.11) to finish the proof.
�

As a direct consequence of Lemma 4.5, we have for every t ∈ [T0, T [

dDn(t)(V
n
λ,b(t)) =

∥∥∥V n
λ,b(t)− projDn(t)(V

n
λ,b(t))

∥∥∥ ≤ e− t−T0λ ‖b− c‖+ µ(]T0, t])

≤ ‖b− c‖+ µ(]T0, T ]) =: M1.

Hence, for every t ∈ [T0, T [,

dDn(T )(V
n
λ,b(T )) ≤

∥∥V n
λ,b(t)− V n

λ,b(T )
∥∥+ haus(Dn(t), Dn(T )) + dDn(t)(V

n
λ,b(t))

≤
∥∥V n

λ,b(t)− V n
λ,b(T )

∥∥+ µ(]t, T ]) +M1

Using µ({T}) = 0 (thanks to the continuity of var(C; [T0, ·]) at T ) and the
continuity of V n

λ,b(·) at T and letting t ↑ T , we obtain dDn(T )(V
n
λ,b(T )) ≤M1.

We then have

(4.13) dDn(t)(V
n
λ,b(t)) ≤M1 for all t ∈ I.

Keeping in mind that Uλ(·) is absolutely continuous on I (hence bounded)
it is straightforward to check that∥∥∥Uλ,b(t)− projC(t)(Uλ,b(t))

∥∥∥ = dC(t)(Uλ,b(t))

≤
∥∥∥Uλ,b(t)− projC(t)(c)

∥∥∥
≤ ‖Uλ,b(t)− c‖+ dC(t)(c)

≤ sup
t∈[T0,T ]

(
‖Uλ,b(t)‖+ ‖c‖+ haus(C(T0), C(t))

)
≤ sup

t∈[T0,T ]
‖Uλ,b(t)‖+ ‖c‖+ µ(]T0, T ]) := M2(λ).(4.14)

The next lemma proves the desired convergence of (V k
λ,b(·))k≥1 to Uλ,b(·).

Lemma 4.6. The following hold.
(a) One has the estimate

sup
t∈I

∥∥V n
λ,b(t)− Uλ,b(t)

∥∥ ≤√2(M1 +M2(λ))
(
1 +

T − T0
λ

)√
εn.

In particular, for every real λ > 0, the sequence (V k
λ,b

(·))k≥1 converges uni-

formly to Uλ,b(·) on I as k → +∞.

(b) One has the strong convergence

lim
k→+∞

projDk(t)(V
k
λ,b(t)) = projC(t)(Uλ,b(t)) for every t ∈ I.
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Proof. Fix any t ∈ I. Set φn(τ) :=
∥∥∥V n

λ,b(τ)− Uλ,b(τ)
∥∥∥ and ψn(τ) :=

1
λ

∫ τ
T0
e
s−τ
λ φn(s)ds for every τ ∈ I. Set also L :=

√
2(M1 +M2(λ)) and

K := L
√
εn. Applying Lemma 2.5 and using (4.6), (4.13) and (4.14), we

obtain∥∥∥projDn(t)(V
n
λ,b(t))− projC(t)(Uλ,b(t))

∥∥∥2 ≤ ∥∥V n
λ,b(t)− Uλ,b(t)

∥∥2
+ 2hn

(
dDn(t)(V

n
λ,b(t)) + dC(t)(Uλ,b(t))

)
≤ φn(t)2 + L2εn.(4.15)

According to (4.9) and (4.10), we also have

φn(t) ≤ 1

λ

∫ t

T0

e
s−t
λ

∥∥∥projDn(s)(V
n
λ,b(s))− projC(s)(Uλ,b(s))

∥∥∥ ds,
and then by virtue of (4.15)

φn(t) ≤ 1

λ

∫ t

T0

e
s−t
λ

√
φn(s)2 + L2εn ds.

It follows that

(4.16) φn(t) ≤ L
√
εn(1− e

T0−t
λ ) + ψn(t) ≤ K + ψn(t),

which yields

ψ̇n(t) =
1

λ
(φn(t)− ψn(t)) ≤ K

λ
.

Since t ∈ I is arbitrary in I, the latter inequality gives (thanks to ψn(T0) =
0)

ψn(t) =

∫ t

T0

ψ̇n(τ) dτ =

∫ t

T0

1

λ
(φn(τ)− ψn(τ)) dτ ≤

∫ T

T0

K

λ
dτ =

K

λ
(T − T0).

Using (4.16), this allows us to write

φn(t) ≤ K

λ
(T − T0) +K = K(1 +

T − T0
λ

),

and this is the inequality claimed by (a). The assertion (b) is a direct
consequence of (a), the inequality (4.15) and εn ↓ 0. �

Let us give an estimate on dC(t)(Uλ,b(t)) which will be used in Lemma 4.8
and in Lemma 4.9.

Lemma 4.7. For every t ∈ I, one has∥∥∥Uλ,b(t)− projC(t)(Uλ,b(t))
∥∥∥ ≤ e− t−T0λ ‖b− c‖+

∫
]T0,t]

e
s−t
λ dµ(s)

≤ ‖b− c‖+ µ(]T0, t]).
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Proof. Fix any t ∈ I = [T0, T ]. Assume first that t < T . If t = T0,
the desired inequalities are obvious, so assume that t > T0. Let i ∈
{0, . . . , p(n)− 1} be such that t ∈ [tni , t

n
i+1[. According to Lemma 4.6, we

have

lim
k→+∞

∥∥∥V k
λ,b(t)− projC(t)(V

k
λ,b(t))

∥∥∥ =
∥∥∥Uλ,b(t)− projC(t)(Uλ,b(t))

∥∥∥ ,
and

(4.17) lim
k→+∞

∥∥∥V k
λ,b(t)− projDk(t)(V

k
λ,b(t))

∥∥∥ =
∥∥∥Uλ,b(t)− projC(t)(Uλ,b(t))

∥∥∥ .
Now, let us define Πn :]T0, t]→ R by

Πn(s) :=

p(n)∑
j=1

e
tnj −t
λ 1]tnj−1,t

n
j ]

(s) for all s ∈]T0, t]

and observe that (since t ∈ [tni , t
n
i+1[)

(4.18)

∫
]T0,t]

Πn(s)dµ(s) =
i∑

j=1

e
tnj −t
λ µ(]tnj−1, t

n
j ]) + e

tni+1−t
λ µ(]tni , t]).

along with by (4.5)

(4.19) e
tni+1−t
λ µ(]tni , t]) ≤ e

T−t
λ µ(]tni , t]) ≤ e

T−t
λ εn.

On the other hand, note that for every s ∈]T0, t]

lim
k→+∞

Πk(s) = e
s−t
λ and |Πn(s)| ≤ e

T−t
λ .

Hence, we may write

(4.20) lim
k→+∞

∫
]T0,t]

Πk(s)dµ(s) =

∫
]T0,t]

e
s−t
λ dµ(s).

Coming back to the inequality provided by Lemma 4.5 and using (4.17),
(4.18), (4.19) and (4.20), we arrive to the first desired inequality on [T0, T [.
Now, assume that t = T . By virtue of what precedes, we have shown in
particular

(4.21)
∥∥∥Uλ,b(τ)− projC(τ)(Uλ,b(τ))

∥∥∥ ≤ e− τ−T0λ ‖b− c‖+

∫
]T0,T ]

e
s−τ
λ dµ(s),

for all τ ∈ [T0, T [. From the equality µ({T}) = 0 and from the inequality
valid for all τ ∈ [T0, T [,∣∣dC(τ)(Uλ,b(τ))− dC(T )(Uλ,b(T ))

∣∣ ≤ ‖Uλ,b(τ)− Uλ,b(T )‖+ haus(C(τ), C(T ))

≤ ‖Uλ,b(τ)− Uλ,b(T )‖+ µ(]τ, T ])

we see that dC(t)(Uλ,b(τ))→ dC(T )(Uλ,b(T )) as τ ↑ T . On the other hand, the

Lebesgue dominated convergence theorem yields that
∫
]T0,T ]

e
s−τ
λ dµ(s) →
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]T0,T ]

e
s−T
λ dµ(s) as τ ↑ T . It remains to let τ ↑ T in (4.21) to complete the

proof of the first inequality. The second is a direct consequence of∫
]T0,τ ]

e
s−τ
λ dµ(s) ≤

∫
]T0,τ ]

dµ(s) = µ(]T0, τ ]) for all τ ∈ I.

�

Through the above lemma we can control uniformly (with respect to λ)
the variation of Uλ,b(·) as follows.

Lemma 4.8. The following estimate holds∫ T

T0

∥∥∥U̇λ,b(τ)
∥∥∥ dτ ≤ ‖b− c‖+ µ(]T0, T ]).

More generally, for every T0 ≤ s ≤ t ≤ T , one has

(4.22)

∫ t

s

∥∥∥U̇λ,b(τ)
∥∥∥ dτ ≤ ∥∥∥Uλ,b(s)− projC(s)(Uλ,b(s))

∥∥∥+ µ(]s, t]).

Proof. Let us first write thanks to (4.8) and Lemma 4.7∫ T

T0

∥∥∥U̇λ,b(t)∥∥∥ dt ≤ 1

λ

∫ T

T0

(e−
t−T0
λ ‖b− c‖+

∫
]T0,t]

e
s−t
λ dµ(s))dt.

Some elementary computations give

1

λ

∫ T

T0

e−
t−T0
λ ‖b− c‖ dt ≤ ‖b− c‖

and

1

λ

∫ T

T0

∫
]T0,t]

e
s−t
λ dµ(s)dt =

1

λ

∫ T

T0

∫
]T0,T ]

1]T0,t](s)e
s−t
λ dµ(s)dt

=
1

λ

∫
]T0,T ]

∫ T

T0

1]T0,t](s)e
s−t
λ dtdµ(s)

=
1

λ

∫
]T0,T ]

∫ T

s
e
s−t
λ dtdµ(s)

=

∫
]T0,T ]

(1− e
s−T
λ )dµ(s) ≤ µ(]T0, T ]).

The first desired inequality then follows. Now, consider any T0 ≤ s ≤ t ≤ T .
The restriction of Uλ,b(·) to [s, t] is the (unique) solution of the Cauchy
problem {

ξ̇(τ) = − 1
2λ∇d

2
C(τ)(ξ(τ)) a.e. τ ∈ [s, t]

ξ(s) = Uλ,b(s).

Hence, we can apply the above study to get∫ t

s

∥∥∥U̇λ,b(τ)
∥∥∥ dτ ≤ ∥∥∥Uλ,b(s)− projC(s)(Uλ,b(s))

∥∥∥+ µ(]s, t]).
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The proof is then complete. �

From now on, we assume that b = a ∈ C(T0) (in particular, note that
c := projC(T0)(b) = a) and we set Uλ(·) := Uλ,b(·) for every real λ > 0.

Consider any sequence (λn)n≥1 of positive reals with λn ↓ 0. Lemma 4.8
entails in particular that (Uλn(·))n≥1 is uniformly bounded in norm and in
variation. Indeed, keeping in mind that Uλn(T0) = a for every integer n ≥ 1,
we first observe that

(4.23) ‖Uλn(t)‖ ≤ ‖a‖+ µ(]T0, T ]) =: M for all n ∈ N.

To see that the variation of Uλn(·) (with n ∈ N) is uniformly bounded, it
suffices to consider any subdivision σ := (τ0, . . . , τp) of I = [T0, T ] (where
p ≥ 1 is an integer) and to write

p−1∑
j=0

‖Uλn(τj+1)− Uλn(τj)‖ ≤
p−1∑
j=0

∫ τj+1

τj

∥∥∥U̇λn(t)
∥∥∥ dt

≤
∫ T

T0

∥∥∥U̇λn(t)
∥∥∥ dt ≤ µ(]T0, T ]).

Consequently, we have

var(Uλn ; [T0, T ]) ≤ µ(]T0, T ]) for all n ∈ N.

Applying Theorem 2.4, we may suppose without loss of generality that there
is a mapping U(·) : I → H with bounded variation such that

(4.24) Uλn(t)
w→ U(t) for all t ∈ I.

The latter weak pointwise convergence combined with the weak lower semi-
continuity of ‖·‖ entails through (4.23)

(4.25) ‖U(t)‖ ≤M for all t ∈ I.

We are going to highlight certain properties of U(·) and its right-continuous
envelope U+(·).

Lemma 4.9. Assume that the function var(C; [T0, ·]) is continuous at some
point t ∈ [T0, T ]. Then, one has U(t) ∈ C(t) ∩MB as well as the equalities

lim
λ↓0

∥∥∥Uλ(t)− projC(t)(Uλ(t))
∥∥∥ = 0 and lim

n→+∞

∥∥Uλn(t)− U(t)
∥∥ = 0.

Proof. If t = T0, there is nothing to establish since a ∈ C(T0). Then, suppose
that t > T0. Since t is a continuity point of v(·), it is clear that µ({t}) = 0.
This and the first inequality of Lemma 4.7 furnish for every real λ > 0∥∥∥Uλ(t)− projC(t)(Uλ(t))

∥∥∥ ≤ ∫
]T0,t[

e
s−t
λ dµ(s).
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Then, it suffices to apply Lebesgue dominated convergence theorem to justify
the first claimed equality. Now let us write for any integer n ≥ 1 and h ∈ H∣∣〈pn(t), h

〉
−
〈
U(t), h

〉∣∣ ≤ ∣∣〈pn(t)− Uλn(t), h
〉∣∣+

∣∣〈Uλn(t)− U(t), h
〉∣∣

≤
∥∥pn(t)− Uλn(t)

∥∥ ‖h‖+
∣∣〈Uλn(t)− U(t), h

〉∣∣ ,
where pn(t) := projC(t)(Uλn(t)). Hence, we have pn(t)

w→ U(t). This con-

vergence property, the inequality (4.25) and the fact that (pn(t))n≥1 is a
sequence of the (weakly) closed convex C(t) give

U(t) ∈ C(t) ∩MB.

Thanks to our ball-compactness assumption, we know that C(t) ∩MB is

(strongly) compact, so the weak convergence pn(t)
w→ U(t) holds for the

strong topology, i.e., pn(t) → U(t). It remains to combine this with the
strong convergence pn(t) − Uλn(t) → 0 established above to complete the
proof. �

Through a density argument, the latter lemma entails the following one.

Lemma 4.10. For every t ∈ I, one has

U+(t) ∈ C(t).

Proof. By continuity of v(·) := var(C; [T0, ·]) at T by assumption, Lemma 4.9
gives U(T ) ∈ C(T ), or equivalently U+(T ) ∈ C(T ). Now fix any t ∈ [T0, T [.
By virtue of the fact that the function v(·) is continuous on a dense set of
[T0, T ], we can choose a sequence (tn)n∈N of [T0, T [ such that tn ↓ t with
v(·) continuous at tn for every n ∈ N. Using Lemma 4.9, we know that
U(tn) ∈ C(tn) for every n ∈ N, so

dC(t)(U(tn)) ≤ haus(C(tn), C(t)) ≤ µ(]t, tn]) for all n ∈ N.

Passing to the limit yields

dC(t)(U
+(t)) = lim

n→+∞
dC(t)(U(tn)) ≤ lim

n→+∞
µ(]t, tn]) = 0.

It remains to invoke the closedness property of C(t) to obtain the desired
inclusion. �

We control now the variation of the mapping U+(·).

Lemma 4.11. For every T0 ≤ s ≤ t ≤ T , the inequality∥∥U+(t)− U+(s)
∥∥ ≤ µ(]s, t])

holds, so the measures dU+ as well as |dU+| are absolutely continuous with
respect to µ.

Further, at every τ ∈ [T0, T ] where var(C; [T0, ·]) is continuous one has

U+(τ) = U(τ).
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Proof. Let any T0 ≤ s ≤ t ≤ T . If s = t, the inequality is trivial, so assume
that s < t. Choose two sequences (sk)k∈N and (tk)k∈N with

s ≤ sk < t ≤ tk
along with the convergences tk → t and sk → s and such that v(·) is con-
tinuous at each tk and sk for all k ∈ N. Fix for a moment any k ∈ N. By
Lemma 4.8, we have for all n ∈ N,

‖Uλn(tk)− Uλn(sk)‖ ≤
∥∥∥Uλn(sk)− projC(sk)

(Uλn(sk))
∥∥∥+ µ(]sk, tk]).

Hence, letting n→ +∞ (see Lemma 4.9)

‖U(tk)− U(sk)‖ ≤ µ(]sk, tk]).

Passing to the limit as k → +∞ gives the desired inequality, that is

(4.26)
∥∥U+(t)− U+(s)

∥∥ ≤ µ(]s, t]).

Now, assume that v(·) is continuous at τ ∈ [T0, T ]. We may assume that
τ < T . Let a sequence (τk)k∈N of ]τ, T ] with τk ↓ τ and such that v(·) is
continuous at each τk for all k ∈ N. Following the development above, we
may write

‖U(τk)− U(τ)‖ ≤ µ(]τ, τk]) for all k ∈ N.
Letting k → +∞ yields ‖U+(τ)− U(τ)‖ ≤ 0, i.e.,

U+(τ) = U(τ).

Since v(·) := var(C; [T0, ·]) is continuous at the left end-point T0 by its right
continuity assumption, we obtain in particular that U+(T0) = U(T0). This
and (4.26) give that ‖dU+([s, t])‖ ≤ µ([s, t]) for all s, t ∈ [T0, T ] with s ≤ t.
It results that both measures dU+ and |dU+| are absolutely continuous with
respect to µ, and the proof is complete. �

As seen in the above proof of Lemma 4.11 we note that

(4.27) U+(T0) = U(T0) = a,

that is, U(·) is continuous at the left end-point T0.

Lemma 4.12. One has the following equalities

U−(t) = U(t) and lim
n→+∞

‖Uλn(t)− U(t)‖ = 0 for all t ∈ I.

Proof. Fix any t ∈ I. By virtue of (4.24), it suffices to show that

lim
n→+∞

∥∥Uλn(t)− U−(t)
∥∥ = 0.

If t = T0, there is nothing to prove since U−(T0) = U(T0) and

Uλn(T0) = U(T0) for all n ≥ 1.

So, assume that t ∈]T0, T ]. Let any real ε > 0. Choose any s ∈]T0, t[ such
that v(·) is continuous at s and satisfying

(4.28) µ(]s, t[) ≤ ε

4
.
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By virtue of Lemma 4.9, pick any integer N ≥ 1 with

(4.29) ‖Uλn(s)− U(s)‖ ≤ ε

4
and

∥∥∥Uλn(s)− projC(s)(Uλn(s))
∥∥∥ ≤ ε

4

for all integer n ≥ N . Let any integer n ≥ N and any real t′ ∈ [s, t[. By
Lemma 4.8, we see that∥∥Uλn(t′)− Uλn(s)

∥∥ ≤ ∥∥∥Uλn(s)− projC(s)(Uλn(s))
∥∥∥+ µ(]s, t′])

≤ ε

4
+ µ(]s, t[) ≤ ε

2
.

Combining the latter inequality with (4.29), Lemma 4.11 and (4.28)∥∥Uλn(t′)− U+(t′)
∥∥ ≤ ∥∥Uλn(t′)− Uλn(s)

∥∥
+
∥∥Uλn(s)− U+(s)

∥∥+
∥∥U+(s)− U+(t′)

∥∥
≤ ε

2
+
ε

4
+ µ(]s, t′])

≤ 3ε

4
+ µ(]s, t[) ≤ ε.

Letting t′ ↑ t yields ∥∥Uλn(t)− U−(t)
∥∥ ≤ ε.

Consequently, we have lim
n→+∞

Uλn(t) = U−(t) and the proof is complete. �

With the above result at hand and the inclusion U+(t) ∈ C(t) for every
t ∈ I, we can derive that U+(t) is the metric projection of U(t) onto C(t)
for every t ∈ I.

Lemma 4.13. For every t ∈ I, one has

U+(t) = projC(t)(U(t)).

Proof. Let t ∈ I. If t = T , there is nothing to prove according to the
inclusion provided by Lemma 4.10 and the convention U+(T ) := U(T ). So,
assume that t < T . Let t′ ∈ [T0, T [ with t′ > t. From Lemma 4.8, we have
for every integer n ≥ 1,∥∥Uλn(t′)− Uλn(t)

∥∥ ≤ dC(t)(Uλn(t)) + µ(]t, t′]).

Taking the limit as n→ +∞ (thanks to Lemma 4.12) gives∥∥U(t′)− U(t)
∥∥ ≤ dC(t)(U(t)) + µ(]t, t′])

and letting t′ ↓ t yields to∥∥U+(t)− U(t)
∥∥ ≤ dC(t)(U(t)).

Putting the latter inequality and Lemma 4.10 together ensures the equality

U+(t) = projC(t)(U(t)).

�
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In order to show that U+(·) is the solution of the Moreau’s sweeping
process (4.3) with initial condition U+(T0) = a, the following lemma is
needed.

Lemma 4.14. Let t1, t2 ∈ I with t1 < t2, φ : [t1, t2] → H be a right-
continuous with bounded variation selection of C(·). Then, one has∫

[t1,t2[

〈
φ(τ),

dU

|dU |
(τ)

〉
|dU | (τ) ≥ 1

2
(‖U(t2)‖2 − ‖U(t1)‖2).

Proof. Fix any integer n ≥ 1 and set pn(·) := projC(·)(Uλn(·)). Since Uλn(·)
satisfies the Cauchy problem (4.8), we have

U̇λn(t) =
1

λn
(pn(t)− Uλn(t)) a.e. t ∈ I.

From (2.1) we see that for almost every t ∈ I

−U̇λn(t) =
1

λn

(
Uλn(t)− projC(t)(Uλn(t))

)
∈ N

(
C(t); projC(t)(Uλn(t))

)
,

hence in particular (see (2.3))〈
U̇λn(t), φ(t)− projC(t)(Uλn(t))

〉
≥ 0 a.e. t ∈ I.

We derive from this

(4.30)

∫
[t1,t2[

〈
U̇λn(s), φ(s)

〉
ds ≥

∫
[t1,t2[

〈
U̇λn(s), pn(s)

〉
ds.

On the other hand, it is clear that for almost every t ∈ I,〈
pn(t), U̇λn(t)

〉
=

〈
pn(t)− Uλn(t),

1

λn
(pn(t)− Uλn(t))

〉
+
〈
Uλn(t), U̇λn(t)

〉
,

so 〈
pn(t), U̇λn(t)

〉
≥
〈
Uλn(t), U̇λn(t)

〉
.

Putting the latter inequality and (4.30) together, we arrive to∫
[t1,t2[

〈
U̇λn(s), φ(s)

〉
ds ≥

∫
[t1,t2[

〈
Uλn(s), U̇λn(s)

〉
ds =

1

2
(‖Uλn(t2)‖2−‖Uλn(t1)‖2).

Since Uλn is absolutely continuous, we know by (2.10) that∫
[t1,t2[

〈
U̇λn(s), φ(s)

〉
ds =

∫
[t1,t2[

〈
dUλn
|dUλn |

(s), φ(s)

〉
|dUλn |(s).

Further, Lemma 4.12 tells us that U(·) is left-continuous and Uλn(t)→ U(t)
for all t ∈ I. Then, we may apply Proposition 2.3 to obtain the desired
inequality of the lemma. �

We arrive now to the last one of the series of lemmas justifying Theorem
4.3.
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Lemma 4.15. The mapping U+(·) : I → H is the right-continuous solution
with bounded variation of the Moreau sweeping process{

−dU+ ∈ N(C(t);U+(t))

U+(T0) = a.

Proof. The right-continuous mapping U+(·) satisfies the equality U+(T0) =
a by (4.27). Further, it is of bounded variation on I with U+(t) ∈ C(t) for
every t ∈ I (see Lemma 4.11 and Lemma 4.10) and dU+ is also absolutely
continuous with respect to µ according to Lemma 4.11. It remains to show

−dU
+

dµ
(t) ∈ N(C(t);U+(t)) µ-a.e. t ∈ I.

By (2.8) we observe that dU+ = dU since U+(T0) = U(T0) by (4.27). Put
A1 := {τ ∈ I : µ({τ}) > 0}. For any t ∈ A1, we observe that

−dU
+

dµ
(t) = −U

+(t)− U−(t)

µ({t})
=
U(t)− projC(t)(U(t))

µ({t})
,

thanks to Moreau-Valadier’s equality (2.9) and to Lemma 4.12 and to Lemma
4.13. Hence, it remains to apply (2.1) and Lemma 4.13 to obtain

−dU
+

dµ
(t) ∈ N(C(t); projC(t)(U(t))) = N(C(t);U+(t)).

Now denote by A0 the set of τ ∈ [T0, T [ with µ({τ}) = 0 such that dU+

dµ (τ)

exists and (2.9) holds true. Lemma 4.11 ensures that the mapping U+(·) is
continuous at every τ ∈ A0 since µ({τ}) = 0 for any τ ∈ A0. This and (2.7)
give in particular for any τ ∈ A0 with τ 6= T0 that U+(τ) = (U+)−(τ) =
U−(τ), so U+(τ) = U(τ) since U is left-continuous (see Lemma 4.12). It
ensues that

(4.31) U+(τ) = U(τ) for all τ ∈ A0,

since U+(T0) = U(T0) by (4.27) as already said above. Fix any t ∈ A0. Let
(ηn)n≥1 be a sequence of ]0, T − t] with ηn ↓ 0 such that U(·) is continuous
at each t+ ηn with n ≥ 1. Fix any x ∈ C(t) and (see Corollary 4.2) pick a
right-continuous with bounded variation selection φ(·) : [t, T ] → H of C(·)
with φ(t) = x. Let any integer n ≥ 1. Applying Lemma 4.14 gives∫
[t,t+ηn[

〈
φ(τ),

dU

|dU |
(τ)

〉
|dU | (τ) ≥ 1

2
(‖U(t+ ηn)‖2 − ‖U(t)‖2)

=
1

2
〈U(t+ ηn) + U(t), U(t+ ηn)− U(t)〉 .

Since U(·) is left-continuous at t (by Lemma 4.12) and continuous at t+ ηn,
we have

dU+([t, t+ ηn[) = dU([t, t+ ηn[) = U(t+ ηn)− U(t) = dU+([t, t+ ηn]).
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Hence writing φ(·) = x− (x− φ(·)), we obtain〈
x, dU+[t, t+ ηn]

〉
≥ 1

2

〈
U(t+ ηn) + U(t), dU+[t, t+ ηn]

〉
+

∫
[t,t+ηn[

〈
x− φ(τ),

dU+

|dU+|
(τ)

〉 ∣∣dU+
∣∣ (τ).(4.32)

If for infinitely many n ∈ N we have µ([t, t+ ηn]) = 0, Lemma 4.11 tells us

that dU+([t, t+ ηn]) = 0 for such integers n, hence dU+

dµ (t) = 0 according to

the convention 0
0 = 0 in (2.6), so −dU+

dµ (t) ∈ N(C(t);U+(t)). Suppose that

µ([t, t + ηn]) > 0 for large n, say for n ≥ n0. By Lemma 4.11 and by the
equality φ(t) = x, for any n ≥ n0 with δn := sup

t′∈[t,t+ηn]
‖φ(t)−φ(t′)‖ we have

1

µ([t, t+ ηn])

∣∣∣∣∣
∫
[t,t+ηn[

〈
x− φ(τ),

dU+

|dU+|
(τ)

〉 ∣∣dU+
∣∣ (τ)

∣∣∣∣∣ ≤ δn.
Clearly, by the right-continuity of φ at t we have δn → 0 as n → +∞.
Dividing both members of (4.32) by µ([t, t+ ηn]) and making n→ +∞ give〈
x− 1

2(U+(t) + U(t)), dU
+

dµ (t)
〉
≥ 0, or equivalently by (4.31)〈

x− U+(t),
dU+

dµ
(t)

〉
≥ 0.

Since x ∈ C(t) is arbitrary, this means (see (2.3)) that

−dU
+

dµ
(t) ∈ N(C(t);U+(t)).

Finally, noting that T ∈ A1 when µ({T}) > 0, we see that µ(I \ (A1 ∪
A0)) = 0 if either µ({T}) > 0 or µ({T}) = 0. This finishes the proof of the
lemma. �

The proof of Theorem 4.3 is then achieved. �

Remark 4.16. It is clear (see Lemma 4.9) that we can replace the ball-
compactness assumption on the moving set C(·) by the compactness of each
C(t) ∩MB (with t ∈ I) where M := ‖a‖+ µ(]T0, T ]). �

Remark 4.17. Besides the pointwise convergence of (Uλ(·))λ>0 as λ ↓ 0 to
U−(·), it is known that the family of projections

(
projC(·)(Uλ(·)

)
λ>0

con-

verges uniformly to U+(·) as λ ↓ 0. It should be noted that (Uλ(·))λ>0 also
converges in the sense of filled-in graphs to U+(·) as λ ↓ 0. The definition of
such a graph convergence and the above mentioned results can be found in
the paper [30] or in the monograph [31, Theorem 5.1] by M.D.P. Monteiro
Marques. �
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5. Regularization under prox-regularity and Lipschitz
continuity

The regularization of nonconvex sweeping process began with Thibault’s
paper [48] under the prox-regularity of the sets C(t) and the Lipschitz con-
tinuity of the multimapping C : I ⇒ H. The main theorem in [48] can be
stated as follows. Recall that for any a ∈ H, one sets B(a, r) := H =: B[a, r]
whenever r = +∞.

Theorem 5.1 (Thibault, [48]). Let C : [T0, T ] = I ⇒ H be a multimapping
whose values are r-prox-regular for some extended real r ∈]0,+∞] and let
a ∈ C(T0). Assume that this multimapping is Lipschitz continuous in the
sense that there exists a real κ ≥ 0 such that

(5.1) haus(C(s), C(t)) ≤ κ|s− t| for all s, t ∈ I.

Let θ be a positive real number such that θ < r/(3κ).
Then, for any λ ∈]0, κ−1r[, the (classical) differential equation over [T0, T0+

θ]×B(a, r3) {
u̇λ(t) = − 1

2λ∇d
2
C(t)(uλ(t))

uλ(T0) = a

is well defined and has a unique solution uλ(·) on [T0, T0 +θ], and the family
(uλ(·))0<λ<κ−1r converges uniformly on [T0, T0 + θ] as λ ↓ 0 to a solution of
the differential inclusion sweeping process −u̇(t) ∈ N(C(t);u(t)) a.e. t ∈ I

u(t) ∈ C(t) for all t ∈ I
u(T0) = a ∈ C(T0).

M. Sene and L. Thibault considered later in [46] the situation when an
external force is present through a mapping f depending both on time and
on state. They showed under the prox-regularity of the sets C(t) and the
Lipschitz continuity of the multimapping C(·) that a regularization process
can also be provided for the dynamical system

(5.2)

 −u̇(t) ∈ N(C(t);u(t)) + f(t, u(t)) a.e. t ∈ I
u(t) ∈ C(t) for all t ∈ I
u(T0) = a ∈ C(T0),

whenever the mapping f(t, ·) is Lipschitz continuous and bounded. Their
extension of Theorem 5.1 to such a situation is the following.

Theorem 5.2 (Sene-Thibault, [46]). Let C : I = [T0, T ] ⇒ H be a mul-
timapping with r-prox-regular values for some r ∈]0,+∞] which is Lipschitz
continuous in the sense that there exists a real κ ≥ 0 such that

(5.3) haus(C(s), C(t)) ≤ κ|s− t| for all t ∈ I.

Let a ∈ C(T0) and let f : I × B(a, r/3) → H be a mapping which is
Bochner measurable with respect to t ∈ I and such that:
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(i) there exists a real β > 0 such that

‖f(t, x)‖ ≤ β for all t ∈ I and x ∈ B(a, r/3);

(ii) there exists k ∈ R+ such that for all t ∈ I and for all x, y ∈ B(a, r/3),

||f(t, x)− f(t, y)|| ≤ k||x− y||.

Let θ be a positive real number such that θ < r
3(2β+κ) and let the extended

real λr := r/(β + κ).
Under the above assumptions, for any λ ∈]0, λr[, the differential equation

over [T0, T0 + θ]×B(a, r/3){
u̇λ(t) = − 1

2λ∇d
2
C(t)(uλ(t))− f(t, uλ(t))

uλ(T0) = a

is well defined and has a unique solution uλ on [T0, T0 + θ], and the family
(uλ)0<λ<λr converges uniformly on [T0, T0 + θ] as λ ↓ 0 to a solution of the
dynamical differential inclusion −u̇(t) ∈ N(C(t);u(t)) + f(t, u(t)) a.e. t ∈ I

u(t) ∈ C(t) for all t ∈ I
u(T0) = a ∈ C(T0),

Further, this solution stays in B(a, r/3) and the solution inside this ball is
unique.

If the mapping f is defined on I × H and satisfies the assumptions (i)
and (ii) for all t ∈ I and x, y ∈ H, then dividing I = [T0, T ] into a finite
number of intervals with length less than or equal to θ yields the existence
of a unique solution u(·) of the above differential inclusion over I. Further,
one has

‖u̇(t)‖ ≤ 2β + κ a.e. t ∈ I.

6. Regularization under prox-regularity and bounded
truncated variation

As mentioned by A.A. Tolstonogov [50], there are some practical situa-
tions where an unbounded moving set does not fulfill the control (5.1)-(5.3).
Roughly speaking, a possible and efficient way to relax such an assumption
consists in replacing the classical Hausdorff-Pompeiu distance haus(·, ·) by

the truncated one ĥausρ(·, ·). It is worth pointing out that only very few
studies in that direction have been achieved. We refer to [50, 18, 2] for the
convex setting and to [49] for the prox-regular one. Except [50] each of these
papers makes a great use of the famous Moreau’s catching-up algorithm.

The aim of this section is to show how the family of solutions of suitable
regularizations of the sweeping differential inclusion of (5.2) converges to
the solution of this differential inclusion when C(t) is a prox-regular moving
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set of the general Hilbert space H with the bounded truncated variation
assumption

ĥausρ(C(s), C(t)) := sup
x∈ρB

|d(x,C(s))− d(x,C(t))| ≤ |v(t)− v(s)| ,

where v(·) is a Lipschitz continuous mapping. The main difference with the

previous section is that here the truncated Hausdorff distance ĥausρ(C(s), C(t))
is involved instead of the usual Hausdorff-Pompeiu distance haus(C(s), C(t)).
The convergence under the significantly weakened truncated Lipschitz vari-
ation assumption is the challenge of the section.

Let us start with the following crucial lemma which is in the line of Lemma
2.5. It ensures that for a given prox-regular moving set C(t) ⊂ H the
mapping t 7→ projC(t)(x) is continuous at t ∈ I for x sufficiently close to

C(t) with t near t. It is an adaptation of the proof of [5, Theorem 2] (see
also [44, Theorem 2]).

Lemma 6.1. Let S1, S2 be r-prox-regular subsets of H with r ∈]0,+∞[,
γ ∈]0, 1[, ρ ∈]0,+∞[, x ∈ ρB ∩ Urγ(S1) ∩ Urγ(S2). If hausrγ+ρ(S1, S2) ≤ r,
then one has∥∥projS1

(x)− projS2
(x)
∥∥ ≤ ( 2γr

1− γ
hausrγ+ρ(S1, S2)

)1/2

.

Proof. Set s := rγ+ρ and h := hauss(S1, S2). Assume that h ≤ r. For each
i ∈ {1, 2}, ProjSi(x) is reduced to a singleton {xi} (thanks to x ∈ Urγ(Si)
and the fact that Si is r-prox-regular). Observe that

‖x2‖ ≤ ‖x2 − x‖+ ‖x‖ = dS2(x) + ‖x‖ < rγ + ρ = s,

hence x2 ∈ S2 ∩ sB. It follows that

dS1(x2) ≤ sup
x∈S2∩sB

dS1(x) ≤ h.

We claim that

2 〈x− x1, x2 − x1〉 ≤ γ(‖x1 − x2‖2 + 2rh).

We may assume that x 6= x1, hence x /∈ S1. In particular, we have x ∈
Ur(S1) \ S1, so we can apply Theorem 2.8(e) to get

x1 = projS1

(
x1 +

t(x− x1)
‖x− x1‖

)
for all t ∈ [0, r[.

Note that for all z ∈ S1, for all t ∈ [0, r[,∥∥∥∥x1 +
t(x− x1)
‖x− x1‖

− x2
∥∥∥∥ ≥ ∥∥∥∥x1 +

t(x− x1)
‖x− x1‖

− z
∥∥∥∥− ‖x2 − z‖ ≥ t− ‖x2 − z‖ .

Passing to the supremum yields for all t ∈ [0, r[,∥∥∥∥x1 +
t(x− x1)
‖x− x1‖

− x2
∥∥∥∥ ≥ sup

z∈S1

(t− ‖x2 − z‖) = t− dS1(x2) ≥ t− h.
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Taking the limit as t ↑ r in both sides of the latter inequality, we get∥∥∥∥x1 +
r(x− x1)
‖x− x1‖

− x2
∥∥∥∥ ≥ r − h.

We deduce from this (thanks to the inequality r ≥ h)

‖x1 − x2‖2 +
2r

‖x− x1‖
〈x− x1, x1 − x2〉+ r2 ≥ r2 − 2rh,

or equivalently

2r 〈x− x1, x2 − x1〉 ≤ ‖x− x1‖ (‖x1 − x2‖2 + 2rh).

Keeping in mind that dS1(x) = ‖x− x1‖ < rγ, we obtain

2 〈x− x1, x2 − x1〉 ≤ γ(‖x1 − x2‖2 + 2rh),

which is the inequality claimed above. In the same way, we show

2 〈x− x2, x1 − x2〉 ≤ γ(‖x1 − x2‖2 + 2rh).

Adding the two latter inequalities, we have

‖x1 − x2‖2 ≤ γ(‖x1 − x2‖2 + 2rh)

or equivalently

‖x1 − x2‖2 ≤
2rγh

1− γ
.

The proof is then complete. �

As already said, the prox-regular moving set C(·) will be assumed to have
a Lipschitz variation. The first result below provides the convergence to a
local solution of (5.2). It is in the line of Theorem 5.1 and of Theorem 5.2.

Theorem 6.2. Let C : I = [T0, T ] ⇒ H be a multimapping with r-prox-
regular values for some r ∈]0,+∞] and a ∈ C(T0), and let f : I×B(a, r3)→
H be a mapping. Assume that:

(i) there exists a real β > 0 such that for all t ∈ I and x ∈ B(a, r3),

‖f(t, x)‖ ≤ β;

(ii) the mapping f(·, x) is Bochner measurable for each x ∈ B(a, r3) and
there exists k ∈ R+ such that for all t ∈ I and for all x1, x2 ∈ B(a, r3),

‖f(t, x1)− f(t, x2)‖ ≤ k ‖x1 − x2‖ ;

(iii) there exist a function v : I → R which is κ-Lipschitz continuous for
some real κ ≥ 0 on I and an extended real ρ ≥ ‖a‖+ r such that for
all s, t ∈ I with s ≤ t,

(6.1) ĥausρ(C(s), C(t)) := sup
x∈ρB

|d(x,C(s))− d(x,C(t))| ≤ |v(t)− v(s)| .
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Let θ be any positive real with θ ≤ T − T0 and satisfying θ < r
3(2β+κ) .

Then, for each real λ > 0, there exists one and only one mapping uλ(·) :
[T0, T0 + θ]→ B(a, r3) solution of the regularized differential equation{

−u̇λ(t) = 1
2λ∇d

2
C(t)(uλ(t)) + f(t, uλ(t)) a.e. t ∈ [T0, T0 + θ],

uλ(T0) = a.

This family (uλ(·))λ>0 converges uniformly on [T0, T0 + θ] when λ ↓ 0 to a
(2β+κ)-Lipschitz continuous mapping u : [T0, T0 + θ]→ B(a, r3) solution of
the differential inclusion

−u̇(t) ∈ N(C(t);u(t)) + f(t, u(t)) a.e. t ∈ [T0, T0 + θ],

u(t) ∈ C(t) for all t ∈ [T0, T0 + θ],

u(T0) = a.

Furthermore, one has the error estimation for every real λ > 0,

sup
t∈[T0,T0+θ]

‖uλ(t)− u(t)‖2 ≤ 2λ(β + κ)2
∫ T0+θ

T0

exp
(
K(T0 + θ − s)

)
ds,

where K := 2[9(β+κr ) + k], and

‖u̇(t) + f(t, u(t))‖ ≤ β + κ a.e. t ∈ [T0, T0 + θ].

Proof. Fix any positive real θ with θ ≤ T − T0 and θ < r
3(2β+κ) . Observe

that for every Lebesgue measurable set A ⊂ [T0, T ] with L(A) ≤ θ (where
we recall that L stands for the Lebesgue measure on I) we have

(6.2)

∫
A
|v̇(s)| d(s) ≤ κL(A) ≤ κθ < r

3
.

Thanks to the equality d(a,C(T0)) = 0, the inequality ρ ≥ ‖a‖, (6.1) and
(6.2), observe that for all x ∈ B[a, r3 ], for all t ∈ [T0, T0 + θ],

d(x,C(t)) ≤ d(x,C(t))− d(a,C(t)) + d(a,C(t))− d(a,C(T0))

≤ ‖x− a‖+ |v(t)− v(T0)|

≤ r

3
+

∣∣∣∣∫ t

T0

v̇(s)ds

∣∣∣∣
≤ r

3
+

∫ T0+θ

T0

|v̇(s)| ds < r

3
+
r

3
=

2r

3
,

which yields

(6.3) x ∈ U 2
3
r(C(t)) for all (t, x) ∈ [T0, T0 + θ]×B[a,

r

3
].

The latter inclusion along with the r-prox-regularity of each C(t) with t ∈
[T0, T0 + θ] allows us (thanks to Theorem 2.8) to consider the mapping
h : [T0, T0 + θ]×B[a, r3 ]→ H defined by

h(t, x) := x− projC(t)(x) for all (t, x) ∈ [T0, T0 + θ]×B[a,
r

3
].
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Using Theorem 2.8 again, we have

h(t, x) = ∇(
1

2
d2C(t))(x) for all (t, x) ∈ [T0, T0 + θ]×B[a,

r

3
]

and ∥∥∥projC(t)(x1)− projC(t)(x2)
∥∥∥ ≤ 1

1− 2
3

‖x1 − x2‖ = 3 ‖x1 − x2‖ ,

for all t ∈ [T0, T0 + θ], for all x1, x2 ∈ U 2
3
r(C(t)). In particular, this says

that

(6.4) h(t, ·) is 3− Lipschitz on B[a,
r

3
] for each t ∈ [T0, T0 + θ].

We continue the proof with a series of lemmas.

Lemma 6.3. For each x ∈ B[a, r3 ], the mapping (f + h)(·, x) is Bochner
integrable on [T0, T0 + θ].

Proof. Let x ∈ B[a, r3 ], t ∈ [T0, T0 + θ]. Fix any sequence (tn)n∈N of

[T0, T0 + θ] with tn → t. Let us distinguish two cases.

Case 1: r = +∞. In such a case, ρ = +∞ and ĥausρ(·, ·) = haus(·, ·). Then,
as a direct consequence of Lemma 2.5 and the convergence haus(C(tn), C(t))→
0, we get the continuity of projC(·)(x) at t.

Case 2: r < +∞. Thanks to the inclusion (6.3), we have (with γ := 2
3)

x ∈
⋂

t∈[T0,T0+θ]

Urγ(C(t)).

Note that for n ∈ N sufficiently large, say n ≥ N ,

ĥaus‖a‖+r(C(tn), C(t)) ≤ r,

by virtue of (2.11) and of the convergence ĥaus‖a‖+r(C(tn), C(t))→ 0. Since
‖x‖ < ‖a‖+ r ≤ ρ, we can apply Lemma 6.1 to get for every integer n ≥ N∥∥∥projC(tn)(x)− projC(t)(x)

∥∥∥ ≤ ( 2γr

1− γ
haus‖a‖+r

(
C(tn), C(t)

)) 1
2

≤
( 2γr

1− γ
ĥaus‖a‖+r

(
C(tn), C(t)

)) 1
2

≤
( 2γr

1− γ
ĥausρ

(
C(tn), C(t)

)) 1
2

≤
( 2γr

1− γ
∣∣v(tn)− v(t)

∣∣ ) 1
2

and this obviously entails that projC(·)(x) is continuous at t.

In both cases, h(·, x) is continuous at t. The Bochner integrability of (f +
h)(·, x) then follows. �
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For each real λ > 0, let us consider the following differential equation over
[T0, T0 + θ[×B(a, r3)

(Eλ) :

{
u̇(t) = − 1

2λ∇d
2
C(t)(u(t))− f(t, u(t)) a.e. t ∈ [T0, T0 + θ[

u(T0) = a.

The development above guarantees that for each real λ > 0, this differen-
tial equation has a unique solution uλ(·) defined on its maximal interval of
existence [T0, Tλ[⊂ [T0, T0 + θ[.

For each real λ > 0, let us set

gλ(t) := d(uλ(t), C(t)) and zλ(t) := −f(t, uλ(t)) for all t ∈ [T0, Tλ[.

The property of this function gλ(·) in Lemma 6.6 will use the following
lemma.

Lemma 6.4. Let S be a nonempty closed set of H and z : I → H be a
mapping. Let the function δ : I → R be defined by δ(t) := (1/2)d2S(z(t)) for
all t ∈ I = [T0, T ]. Then, at every t ∈ [T0, T [ where z is derivable on the

right, the right derivative δ̇(t+) exists and

δ̇(t+) = −σ
(
− ż(t+); ∂(

1

2
d2S)(z(t))

)
= dS(z(t))σ

(
− ż(t+); ∂dS(z(t))

)
.

Proof. We already recalled in Proposition 2.1 that the function ψ := −(1/2)d2S(·)
is tangentially regular on the whole space H. Let t ∈ I as in the statement
(if any). Then writing for s > 0 small enough by the local Lipschitz property
of d2S(·)

s−1[(−δ)(t+ s)− (−δ)(t)] = s−1[ψ(z(t) + sż(t+))− ψ(z(t))] + ε(s)

(where ε(s)→ 0 as s ↓ 0), we see that

−δ̇(t+) = ψ′(z(t); ż(t+)) = ψo(z(t); ż(t+)) = σ
(
ż(t+); ∂ψ(z(t))

)
.

Since ∂ψ(z(t)) = ∂((−1/2)d2S)(z(t)) = −(1/2)∂(d2S)(z(t)) = −dS(z(t))∂dS(z(t)),

we deduce that −δ̇(t+) = dS(z(t))σ
(
− ż(t+); ∂dS(z(t))

)
, which justifies the

lemma. �

The next lemma is stated in a form which is also useful for the next
section.

Lemma 6.5. Let S(t) be a nonempty closed set of H for each t ∈ I = [T0, T ]
and let ρ0 ∈]0,+∞] be such that for any s, t ∈ I,

(6.5) ĥausρ0(S(s), S(t)) = sup
x∈ρ0B

|d(x, S(s))− d(x, S(t))| ≤ |v0(s)− v0(t)|

where v0 : I → R is some absolutely continuous function. Let J be a subin-
terval of I with nonempty interior and z : J → ρ0B be a locally absolutely
continuous mapping. Let also g(·) : J → R+ be defined by

g(t) := d(z(t), S(t)) for all t ∈ J.
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Then, g is locally absolutely continuous on J and at each t ∈ int J where
g, z and v0 are derivable (set whose complement in J is of null Lebesgue-
measure) one has

ġ(t)g(t) ≤ −σ
(
− ż(t), ∂(

1

2
d2S(t))(z(t))

)
+ g(t) |v̇0(t)| .

Proof. First, observe that for all t, s ∈ J ,

|g(t)− g(s)| = |d(z(t), S(t))− d(z(s), S(s))|
≤ |d(z(t), S(t))− d(z(s), S(t))|+ |d(z(s), S(t))− d(z(s), S(s))|
≤ ‖z(t)− z(s)‖+ |v0(t)− v0(s)| ,

where the latter inequality is due to the inclusion z(J) ⊂ ρ0B and (6.5).
The function g is then locally absolutely continuous on J . Let us define the
function ϕ : I ×H → R by

ϕ(t, x) :=
1

2
d2S(t)(x) for all (t, x) ∈ I ×H.

Let τ0, τ1 be reals with τ0 < τ1 such that int J =]τ0, τ1[. Fix any t ∈ int J
such that g, v and z are derivable at t. For all s ∈]0, τ1 − t[ writing

1

2s
[g(t+ s)2 − g(t)2]

=
1

s
[ϕ(t+ s, z(t+ s))− ϕ(t, z(t))]

=
1

s
[ϕ(t+ s, z(t+ s))− ϕ(t, z(t+ s))] +

1

s
[ϕ(t, z(t+ s))− ϕ(t, z(t))]

=
1

2s
[dS(t+s)(z(t+ s))− dS(t)(z(t+ s))][dS(t+s)(z(t+ s)) + dS(t)(z(t+ s))]

+
1

s
[ϕ(t, z(t+ s))− ϕ(t, z(t))]

we note that

1

2s
[g(t+ s)2 − g(t)2] ≤ 1

2s

∣∣v0(t+ s)− v0(t)
∣∣ [dS(t+s)(z(t+ s)) + dS(t)(z(t+ s))]

+
1

s
[ϕ(t, z(t+ s))− ϕ(t, z(t))].

Passing to the limit as s ↓ 0 and using Lemma 6.4, we obtain

ġ(t)g(t) ≤
∣∣v̇0(t)∣∣ g(t)− σ

(
− ż(t), ∂(

1

2
d2S(t))(z(t))

)
.

as desired. �

Applying the above lemma with ρ0 := ρ, S(·) := C(·) and noting (thanks
to the fact that C(·) takes r-prox-regular values) for every t ∈ I and x ∈ H
with d(x,C(t)) < r that ∂(1/2)d2C(t)(x) = x−projC(t)(x), we directly derive

the following lemma.
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Lemma 6.6. Let J be a subinterval of I = [T0, T ] with nonempty interior
and z : J → ρB be a locally absolutely continuous mapping. Let also g(·) :
J → R+ be defined by

g(t) := d(z(t), C(t)) for all t ∈ J.

Then, g(·) is locally absolutely continuous on J . If in addition, g(t) < r for
all t ∈ J , then one has

ġ(t)g(t) ≤
〈
ż(t), z(t)− projC(t)(z(t))

〉
+ g(t) |v̇(t)| a.e. t ∈ J.

With this lemma at hand, we can prove the following estimates for gλ(·)
and ġλ(·).

Lemma 6.7. For each real λ > 0, the function gλ : [T0, Tλ[→ R is locally
absolutely continuous on [T0, Tλ[ and

ġλ(t) ≤ β + |v̇(t)| − 1

λ
gλ(t) ≤ β + κ− 1

λ
gλ(t) a.e. t ∈ [T0, Tλ[.

Further, one has

gλ(t) ≤ e−
t
λ

∫ t

T0

(β + |v̇(s)|)e
s
λ ds ≤ λ(β + κ) for all t ∈ [T0, Tλ[.

Proof. Fix any real λ > 0. Since uλ(t) ∈ B(a, r3) for each t ∈ [T0, Tλ[, we
have (thanks to the choice of ρ and (6.3)) that

uλ(t) ∈ ρB and d(uλ(t), C(t)) <
2r

3
for all t ∈ [T0, Tλ[.

Applying Lemma 6.6, we get

ġλ(t)gλ(t) ≤
〈
u̇λ(t), uλ(t)− projC(t)(uλ(t))

〉
+ gλ(t) |v̇(t)| a.e. t ∈ [T0, Tλ[.

On the other hand, from the definition of uλ(·), we note that

u̇λ(t) = − 1

λ
[uλ(t)− projC(t)(uλ(t))] + zλ(t) a.e. t ∈ [T0, Tλ[,

so the latter inequality gives

ġλ(t)gλ(t) ≤ gλ(t) |v̇(t)| − 1

λ

〈
uλ(t)− projC(t)(uλ(t)), uλ(t)− projC(t)(uλ(t))

〉
+
〈
zλ(t), uλ(t)− projC(t)(uλ(t))

〉
.

Thanks to the equality valid for all t ∈ [T0, Tλ[,

gλ(t) = d(uλ(t), C(t)) =
∥∥∥uλ(t)− projC(t)(uλ(t))

∥∥∥ ,
we can write

ġλ(t)gλ(t) ≤ gλ(t) |v̇(t)| − 1

λ
g2λ(t) + ‖zλ(t)‖ gλ(t) a.e. t ∈ [T0, Tλ[.
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Fix any t0 ∈]T0, Tλ[ where ġλ(t0), v̇(t0) and u̇λ(t0) exist and where the latter
inequality holds. If gλ(t0) > 0, we have

(6.6) ġλ(t0) ≤ |v̇(t0)| −
1

λ
gλ(t0) + ‖zλ(t0)‖ .

Assume that gλ(t0) = 0. We claim that ġλ(t0) = 0. Since gλ ≥ 0 and
lims→0

1
sgλ(t0 + s) exists, we have

(6.7) lim
s↓0

1

s
gλ(t0 + s) ≥ 0 and lim

s↑0

1

s
gλ(t0 + s) ≤ 0

and this entails that ġλ(t0) = 0, so (6.6) still holds true. Then, we have
established that for almost every t ∈ [T0, Tλ[,

ġλ(t) ≤ |v̇(t)| − 1

λ
gλ(t) + ‖zλ(t)‖

≤ |v̇(t)| − 1

λ
gλ(t) + β(6.8)

≤ κ− 1

λ
gλ(t) + β.

Applying the Gronwall lemma below with (6.8) and the equality gλ(T0) = 0,
we get

gλ(t) ≤ e−
t
λ

∫ t

T0

(β + |v̇(s)|)e
s
λ ds for all t ∈ [T0, Tλ[.

It remains to invoke the κ-Lipschitz property of v(·) to get

gλ(t) ≤ e−
t
λ

∫ t

T0

(β + |v̇(s)|)e
s
λ ds ≤ λ(β + κ).

The proof is complete. �

Lemma 6.8 (Gronwall). Let ϕ : I = [T0, T ]→ R be an absolutely continu-
ous function on I, a : I → R and b : I → R be Lebesgue integrable functions
on I. If for almost every t ∈ I,

ϕ̇(t) ≤ b(t) + a(t)ϕ(t),

then for all t ∈ I,

ϕ(t) ≤ ϕ(T0) exp

(∫ t

T0

a(s)ds

)
+

∫ t

T0

b(τ) exp

(∫ t

τ
a(s)ds

)
dτ.

The next lemma provides a uniform boundedness of the family of deriva-
tives (u̇(·))λ>0.

Lemma 6.9. For each real λ > 0 and for almost every t ∈ [T0, Tλ[, one has

‖u̇λ(t)− zλ(t)‖ ≤ β + κ,

in particular

(6.9) ‖u̇λ(t)‖ ≤ 2β + κ.
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Proof. Fix any real λ > 0. By definition of uλ(·), we have

u̇λ(t)− zλ(t) = − 1

λ
[uλ(t)− projC(t)(uλ(t))] a.e. t ∈ [T0, Tλ[,

hence

‖u̇λ(t)− zλ(t)‖ =
1

λ
gλ(t) a.e. t ∈ [T0, Tλ[.

According to Lemma 6.7, we deduce

‖u̇λ(t)− zλ(t)‖ ≤ β + κ a.e. t ∈ [T0, Tλ[.

The proof is complete since ‖zλ(t)‖ ≤ β for all t ∈ I (see assumption (i)). �

Fix any real λ > 0. The inequality (6.9) says that uλ(·) is (2β + κ)-
Lipschitz continuous on [T0, Tλ[. Since Tλ ∈ R, the limit lim

t↑Tλ
uλ(t) exists in

H and the extended mapping still denoted uλ(·), defined at Tλ by uλ(Tλ) =
lim
t↑Tλ

uλ(t), is Lipschitz continuous on [T0, Tλ]. Keeping in mind that θ <

r
3(2β+κ) , we see that

Tλ − T0 ≤ θ <
r

3(2β + κ)
.

Then, since uλ(Tλ) = lim
t↑Tλ

uλ(t), it ensues that

(6.10) ‖uλ(Tλ)− a‖ = ‖uλ(Tλ)− uλ(T0)‖ ≤ (2β + κ)(Tλ − T0) <
r

3
.

Thus, the Lipschitz mapping uλ(·) : [T0, Tλ] → B(a, r3) (extended at Tλ)
satisfies{

u̇λ(t) = − 1
2λ∇d

2
C(t)(uλ(t))− f(t, uλ(t)) a.e. t ∈ [T0, Tλ],

uλ(T0) = a.

Moreover, note that Tλ = T0 + θ. Indeed, if Tλ < T0 + θ, (6.10) allows us to
extend uλ(·) on the right of Tλ in a solution of (Eλ) with the range of the
extension of uλ(·) included in B(a, r3) and this cannot hold true according
to the maximality of [T0, Tλ[.

It is then established that for any real λ > 0, there is one and only one
Lipschitz continuous mapping uλ : [T0, T0 + θ]→ B(a, r3) satisfying{

u̇λ(t) = − 1
2λ∇d

2
C(t)(uλ(t))− f(t, uλ(t)) a.e. t ∈ [T0, T0 + θ],

uλ(T0) = a.

Our aim is now to establish that (uλ(·))λ>0 satisfies the Cauchy criterion
as λ ↓ 0.

Lemma 6.10. For all λ1, λ2 ∈]0,+∞[, for all t ∈ [T0, T0 + θ], one has

‖uλ1(t)− uλ2(t)‖2 ≤ 2(λ1 + λ2)(β + κ)2
∫ t

T0

exp
(
2[9(

β + κ

r
) + k](t− s)

)
ds.
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Proof. Let λ1, λ2 ∈]0,+∞[. LetA be a Lebesgue negligible subset of [T0, T0+
θ[ such that for each t ∈ [T0, T0 +θ[\A and each i ∈ {1, 2} (see the definition
of uλi(·) and Lemma 6.9)

u̇λi(t) = − 1

2λi
∇d2C(t)(uλi(t)) + zλi(t)

and

(6.11) ‖u̇λi(t)− zλi(t)‖ ≤ β + κ.

Fix any ζ ∈ {λ1, λ2}. From (2.1) note that

zζ(t)− u̇ζ(t) =
1

ζ

(
uζ(t)− projC(t)(uζ(t))

)
∈ NP

(
C(t); projC(t)(uζ(t))

)
.

Combining the latter inclusion and (6.11) with Theorem 2.8(c), we obtain〈
−u̇λ1(t) + zλ1(t) + u̇λ2(t)− zλ2(t),projC(t)(uλ1(t))− projC(t)(uλ2(t))

〉
≥− β + κ

r

∥∥∥projC(t)(uλ1(t))− projC(t)(uλ2(t))
∥∥∥2 .

Using the equality

projC(t)(uζ(t)) = ζ(u̇ζ(t)− zζ(t)) + uζ(t),

the fact that projC(t)(·) is 3-Lipschitz continuous on B(a, r3) and the inclu-

sion uζ(t) ∈ B(a, r3), we get

〈−u̇λ1(t) + zλ1(t) + u̇λ2(t)− zλ2(t), λ1(u̇λ1(t)− zλ1(t))− λ2(u̇λ2(t)− zλ2(t))〉
+ 〈−u̇λ1(t) + zλ1(t) + u̇λ2(t)− zλ2(t), uλ1(t)− uλ2(t)〉

≥ −9
β + κ

r
‖uλ1(t)− uλ2(t)‖2 .

An elementary computation gives

− λ1 ‖u̇λ1(t)− zλ1(t)‖2 − λ2 ‖u̇λ2(t)− zλ2(t)‖2

+ (λ1 + λ2) 〈u̇λ1(t)− zλ1(t), u̇λ2(t)− zλ2(t)〉
+ 〈zλ1(t)− zλ2(t), uλ1(t)− uλ2(t)〉 − 〈u̇λ1(t)− u̇λ2(t), uλ1(t)− uλ2(t)〉

≥ − 9
β + κ

r
‖uλ1(t)− uλ2(t)‖2 .

With ψ(·) := ‖uλ1(·)− uλ2(·)‖2 the latter inequality can be rewritten as

1

2
ψ̇(t) ≤ 9

β + κ

r
ψ(t)− λ1 ‖u̇λ1(t)− zλ1(t)‖2 − λ2 ‖u̇λ2(t)− zλ2(t)‖2

+ (λ1 + λ2) 〈u̇λ1(t)− zλ1(t), u̇λ2(t)− zλ2(t)〉
+ 〈zλ1(t)− zλ2(t), uλ1(t)− uλ2(t)〉

and this obviously entails

1

2
ψ̇(t) ≤ 9

β + κ

r
ψ(t) + (λ1 + λ2) 〈u̇λ1(t)− zλ1(t), u̇λ2(t)− zλ2(t)〉

+ 〈zλ1(t)− zλ2(t), uλ1(t)− uλ2(t)〉 .(6.12)
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On the other hand, since f(t, ·) is k-Lipschitz continuous on B(a, r3) and
uζ(t) ∈ B(a, r3), we have

‖zλ1(t)− zλ2(t)‖ = ‖f(t, uλ1(t))− f(t, uλ2(t))‖
≤ k ‖uλ1(t)− uλ2(t)‖ .(6.13)

Coming back to (6.12) and using (6.11) and (6.13), we then see that

1

2
ψ̇(t) ≤ [9

β + κ

r
+ k]ψ(t) + (λ1 + λ2)(β + κ)2.

It remains to combine Lemma 6.8 with the latter inequality and ψ(T0) = 0
to complete the proof. �

Lemma 6.11. The family (uλ(·))λ>0 converges uniformly on [T0, T0 + θ] to
a mapping u : [T0, T0 + θ]→ B(a, r3) satisfying the differential inclusion

−u̇(t) ∈ N(C(t);u(t)) + f(t, u(t)) a.e. t ∈ [T0, T0 + θ],

u(t) ∈ C(t) for all t ∈ [T0, T0 + θ],

u(T0) = a.

Furthermore, one has for every real λ > 0,

sup
t∈[T0,T0+θ]

‖uλ(t)− u(t)‖2 ≤ 2λ(β + κ)2
∫ T0+θ

T0

exp
(
K(T0 + θ − s)

)
ds,

where K := 2[9(β+κr ) + k], and for almost every t ∈ [T0, T0 + θ]

‖u̇(t) + f(t, u(t))‖ ≤ β + κ and ‖u̇(t)‖ ≤ 2β + κ.

Proof. According to Lemma 6.10, the familly (uλ(·))λ>0 converges uniformly
as λ ↓ 0 to a continuous mapping u : [T0, T0 + θ] → H and this mapping
u(·) satisfies the first estimate in the statement. Fix for a moment any real
λ > 0. From Lemma 6.7, we get

(6.14) d(uλ(t), C(t)) =: gλ(t) ≤ λ(β + κ) for all t ∈ [T0, T0 + θ[.

Writing for every t ∈ [T0, T0 + θ[

|gλ(t)− gλ(T0 + θ)| =
∣∣dC(t)(uλ(t))− dC(T0+θ)(uλ(T0 + θ))

∣∣
≤ ‖uλ(t)− uλ(T0 + θ)‖+ ĥausρ(C(t), C(T0 + θ))

we see (through (6.1) and the Lipschitz property of uλ(·)) that lim
t↑T0+θ

gλ(t) =

gλ(T0 + θ). Coming back to (6.14) and letting t ↑ T0 + θ, we arrive to
gλ(T0 + θ) ≤ λ(β + κ). Hence, we have

d(uλ(t), C(t)) = gλ(t) ≤ λ(β + κ) for all t ∈ [T0, T0 + θ].

Passing to the limit as λ ↓ 0 in the latter inequality gives (thanks to the
closedness property of all sets C(t))

(6.15) u(t) ∈ C(t) for all t ∈ [T0, T0 + θ].
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By Lemma 6.9 we also know that for each real λ > 0,

‖u̇λ(t)‖ ≤ 2β + κ a.e. t ∈ [T0, T0 + θ],

so we can find a sequence (λn)n∈N of positive reals with λn ↓ 0 such that
(u̇λn(·))n∈N converges weakly in L2([T0, T0 + θ],H) to some mapping h(·) ∈
L2([T0, T0 + θ],H). For any t ∈ [T0, T0 + θ], any z ∈ H and any n ∈ N, we
can write 〈

z,

∫ t

T0

u̇λn(s)ds

〉
=

∫ T

T0

〈
z1[T0,t](s), u̇λn(s)

〉
ds.

This allows us to see that for all t ∈ [T0, T0 + θ],∫ t

T0

u̇λn(s)ds→
∫ t

T0

h(s)ds weakly inH.

For each t ∈ [T0, T0 + θ], the strong convergence of (uλn(t))n∈N to u(t) in H
and the equality uλn(t) = a+

∫ t
T0
u̇λn(s)ds valid for all n ∈ N entail

(6.16) u(t) = a+

∫ t

T0

h(s)ds.

We deduce that u(·) is absolutely continuous on [T0, T0 + θ] with u̇(·) = h(·)
almost everywhere on [T0, T0 + θ] and then

u̇λn(·)→ u̇(·) weakly in L2([T0, T0 + θ],H).

Set z(·) := −f(·, u(·)) and keep in mind that zλ(·) = −f(·, uλ(·)) for every
real λ > 0. Note that

(6.17) u̇λn(·)− zλn(·)→ u̇(·)− z(·) weakly in L2([T0, T0 + θ],H),

and hence thanks to Lemma 6.9 and Mazur’s lemma it is easily seen that

‖u̇(t)− z(t)‖ ≤ β + κ and ‖u̇(t)‖ ≤ 2β + κ a.e. t ∈ [T0, T0 + θ].

The latter inequality, (6.16) and u̇(·) = h(·) give

(6.18) ‖u(t)− a‖ ≤ (t− T0)(2β + κ) <
r

3
for all t ∈ [T0, T0 + θ],

since θ < r
3(2β+κ) . Consequently, we get the inclusion u([T0, T0 + θ]) ⊂

B(a, r3). Applying Mazur’s lemma with (6.17), there are for each n ∈ N some

integer r(n) > n and a familly (αk,n)n≤k≤r(n) of [0, 1] with
r(n)∑
k=n

αk,n = 1 such

that
r(n)∑
k=n

αk,n(zλk−u̇λk) converges strongly to z(·)−u̇(·) in L2([T0, T0+θ],H).

Now, consider any Lebesgue neligible set N ⊂ [T0, T0+θ] such that for every
n ∈ N and every t ∈ [T0, T0 + θ], u̇(t) and u̇λn(t) exist. Without loss of
generality, we may also suppose that for every t ∈ [T0, T0 + θ] \N ,

(6.19) lim
n→+∞

r(n)∑
k=n

αk,n(zλk(t)− u̇λk(t)) = z(t)− u̇(t).
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along with (see Lemma 6.9)

(6.20) ‖u̇λn(t)− zλn(t)‖ ≤ β + κ and ‖u̇λn(t)‖ ≤ 2β + κ,

for all n ∈ N and for all t ∈ [T0, T0 + θ] \ N . Fix for a moment any
t ∈ [T0, T0 + θ] \N and any n ∈ N. From (6.20), it is readily seen that∣∣∣∣∣∣

r(n)∑
k=n

αk,n

〈
zλk(t)− u̇λk(t), u(t)− projC(t)(uλk(t))

〉∣∣∣∣∣∣
≤(β + κ)

r(n)∑
k=n

αk,n

∥∥∥u(t)− projC(t)(uλk(t))
∥∥∥ .(6.21)

On the other hand, by (6.4) and (6.15) we see that

(6.22) lim
k→+∞

projC(t)(uλk(t))− u(t) = 0.

Coming back to (6.21), it is easily seen that the latter convergence entails

(6.23) lim
n→+∞

r(n)∑
k=n

αk,n

〈
zλk(t)− u̇λk(t), u(t)− projC(t)(uλk(t))

〉
= 0.

For every n ∈ N and every x′ ∈ H, combining the equality

r(n)∑
k=n

αk,n

〈
zλk(t)− u̇λk(t), x′ − projC(t)(uλk(t))

〉

=

〈
r(n)∑
k=n

αk,n(zλk(t)− u̇λk(t)), x′ − u(t)

〉

+

r(n)∑
k=n

αk,n

〈
zλk(t)− u̇λk(t), u(t)− projC(t)(uλk(t))

〉
with (6.19) and (6.23), we get with ξ(t, x′) := 〈z(t)− u̇(t), x′ − u(t)〉

(6.24) lim
n→+∞

r(n)∑
k=n

αk,n

〈
zλk(t)− u̇λk(t), x′ − projC(t)(uλk(t))

〉
= ξ(t, x′).

For each real λ > 0, the equality

zλ(t)− u̇λ(t) =
1

2λ
∇d2C(t)(uλ(t)) =

1

λ
[uλ(t)− projC(t)(uλ(t))]

along with (2.1), guarantees that

zλ(t)− u̇λ(t) ∈ N
(
C(t); projC(t)(uλ(t))

)
.
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Thanks to the r-prox-regularity of C(t) and (6.20), the latter inclusion en-
tails for all x′ ∈ C(t) (see Theorem 2.6(b)),

r(n)∑
k=n

αk,n

〈
zλk(t)− u̇λk(t), x′ − projC(t)(uλk(t))

〉

≤β + κ

2r

r(n)∑
k=n

αk,n

∥∥∥x′ − projC(t)(uλk(t))
∥∥∥2 .

Using (6.22) and (6.24), it follows that for all x′ ∈ C(t),

ξ(t, x′) =
〈
z(t)− u̇(t), x′ − u(t)

〉
≤ β + κ

2r

∥∥x′ − u(t)
∥∥2 .

As a consequence, we obtain

−u̇(t) + z(t) ∈ NP (C(t);u(t)) = N(C(t);u(t)),

which finishes the proof of the lemma. �

The proof of Theorem 6.2 is then complete. �

The existence result over I = [T0, T ] can be deduced from a suitable finite
partition of the interval [T0, T ].

Theorem 6.12. Let C : I = [T0, T ] ⇒ H be a multimapping with r-prox-
regular values for some r ∈]0,+∞], a ∈ C(T0), f : I×H → H be a mapping.
Assume that:

(i) there exists a real β > 0 such that for all t ∈ I and x ∈ H,

‖f(t, x)‖ ≤ β;

(ii) the mapping f(·, x) is Bochner measurable for each x ∈ H and there
exists k ∈ R+ such that for all t ∈ I and for all x1, x2 ∈ H,

‖f(t, x1)− f(t, x2)‖ ≤ k ‖x1 − x2‖ ;

(iii) there exist a function v : I → R which is κ-Lipschitz continuous for

some real κ ≥ 0 on [T0, T ], a real θ ∈]0,min
{
T − T0, r

3(2β+κ)

}
[ and

an integer p ≥ 2 with p(T0 + θ) ≥ T such that

ĥausρ(C(s), C(t)) := sup
x∈ρB

|d(x,C(s))− d(x,C(t))| ≤ |v(t)− v(s)|

for some extended real ρ ≥ ‖a‖+ p+2
3 r and for all s, t ∈ I.

Then, there exists a (2β + κ)-Lipschitz continuous mapping u : I →
B(a, pr3 ) solution of the differential inclusion

(6.25)


−u̇(t) ∈ N(C(t);u(t)) + f(t, u(t)) a.e. t ∈ I,
u(t) ∈ C(t) for all t ∈ I,
u(T0) = a.
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Proof. For each i ∈ {1, · · · , p}, put Ti := T0 + iθ. Set a0 := a. According to
Theorem 6.2, there is a (2β + κ)-Lipschitz mapping u0 : [T0, T1]→ B(a0,

r
3)

satisfying
−u̇0(t) ∈ N(C(t);u0(t)) + f0(t, u0(t)) a.e. t ∈ [T0, T1],

u0(t) ∈ C(t) for all t ∈ [T0, T1],

u0(T0) = a0,

where the mapping f0 is the restriction of f to [T0, T1] × B(a0,
r
3). Since

a1 := u0(T1) ∈ C(T1) and

‖a1‖+ r ≤ r

3
+ ‖a0‖+ r =

4r

3
+ ‖a0‖ ≤ ρ,

we can apply Theorem 6.2 to get a (2β+κ)-Lipschitz mapping u1 : [T1, T2]→
B(a1,

r
3) satisfying
−u̇1(t) ∈ N(C(t);u1(t)) + f1(t, u1(t)) a.e. t ∈ [T1, T2],

u1(t) ∈ C(t) for all t ∈ [T1, T2],

u1(T1) = a1,

where the mapping f1 is the restriction of f to [T1, T2] × B(a1,
r
3). We

may proceed in this way up to the last closed interval [Tp−1, Tp]. Defining

the mapping u(·) : [T0, Tp] ⊃ [T0, T ] →
p−1⋃
i=0

B(ai,
r
3) ⊂ B(a, pr3 ) by putting

u(t) := ui(t) for any t ∈ [Ti, Ti+1] for all i ∈ {0, . . . , n− 1}, it is readily seen
that u(·) provides a (2β + κ)-Lipschitz mapping satisfying

−u̇(t) ∈ N(C(t);u(t)) + f(t, u(t)) a.e. t ∈ I,
u(t) ∈ C(t) for all t ∈ I,
u(T0) = a.

The proof is then complete. �

Corollary 6.13. Let C : I = [T0, T ] ⇒ H be a multimapping with r-prox-
regular values for some r ∈]0,+∞], a ∈ C(T0), f : I×H → H be a mapping.
Assume that (i) and (ii) of Theorem 6.12 hold. Assume also that there exist
a function v : I → R which is κ-Lipschitz continuous for some real κ ≥ 0
on I such that

haus(C(s), C(t)) ≤ |v(t)− v(s)| for all s, t ∈ I.

Then, there exists a (2β + κ)-Lipschitz continuous mapping u : I → H
solution of (6.25).

Proof. Fixing any θ ∈]0,min
{
T − T0, r

3(2β+κ)

}
and choosing an integer p ≥

2 with p(T0 + θ) ≥ T , remembering that haus(·, ·) = ĥaus∞(·, ·), it suffices
to apply Theorem 6.12 with ρ := +∞. �
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The last result of this section is devoted to the reduction of the absolutely
continuous case to the Lipschitzian one for f ≡ 0. We adapt a method due
to J.J. Moreau ([36]) (see also, [48]).

Proposition 6.14. Let C : I = [T0, T ] ⇒ H be a multimapping, a ∈ C(T0).
Assume that there exist ρ, r ∈]0,+∞] with ‖a‖+ r ≤ ρ satisfying:

(i) for every t ∈ I, the set C(t) is r-prox-regular;
(ii) there exists a function v : I → R absolutely continuous on I such

that for all s, t ∈ I with s ≤ t,

ĥausρ(C(s), C(t)) ≤ |v(t)− v(s)| .

If
∫ T
T0
|v̇(s)| ds > 0, then for each positive real θ ≤

∫ T
T0
|v̇(s)| ds satisfying

θ < r
3 , there exist a real η > 0 (in fact, any real η > 0 with

∫ η
T0
|v̇(s)| ds = θ

is appropriate) and an absolutely continuous mapping u : [T0, η] → B(a, r3)
solution of the differential inclusion

(6.26)


−u̇(t) ∈ N(C(t);u(t)) a.e. t ∈ [T0, η],

u(t) ∈ C(t) for all t ∈ [T0, η],

u(0) = a.

Proof. Let ω(·) : I → R be the function defined by

ω(t) :=

∫ t

T0

|v̇(s)| ds for all t ∈ I.

Assume that ω(T ) > 0. Fix any positive real θ with θ ≤ ω(T )−ω(T0) = ω(T )
and θ < r

3 . Observe that for all s, t ∈ I with s ≤ t,

ĥausρ(C(s) ∩ ρB, C(t) ∩ ρB) ≤ ω(t)− ω(s).

Further, since C(·) is in particular closed-valued we have for all τ1, τ2 ∈ I
with ω(τ1) = ω(τ2),

(6.27) C(τ1) ∩ ρB = C(τ2) ∩ ρB.

Fix a selection τ of ω−1 : [0, ω(T )] ⇒ [T0, T ], that is, a mapping τ :
[0, ω(T )] → [T0, T ] with τ(s) ∈ ω−1(s) for all s ∈ [0, ω(T )]. This func-
tion τ is nondecreasing. Indeed, suppose the contrary, that is, there are
s1 < s2 in [0, ω(T )] with τ(s1) > τ(s2). By the nondecreasing property of ω
one would have ω(τ(s1)) ≥ ω(τ(s2)), or equivalently s1 ≥ s2, which would
contradict the inequality s1 < s2.

Now, consider the multimapping D : [0, ω(T )] ⇒ H defined by

D(s) := C(τ(s)) for all s ∈ [0, ω(T )].

Note by (6.27) that

(6.28) D(ω(t)) ∩ ρB = C
(
τ(ω(t))

)
∩ ρB = C(t) ∩ ρB for all t ∈ I.
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For any x ∈ ρB and s1, s2 ∈ [0, ω(T )] with s1 ≤ s2, we have

|d(x,D(s1))− d(x,D(s2))| = |d(x,C(τ(s1))− d(x,C(τ(s2))|

≤ ĥausρ(C(τ(s1)), C(τ(s2)))

≤ |ω(τ(s2))− ω(τ(s1))| = |s2 − s1| .

This says that for all s1, s2 ∈ [0, ω(T )],

ĥausρ(D(s1), D(s2)) ≤ |s2 − s1| .

Since ρ ≥ ‖a‖+r, we can apply Theorem 6.2 to get a 1-Lipschitz continuous
mapping z : [0, θ]→ B(a, r3) satisfying

−ż(s) ∈ N(D(s); z(s)) a.e. s ∈ [0, θ],

z(s) ∈ D(s) for all t ∈ [0, θ],

z(0) = a.

Fix any real η > 0 with
∫ η
T0
|v̇(s)| ds = θ. Let us define the mapping u :

[T0, η]→ B(a, r3) by

u(t) := z(ω(t)) for all t ∈ [T0, η].

The mapping u is absolutely continuous on [T0, η] with

(6.29) u̇(t) = |v̇(t)| ż(ω(t)) a.e. t ∈ [T0, η].

Obviously, we have u(T0) = z(0) = a and thanks to the definition of D(·)
and to (6.28)

u(t) ∈ D(ω(t)) ∩ ρB = C(t) ∩ ρB ⊂ C(t) for all t ∈ [T0, T ].

Let A be a Lebesgue negligible subset of [T0, η] such that for all t ∈ [T0, η]\A,
u̇(t), v̇(t), ż(ω(t)) exist and

−ż(ω(t)) ∈ N(D(ω(t)); z(ω(t))).

Then fix any t ∈ [T0, T ] \A. From (6.29) and the fact that N(·; ·) is a cone,
we have

−u̇(t) ∈ N(D(ω(t));u(t)).

On the other hand, by the inequality

‖u(t)‖ ≤ ‖a‖+
r

3
< ρ,

we know that ρB is a neighborhood of u(t), and hence it results (see (2.2))
that

−u̇(t) ∈ N(C(t);u(t)).

The proof is then complete. �

Remark 6.15. It is readily seen that the constant mapping u : I → H with
u(t) := a for all t ∈ I satisfies (6.26) whenever v(t) = 0 for almost every
t ∈ I. �
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7. The case of sweeping process under compactness and α-far
property

Let us consider the sweeping process

(7.1) u̇(t) ∈ −N(C(t);u(t)) with initial condition u(T0) = u0 ∈ C(T0),

where C : I = [T0, T ] ⇒ H is here a mutimapping with nonempty closed
(not necessarily prox-regular) values. Assume that C(·) is κ-Lipschitz, that
is,

haus(C(s), C(t)) ≤ κ|s− t| for all s, t ∈ I.
In this situation, the function t 7→ (1/2)d2C(t)(x) may fail to be differentiable

for some x ∈ H, but nevertheless we can consider for each real λ > 0 the
differential inclusion

(DIλ)

{
u̇λ(t) ∈ − 1

2λ∂(d2C(t))(uλ(t)) a.e. t ∈ I,
uλ(T0) = u0.

This differential inclusion is with convex weakly compact second member
and without any constraint (unlike the case of (7.1)). When it is well-
behaved with respect to existence of solutions, although there is no hope of
uniqueness in general, (DIλ) can be seen as a semi-regularization of (7.1). Al-
though the multimapping x 7→ −(1/2)∂(d2C(t))(x) is weakly compact convex

valued and upper semicontinuous from (H, ‖ · ‖) into (H, w(H,H)) for every
t ∈ I, it is not upper semicontinuous from (H, w(H,H)) into (H, w(H,H)).
So, we may not apply existence results of absolutely continuous solutions for
differential inclusions ż(t) ∈ F (t, z(t)), where F : I×H⇒ H is a multimap-
ping with nonempty weakly compact convex values such that x 7→ F (t, x) is
upper semicontinuous from (H, w(H,H)) into (H, w(H,H)). This yields, as
done recently and very efficiently by A. Jourani and E. Vilches [28], to evoke
and recall a result of D. Bothe [8]. In fact, we merely recall a partial form
of the result in [8]. It involves the concept of measure of noncompactness
(see, e.g., [21] for the definition and basic properties).

Theorem 7.1 (Bothe, [8]). Let F : I = [T0, T ]×H⇒ H be a multimapping
with nonempty closed convex values. Assume:

(i) for each x ∈ H the multimapping F (·, x) admits a Bochner measur-
able selection;

(ii) for each t ∈ I the multimapping F (t, ·) is upper semicontinuous from
(H, ‖ · ‖) into (H, w(H,H));

(iii) there exists β(·) ∈ L1(I) such that for every t ∈ I and every x ∈ H,

sup {‖w‖ : w ∈ F (t, x)} ≤ β(t)(1 + ‖x‖);

(iv) there exists k(·) ∈ L1(I) such that for every t ∈ I and every bounded
set B in H

γ
(
F (t, B)) ≤ k(t)γ(B),

where γ(·) is the Hausdorff measure of non-compactness.
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Then, the differential inclusion

ζ̇(t) ∈ F (t, ζ(t)) with initial condition ζ(T0) = ζ0 ∈ H
admits at least one absolutely continuous solution.

Concerning the differential inclusion (DIλ), taking Proposition 2.2 into
account the condition (iv) in Theorem 7.1 leads to assume hereafter that all
the nonempty sets C(t) are strongly ball-compact. Under such an assump-
tion, with F (t, x) := −∂

(
(1/2)d2C(t)

)
(x) for every (t, x) ∈ I ×H, we have for

every bounded set B ⊂ H and every t ∈ I, by Proposition 2.2 that

F (t, B) ⊂ B − co
(
C(t) ∩ rB

)
,

where r := sup
b∈B

(
‖b‖ + dS(b)

)
< +∞, hence γ

(
F (t, B)

)
≤ γ(B). From

now on, unless otherwise stated the real Hilbert space H is assumed to be
separable. With ϕt(x) := 1/2d2C(t)(x) for every (t, x) ∈ I ×H, the equalities

valid for all n ∈ N, all h ∈ H and all (t, x) ∈ I ×H,

σ(h; ∂ϕt(x)) = ϕot (x;h) = inf
n∈N

sup
(s,z)∈Zn

1

s
[ϕ(t, z + sh)− ϕ(t, z)],

where for each n ∈ N, Zn :=
{

(s, z) : s ∈]0, 1n [∩Q, z ∈ B(x, 1n) ∩D
}

and D is
some countable dense subset of H, ensure (see, e.g., [15, Theorem 3.37]) for
each x ∈ H the measurability of the multimapping t 7→ ∂(12d

2
C(t))(x) as well

as the existence of a Bochner measurable selection of this multimapping.
Further, for each t ∈ I, the multimapping x 7→ ∂(1/2d2C(t))(x) is upper

semicontinuous from (H, ‖·‖) into (H, w(H,H)) (see Subsection 2.1). Then,
by Theorem 7.1 we can fix, throughout the rest of this section, for each real
λ > 0 an absolutely continuous solution uλ(·) of the differential inclusion
(DIλ). Consider any real λ > 0. By Lemma 6.5 the function gλ(·) : I → R,
defined by gλ(t) := d(uλ(t), C(t)) for all t ∈ I is absolutely continuous and
for almost every t ∈ I,

ġλ(t)gλ(t) ≤ κ gλ(t)− gλ(t)σ
(
− u̇λ(t), ∂dC(t)(uλ(t))

)
.

Since uλ(·) is an absolutely continuous solution of (DIλ), for almost every
t ∈ I, we can choose ζλ(t) ∈ ∂dC(t)(uλ(t)) such that −u̇λ(t) = λ−1gλ(t)ζλ(t).
It ensues for almost every t ∈ I that

σ
(
− u̇λ(t), ∂dC(t)(uλ(t))

)
=

1

λ
gλ(t)σ

(
ζλ(t), ∂dC(t)(uλ(t))

)
≥ 1

λ
gλ(t)‖ζ(t)‖2,

hence

ġλ(t)gλ(t) ≤ κ gλ(t)− 1

λ
(gλ(t))2‖ζλ(t)‖2.

The reasoning in (6.7) guarantees that for almost every t ∈ I

ġλ(t) ≤ κ− 1

λ
gλ(t)‖ζλ(t)‖2.

A right application of Gronwall Lemma like in the previous section requires
that ‖ζ(·)‖ be bounded from below by some positive real on the set {t ∈
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I : gλ(t) = 0}. This leads (taking into account the situation of r-prox-
regularity) to assume that there exist an extended real r ∈]0,+∞] and a
real α > 0 such that

(Hypα,r) d(0, ∂dC(t)(x)) ≥ α for all t ∈ I, x ∈ Tuber(C(t)),

where Tuber(C(t)) := {x ∈ H : 0 < dC(t)(x) < r}. This means for each
t ∈ I that the Clarke subdifferential of dC(t) at each x ∈ Tuber(C(t)) is kept
α-far away from zero. Given a real α > 0, closed sets for which there is
some r ∈]0,+∞] such that the property holds true are called α-far in ([25])
(see also [24, p. 551] for another related concept of convex-like set). Of
course, according to Theorem 2.8(g) and to (2.4) any r-prox-regular set S
of the Hilbert space H is 1-far relative to Tuber(S), that is, (Hypα,r) holds
with α = 1. A. Jourani and E. Vilches [27, Proposition 3.9] proved the nice
result that for any uniformly subsmooth set S of the Hilbert space H (see
[4] for definition) and any α ∈]0, 1[ there exists some r ∈]0,+∞] such that
S satisfies (Hypα,r).

Throughout the remaining of the section we assume that the hypothesis
(Hypα,r) is satisfied for any set C(t) with t ∈ I and we follow for a very large
part A. Jourani and E. Vilches [28]. Fix for a moment λ > 0. Then by what
precedes, on any interval [T0, τ ] (with T0 < τ ≤ T ) where dC(t)(uλ(t)) < r
(such intervals exist by continuity of t 7→ dC(t)(uλ(t)) and by the equality
dC(T0)(uλ(T0)) = 0) one has for almost every t ∈ [T0, τ ] that

ġλ(t) ≤ κ− α2

λ
gλ(t),

hence by Gronwall lemma (see the previous section) gλ(t) ≤ α−2κλ for all
t ∈ [T0, τ ]. Denote by Tλ the supremum of τ ∈]T0, T ] such dC(t)(uλ(t)) < r
for all t ∈ [T0, τ ] we have

dC(Tλ)(uλ(Tλ)) = gλ(Tλ) ≤ α−2κλ,

so for any positive λ < α2r/κ we see that dC(Tλ)(uλ(Tλ)) < r, hence Tλ = T
since otherwise we would get the contradiction that the property holds with
some τ ∈]Tλ, T ].

For each 0 < λ < α2r/κ we note for almost every t ∈ I := [T0, T ] that
‖u̇λ(t)‖ ≤ gλ(t)/λ by (DIλ), thus ‖u̇λ(t)‖ ≤ α−2κ since gλ(t) ≤ α−2κλ by
what precedes. Fix any sequence (λn)n∈N in ]0, α2r/κ[ tending to 0 and
put yn(·) := uλn(·) for all n ∈ N. Since ‖ẏn(t)‖ ≤ α−2κ for almost every
t ∈ I, from the sequence (ẏn)n∈N we can extract a subsequence that we
do not relabel which converges weakly in L2(I,H) to some w(·). For each

t ∈ I and each n ∈ N writing yn(t) = u0 +
∫ t
T0
ẏn(s) ds allows us to see that

yn(t) → u(t) := u0 +
∫ t
T0
w(s) ds weakly in H for every t ∈ I. By definition

the mapping u(·) is absolutely continuous on I with u̇(·) = w(·) almost
everywhere. Fix any t ∈ I and put r(t) := 1 + sup

n∈N

(
‖yn(t)‖+dC(t)(yn(t))

)
<

+∞. Since d(yn(t), C(t) ∩ r(t)B) = d(yn(t), C(t)) → 0 as n → ∞, there is
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zn(t) ∈ C(t)∩ r(t)B such that ‖yn(t)−zn(t)‖ → 0, so zn(t)→ u(t) weakly in
H. It ensues that ‖zn(t) − u(t)‖ → 0 as n → ∞ since the strong and weak
topologies on the strong compact set C(t)∩ r(t)B coincide, and this implies
that ‖yn(t)− u(t)‖ → 0 as n→ +∞. Remembering that d(yn(t), C(t))→ 0
as n→∞, we also get that u(t) ∈ C(t) by strong closedness of C(t).

Now consider the multimapping F : I × H ⇒ H with nonempty weakly
compact convex values defined by F (t, x) := co

(
{0} ∪ κ

α2∂dC(t)(x)
)

for all
(t, x) ∈ I ×H. Note that for each t ∈ I the multimapping F (t, ·) is scalarly
upper semicontinuous and that for almost every t ∈ I one has −ẏn(t) ∈
F (t, yn(t)) for all n ∈ N since −ẏn(t) ∈ 1

λn
gλn(t)∂dC(t)(yn(t)) with 0 ≤

gλn(t) ≤ κλn
α2 . Since in addition ẏn → u̇ weakly in L2(I,H) as n → ∞ and

‖yn(t)−u(t)‖ → 0 for every t ∈ I, Lemma 7.2 below ensures that for almost
every t ∈ I we have u̇(t) ∈ F (t, u(t)). On the other hand, for each t ∈ I the
inclusion u(t) ∈ C(t) assures us that 0 ∈ κ

α2∂dC(t)(u(t)) ⊂ N(C(t);u(t)).
Therefore, we get that −u̇(t) ∈ N(C(t);u(t)) for almost every t ∈ I.

Lemma 7.2. Assume that H is a general real Hilbert space (not necessar-
ily separable). Consider any real p ∈ [1,+∞[ and any sequence (yn(·))n∈N
converging weakly to y(·) in Lp(I,H). Let F : I × H ⇒ H be a multimap-
ping with nonempty closed convex values such that F (t, ·) is scalarly upper
semicontinuous in (H, ‖ · ‖) for every t ∈ I. Let (xn(·))n∈N be a sequence of
mappings from I into H and let x(·) : I → H be a mapping such that for
almost every t ∈ I, one has ‖xn(t)−x(t)‖ → 0 as n→∞. Assume for each
n ∈ N that yn(t) ∈ F (t, xn(t)) for almost every t ∈ I. Then, one has

y(t) ∈ F (t, x(t)) a.e. t ∈ I.

Proof. By Mazur Lemma there is a sequence (ζn)n∈N in Lp(I,H) converging
strongly to y therein, with ζn ∈ co{yk : k ≥ n}. Extracting a subsequence
if necessary, we may suppose for almost every t ∈ I that ‖ζn(t)− y(t)‖ → 0
as n → ∞. Let L ⊂ I be a Lebesgue negligible set and such that for each
t ∈ I \L one has ‖ζn(t)− y(t)‖ → 0 and ‖xn(t)−x(t)‖ → 0 as n→∞ along
with yn(t) ∈ F (t, xn(t)) for all n ∈ N. Then for each t ∈ I \ L, each z ∈ H
and each n ∈ N we can write

〈z, ζn(t)〉 ≤ sup
k≥n
〈z, yk(t)〉 ≤ sup

k≥n
σ
(
z, F (t, xk(t))

)
.

Letting n→ +∞, we get for each t ∈ I \ L and each z ∈ H
〈z, y(t)〉 ≤ lim

n→+∞
sup
k≥n

σ
(
z, F (t, xk(t))

)
≤ σ

(
z, F (t, x(t))

)
.

This being true for all z ∈ H we conclude that y(t) ∈ F (t, x(t)) for all
t ∈ I \ L. �

We can then state the following partial form of the result of A. Jourani
and E. Vilches [28]. We remember the convention 1/κ = +∞ if κ = 0. We
also recall that for any S ⊂ H and any extended real r > 0, Tuber(S) :=
{x ∈ H : 0 < dS(x) < r}.
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Theorem 7.3 (Jourani-Vilches, [28]). Assume that the real Hilbert space H
is separable. Let C : I = [T0, T ] ⇒ H be a multimapping with nonempty
closed values for which there is a real κ ≥ 0 such that

(7.2) haus(C(s), C(t)) ≤ κ|s− t| for all s, t ∈ I,
and let u0 ∈ C(T0). Assume that the following conditions (i) and (ii) hold:

(i) there exist r ∈]0,+∞] and a real α > 0 such that for every x ∈
Tuber(C(t)) one has

d(0, ∂dC(t)) ≥ α,
that is, the zero in H is kept α-far away from the C-subdifferential
of dC(t) at every point in Tuber(C(t));

(ii) for each t ∈ I and each real r > 0 the set C(t) ∩ rB is strongly
compact in the space H.

Then the following hold.
(a) For each positive real λ < α2r/κ, the differential inclusion (DIλ) admits
at least one absolutely continuous solution.
(b) For each sequence (λ′n)n∈N in ]0,+∞[, there exist a subsequence (λn)n∈N
and an absolutely continuous solution uλn(·) of the differential inclusion
(DIλn) for each n ∈ N such that (uλn(·))n∈N converges pointwise on I to an
absolutely continuous solution u(·) of the sweeping process

u̇(t) ∈ −N(C(t);u(t)) with initial condition u(T0) = u0,

and the derivative u̇(·) of this solution satisfies ‖u̇(t)‖ ≤ α−2κ for almost
every t ∈ I.

We must point out that the case of state dependence, that is, the sweeping
process u̇(t) ∈ −N

(
C(t, u(t));u(t)), is also considered in [28] under similar

hypotheses. E. Vilches [52] also studied the regularization process in [28]
with an additional perturbed Lipschitz mapping.

Remark 7.4. It is worth mentioning that by (7.2) the condition in the
assumption (ii) of Theorem 7.3 is equivalent to require that for each real
r > 0 the set C(I) ∩ rB is relatively compact (in fact compact), where
I := [T0, T ]. More generally, suppose that C(t, x) depends both on t and
on another variable x in a normed space X, that is, C : I × X ⇒ H is a
multimapping, and suppose that there are a function L : X → R on X and
a continuous function v : I → R such that

haus
(
C(s, x), C(t, y)

)
≤ |L(x)− L(y)|+ |v(s)− v(t)|,

for all x, y ∈ H, all s, t ∈ I. Then the condition C(t, A) ∩ rB is relatively
compact for every t ∈ I, every real r > 0 and every bounded set A in X,
is equivalent to the condition that C(I × A) ∩ rB is relatively compact for
every real r > 0 and every bounded set A in X. It is sufficient to show the
implication ⇒. Let r > 0 and A ⊂ X bounded. Take any sequence (yn)n∈N
in C(I × A) ∩ rB. For each n ∈ N there are tn ∈ I and xn ∈ A such that
yn ∈ C(tn, xn) ∩ rB. Extracting a subsequence if necessary we may suppose
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that (tn)n∈N converges to some t0 ∈ I. Since haus
(
C(tn, xn), C(t0, xn)

)
≤

|v(tn)− v(t0)|, for each n ∈ N we can choose some zn ∈ C(t0, xn) such that
‖yn−zn‖ ≤ |v(tn)−v(t0)|+1/n. From this and the boundedness of (yn)n∈N
we see that the sequence (zn)n∈N is bounded, so there is some real r0 such
that we have yn ∈ C(t0, A)∩ r0B+ εnB, where εn := (1/n) + |v(tn)− v(t0)|,
which furnishes some bn ∈ B such that yn + εn bn ∈ C(t0, A) ∩ r0B. By
relative compactness of C(t0, A)∩ r0B and convergence of (εn bn)n∈N (in fact
to 0), it ensues that the sequence (yn)n∈N admits a convergent subsequence.
This confirms the relative compactness of C(I ×A) ∩ rB. �
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