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Abstract. In this paper, we deal with the existence of solutions for per-
turbed state-dependent Moreau’s sweeping processes. Two ways are in-
vestigated to realize such a study, depending on the nature of the used
scheme, namely implicit or semi-implicit. In both cases, our evolution
problem is described in a general Hilbert space by a prox-regular moving
set controlled through the truncated Hausdorff–Pompeiu distance. The
normal cone involved is perturbed by a sum of a single-valued mapping
and a multimapping.
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1. Introduction

Given a time interval I := [0, T ], a Hilbert space H and a closed-valued
multimapping C : I × H ⇒ H, one can consider the problem of finding an
absolutely continuous mapping u(·) : I → H satisfying

(P)

⎧
⎪⎨

⎪⎩

−u̇(t) ∈ N(C(t, u(t));u(t)) + G(t, u(t)) λ-a.e. t ∈ I,

u(t) ∈ C(t, u(t)) for all t ∈ I,

u(0) = u0 ∈ C(0, u0),

where N(·, ·) denotes a general concept of normal cone in H and G : I ×H ⇒
H is a multimapping. The differential inclusion (P) with C(t, x) =: D(t)
convex, G ≡ 0 and N(·, ·) the normal cone of convex analysis, that is,

(Q)

⎧
⎪⎨

⎪⎩

−u̇(t) ∈ N(D(t);u(t)) λ-a.e. t ∈ I,

u(t) ∈ D(t) for all t ∈ I,

u(0) = u0 ∈ D(0),
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has been introduced in 1971 by Moreau in the famous “Travaux du Séminaire
d’Analyse Convexe de Montpellier” [21] and called “sweeping process” (“pro-
cessus de rafle” in French) due to its mechanical interpretation. Over the
years, many variants of the so-called Moreau’s sweeping process have been
developed in the literature: stochastic [8], perturbed [2,20], nonconvex [15,
17,29], in Banach spaces framework [6]. To the best of our knowledge, the
state-dependent sweeping process (P) appeared for the first time in the thesis
of Chraibi [11] for a convex moving set C(t, x), in the particular case H = R

3

and G ≡ 0. The second work on that topic has been realized a decade later by
Kunze and Monteiro Marques [18] in a general Hilbert setting. To construct
a solution u(·) of (P) with G ≡ 0, they used the implicit scheme

tni := i
T

2n
, un

0 := u0 and un
i+1 := projC(tn

i+1,un
i+1)

(un
i ) (1.1)

which is well defined thanks to the convexity of each C(t, x) and an extension
of Schauder’s fixed point theorem (see Sect. 2). Their crucial assumptions
are on one hand the Lipschitz behavior of the moving set C(·, ·), namely the
existence of two reals L1, L2 ≥ 0 such that

haus(C(t, x), C(τ, y)) ≤ L1 |t − τ | + L2 ‖x − y‖ (1.2)

and, on the other hand, some compactness assumption on C(·, ·) through the
Kuratowski or ball measure of noncompactness γ(·) of H (see Sect. 2); more
precisely

γ(C(t, B) ∩ δB) < γ(B), (1.3)

for each bounded subset B of H and for δ > 0 large enough. It is worth
pointing out that unlike (Q), the existence of solutions for (P) without any
compactness-type assumption still remains an open question. In addition to
their existence result, the authors of [18] showed that no solution of (P)
could be expected whenever L2 > 1 in (1.2). We also refer to the works
[9,10] for other developments based on fixed point theorems in the context
of nonconvex prox-regular sets [12,26].
The evolution problem (P) can also be handled without any fixed point
arguments. This is the case for instance in [14] where Haddad developed
the semi-implicit algorithm for a prox-regular moving set C(·, ·) and with a
general multivalued perturbation F (·) := G(·)

tni := i
T

2n
, un

0 := u0 and un
i+1 := projC(tn

i+1,un
i )(u

n
i − (tni+1 − tni )fn

i ),

(1.4)
with fn

i ∈ F (tni , un
i ), under the existence of a fixed strong compact set K

such that C(t, x) ⊂ K for every (t, x) ∈ I × H. Such a scheme has been also
used in the much more general context of a subsmooth [3] moving set C(·, ·)
[16]. Let us mention that, besides (1.1) and (1.4), the authors of [4] used
another approach to get a solution of (P) with F 
≡ 0 based on a reduction
technique to unconstrained differential inclusion.

The aim of the present paper is to develop existence results for the
differential inclusion (P) described by a prox-regular moving set of a general
Hilbert space, with a perturbation G := F + f , where F : I × H ⇒ H is



Truncated nonconvex state-dependent sweeping process Page 3 of 32  121 

a multimapping and f : I × H → H is a mapping. Doing so, we adapt the
two major algorithms (1.1) and (1.4) and one of the main ideas of [5,22] in
defining

un
0 := u0 and un

i+1 := projC(tn
i+1,ωn

i )

(

un
i − (tn

i+1 − tn
i )f

n
i −

∫ tn
i+1

tn
i

f(τ, un
i )dτ

)

,

with fn
i ∈ F (tni , un

i ) and where ωn
i := un

i or ωn
i := un

i+1, depending on
the scheme which is followed. As pointed out by Tolstonogov [28], the in-
equality (1.2) may fail for large classes of unbounded sets. This leads sev-
eral researchers to weaken the inequality on the moving set in various forms
(see, e.g., [1,23,24,27,28]). Following this way, we will replace in (1.2) the
Hausdorff–Pompeiu distance haus(·, ·) by the ρ-truncated one (resp., the ρ-
excess if C(·, ·) is assumed to be bounded) that is hausρ(·, ·) (resp., excρ(·, ·))
for a suitable choice of ρ > 0. Concerning the perturbations, we will require
that f(·, ·) is a Carathéodory mapping satisfying for some real α > 0,

‖f(t, x)‖ ≤ α(1 + ‖x‖) for all (t, x) ∈ I × H (1.5)

and F (·, ·) is a scalarly upper semicontinuous multimapping with closed con-
vex values such that for some real β > 0,

F (t, x) ⊂ β(1 + ‖x‖)B for all (t, x) ∈ I × H. (1.6)

The paper is organized as follows: Sect. 2 is devoted to recall fundamen-
tal background in variational analysis. Section 3 is concerned with specific
results used in the proof of the existence theorems provided in Sects. 4 and
5.

2. Notation and preliminaries

In the whole paper, T is a positive real, I is the compact interval [0, T ], λ is
the Lebesgue measure on I. The letter R+ := [0,+∞[ (resp., N) stands for
the set of nonnegative reals (resp., set of integers starting from 1).

Throughout the paper, H is a real Hilbert space endowed with an inner
product 〈·, ·〉 and the associated norm ‖·‖ :=

√
〈·, ·〉. The closed unit ball

(resp., the open unit ball) of H is denoted by B (resp., U) and the class of all
bounded subsets of H is denoted by B.

Let S be a nonempty subset of H. The support function of S (resp., the
distance function from S) is defined by

σ(v, S) := sup
x∈S

〈v, x〉 for all v ∈ H

(resp., dS(x) :=: d(x, S) := inf
y∈S

‖x − y‖ for all x ∈ H).

As a classical application of the Hahn–Banach separation theorem, we know
that for any two closed convex subsets S1, S2 of H, one has

S1 ⊂ S2 ⇔ σ(·, S1) ≤ σ(·, S2). (2.1)
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For any x ∈ H, the (possibly empty) set of nearest points of x in S is defined
as:

ProjS(x) := {y ∈ S : dS(x) = ‖x − y‖} .

If ProjS(x) = {y} for some y ∈ S, one says that projS(x) (or PS(x)) is well
defined and in such a case one sets projS(x) := y (or PS(x) := y).

Let S′ be another nonempty subset of H and let ρ ∈]0,+∞] be an
extended real. One defines the ρ-pseudo excess of S over S′ (also called the
pseudo excess of the ρ-truncation of S over S′) as the extended real

excρ(S, S′) := sup
x∈S∩ρB

d(x, S′).

The Hausdorff–Pompeiu ρ-pseudo distance between S and S′ is defined as:

hausρ(S, S′) := max {excρ(S, S′), excρ(S′, S)} .

If ρ = +∞, we set by convention ρB = H, so in this case the ρ-pseudo excess
of S over S’ (resp., the Hausdorff–Pompeiu ρ-pseudo distance between S and
S′) is the usual excess of S over S′ (resp., the usual Hausdorff–Pompeiu
distance between S and S′), i.e.,

exc∞(S, S′) = sup
x∈S

d(x, S′) =: exc(S, S′)

(resp.,

haus∞(S, S′) = max {exc(S, S′), exc(S′, S)} := haus(S, S′)).

For every real α > 0 such that excρ(S, S′) < α, it is readily seen that

S ∩ ρB ⊂ S′ + αB. (2.2)

Note also that

d(x′, S′) ≤ ‖x − x′‖ + excρ(S, S′) for all x ∈ S ∩ ρB, x′ ∈ H,

or equivalently

d(x′, S′) ≤ d(x′, S ∩ ρB) + excρ(S, S′) for all x′ ∈ H. (2.3)

2.1. Proximal and Clarke normal cones

In this section, S is a subset of the real Hilbert space H, U is a nonempty
open subset of H and f : U → R ∪ {+∞} is a function.

The proximal normal cone to S at x ∈ H is defined as the set

NP (S;x) :=

{
{v ∈ H : ∃r > 0, x ∈ ProjS(x + rv)} if x ∈ S,

∅ otherwise.

For each x ∈ S, it is known that NP (S;x) is a convex cone (not necessarily
closed) containing 0. From the definition, it is readily seen that for all v ∈ H
with ProjS(v) 
= ∅,

v − w ∈ NP (S;w) for all w ∈ ProjS(v). (2.4)
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Through the concept of proximal normal cone, one defines the proximal
subdifferential ∂P f(x) of f at x ∈ U as the set

∂P f(x) :=
{
v ∈ H : (v,−1) ∈ NP

(
epi f ; (x, f(x))

)}
,

where epi f is the epigraph of f , i.e.,

epi f := {(u, r) ∈ H × R : u ∈ U, f(u) ≤ r}

and where H × R is endowed with the usual Hilbert product structure. In
particular, note that ∂P f(x) = ∅ if f is not finite at x ∈ U .

For each x ∈ S, the set of all vectors h ∈ H such that for every sequence
(xn)n∈N of S with xn → x, for every sequence (tn)n∈N of positive reals with
tn → 0, there is a sequence (hn)n∈N of H with hn → h satisfying

xn + tnhn ∈ S for all n ∈ N

is called the Clarke tangent cone to S at x and is denoted TC(S;x). It is
known that this set is a closed convex cone containing 0. The Clarke normal
cone of S at x ∈ S is denoted by NC(S;x) and defined as the polar cone of
TC(S;x), that is

NC(S;x) :=
{
v ∈ H : 〈v, h〉 ≤ 0,∀h ∈ TC(S;x)

}
.

It is usual to set for every x ∈ H\S, TC(S;x) := ∅ =: NC(S;x). Then, it can
be checked in a direct way

NP (S;x) ⊂ NC(S;x) for all x ∈ H. (2.5)

As for the proximal subdifferential, one defines the Clarke subdifferential
∂Cf(x) of f at x ∈ U by

∂Cf(x) :=
{
v ∈ H : (v,−1) ∈ NC

(
epi f ; (x, f(x))

)}
,

so ∂Cf(x) = ∅ whenever f is not finite at x ∈ U . From the inclusion (2.5),
we observe that the proximal subdifferential is always included in the Clarke
one, or in other words

∂P f(x) ⊂ ∂Cf(x) for all x ∈ U.

If S is closed, the following relations between the proximal (resp., Clarke)
subdifferential of the distance function of S and the proximal (resp., Clarke)
normal cone to S hold true for all x ∈ S

∂P dS(x) = NP (S;x) ∩ B and ∂CdS(x) ⊂ NC(S;x) ∩ B. (2.6)

If the function f is γ-Lipschitz near x ∈ U for some real γ ≥ 0, it is well
known that ∂Cf(x) ⊂ γB and

fo(x; ·) = σ(·; ∂Cf(x)),

where fo(x; ·) is the Clarke directional derivative of f at x, that is

fo(x;h) := lim sup
t↓0,x′→x

t−1(f(x′ + th) − f(x′)) for all h ∈ H.
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Under such a Lipschitz assumption, fo(x; ·) is γ-Lipschitz on H, convex and
positively homogeneous. If U is convex, f Lipschitz continuous near x and
convex on U , then

fo(x;h) = f ′(x;h) for all h ∈ H, (2.7)

where f ′(x; ·) denotes the standard directional derivative of f at x, i.e.,

f ′(x;h) := lim
t↓0

t−1(f(x + th) − f(x)) for all h ∈ H.

2.2. Prox-regular sets in Hilbert setting

As mentioned above, we are interested in this paper in a variant of Moreau’s
sweeping process described by a prox-regular moving set. For the convenience
of the reader, let us give some basic facts about prox-regularity. More details
on this topic are available in the survey [12].

Definition 2.1 [26]. Let S be a nonempty closed subset of H, r ∈]0,+∞].
One says that S is r-prox-regular (or uniformly prox-regular with constant
r) whenever, for all x ∈ S, for all v ∈ NP (S;x) ∩ B and for all t ∈]0, r[, one
has x ∈ ProjS(x + tv).

The following theorem provides some useful characterizations and prop-
erties of uniform prox-regular sets (see, e.g., [12]). Before stating it, recall that
for any extended real r > 0, the r-open enlargement of a subset S of H is
defined as:

Ur(S) := {x ∈ H : dS(x) < r}.

Theorem 2.2. Let S be a nonempty closed subset of H, r ∈]0,+∞]. Consider
the following assertions.
(a) The set S is r-prox-regular.
(b) For all x1, x2 ∈ S, for all v ∈ NP (S;x1), one has

〈v, x2 − x1〉 ≤ 1
2r

‖v‖ ‖x1 − x2‖2 .

(c) The mapping projS : Ur(S) → S is well-defined and locally Lipschitz on
Ur(S).

(d) For all u ∈ Ur(S)\S, one has (with x = projS(u))

x = projS
(
x + t

u − x

‖u − x‖
)

for all t ∈ [0, r[.

(e) For any x ∈ S, one has

NP (S;x) = NC(S;x) and ∂P dS(x) = ∂CdS(x).

Then, the assertions (a), (b), (c) and (d) are pairwise equivalent and
each one implies (e).

According to (e) of Theorem 2.2, we put

N(S;x) := NP (S;x) = NC(S;x) for all x ∈ S,

whenever S is a uniform prox-regular set of the real Hilbert space H.
The following result is strongly inspired from [25, Theorem 2].
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Proposition 2.3. Let S1, S2 be r-prox-regular subsets of H with r ∈]0,+∞[,
ζ ∈]0, 1[, δ ∈ [0,+∞[, x ∈ Urζ(S1) ∩ Urζ(S2) ∩ δB. If hausrζ+δ(S1, S2) ≤ r,
then one has

∥
∥projS1

(x) − projS2
(x)
∥
∥ ≤

(
2ζr

1 − ζ
hausrζ+δ(S1, S2)

)1/2

.

Proof. Set s := rζ + δ and h := hauss(S1, S2). Assume that h ≤ r. For each
i ∈ {1, 2}, ProjSi

(x) is reduced to a singleton {xi} (thanks to x ∈ Urζ(Si)
and the fact that Si is r-prox-regular). Observe that

‖x2‖ ≤ ‖x2 − x‖ + ‖x‖ = dS2(x) + ‖x‖ < s,

i.e., x2 ∈ S2 ∩ sB. It follows that

dS1(x2) ≤ sup
x∈S2∩sB

dS1(x) = excs(S2, S1) ≤ h.

We claim that

2 〈x − x1, x2 − x1〉 ≤ ζ(‖x1 − x2‖2 + 2rh).

We may assume that x 
= x1, hence x /∈ S1. In particular, we have x ∈
Ur(S1)\S1, so we can apply Theorem 2.2 to get

x1 = projS1

(
x1 +

t(x − x1)
‖x − x1‖

)
for all t ∈ [0, r[.

From the latter equality, we note that for all z ∈ S1, for all t ∈ [0, r[,
∥
∥
∥
∥x1 +

t(x − x1)
‖x − x1‖

− x2

∥
∥
∥
∥ ≥

∥
∥
∥
∥x1 +

t(x − x1)
‖x − x1‖

− z

∥
∥
∥
∥− ‖x2 − z‖ ≥ t − ‖x2 − z‖ .

Passing to the supremum yields for all t ∈ [0, r[,
∥
∥
∥
∥x1 +

t(x − x1)
‖x − x1‖

− x2

∥
∥
∥
∥ ≥ sup

z∈S1

(t − ‖x2 − z‖) = t − dS1(x2) ≥ t − h.

Taking the limit as t ↑ r in both sides of the latter inequality, we arrive to
∥
∥
∥
∥x1 +

r(x − x1)
‖x − x1‖

− x2

∥
∥
∥
∥ ≥ r − h.

We deduce from this (thanks to the inequality r ≥ h)

‖x1 − x2‖2 +
2r

‖x − x1‖
〈x − x1, x1 − x2〉 + r2 ≥ r2 − 2rh,

or equivalently

2r 〈x − x1, x2 − x1〉 ≤ ‖x − x1‖ (‖x1 − x2‖2 + 2rh).

Keeping in mind that dS1(x) = ‖x − x1‖ < rζ, we obtain

2 〈x − x1, x2 − x1〉 ≤ ζ(‖x1 − x2‖2 + 2rh),

which is the inequality claimed above. In the same way, we show

2 〈x − x2, x1 − x2〉 ≤ ζ(‖x1 − x2‖2 + 2rh).
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Adding the two latter inequalities, we have

‖x1 − x2‖2 ≤ ζ(‖x1 − x2‖2 + 2rh)

or equivalently

‖x1 − x2‖2 ≤ 2rζh

1 − ζ
.

The proof is then complete. �

The case r = +∞ in the latter proposition is due to Moreau (see, e.g.,
[19, Proposition 4.7]).

Proposition 2.4. Let C,C ′ be two nonempty closed convex subsets of H and
x ∈ H. Then, one has

‖projC(x) − projC′(x)‖ ≤ 2
(
dC(x) + dC′(x)

)
haus(C,C ′).

Before stating the last result of this section, let us recall that a function
f : C → R ∪ {+∞} defined on a nonempty convex subset C of H is said to
be σ-semiconvex (on C) for some σ ∈ R+ := [0,+∞[ provided

f(tx + (1 − t)y) ≤ tf(x) + (1 − t)f(y) +
σ

2
t(1 − t) ‖x − y‖2 ,

for all x1, x2 ∈ C, for all t ∈]0, 1[ or equivalently if f + σ
2 ‖·‖2 is convex on C.

Theorem 2.5. Let S be an r-prox-regular subset of H for some r ∈]0,+∞].
Then, for any s ∈]0, r[, for any nonempty convex set C ⊂ Us(S), the function
dS is (r − s)−1-semiconvex on C.

2.3. Kuratowski and ball measure of noncompactness

Our development below will require an extension of a classical result in func-
tional analysis due to Schauder, which says that a continuous compact map-
ping f : C → C defined on C a nonempty closed bounded convex subset of a
Banach space has a fixed point (see, e.g., [13]). Before stating it, we have to
introduce the concept of measure of noncompactness. Recall that B denotes
the class of all bounded subsets of H.

Definition 2.6. One calls Kuratowski (resp., ball) measure of noncompactness
on H, the mapping K : B → [0,+∞[ (resp., B : B → [0,+∞[) defined by

K(Ω) := inf R(Ω) for all Ω ∈ B,

(resp.,

B(Ω) := inf S(Ω) for all Ω ∈ B),

where for each Ω ∈ B, R(Ω) (resp., S(Ω)) denotes the set of all reals d > 0
such that Ω admits a finite cover of subsets of H with diameter less or equal
than d (resp., of balls of H with radius d).

Throughout the paper, the letter γ indifferently stands for the Kura-
towski and ball measure of noncompactness. Before giving some first proper-
ties of γ(·), let us note the following obvious inequality:

γ(αB) ≤ 2α for all α ∈ ]0,+∞[. (2.8)
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Proposition 2.7 [13, Proposition 7.2]. The following hold.
(a) For all Ω ∈ B, γ(Ω) = 0 if and only if clHΩ is compact.
(b) For all Ω1, Ω2 ∈ B with Ω1 ⊂ Ω2, one has γ(Ω1) ≤ γ(Ω2).
(c) For all Ω1, Ω2 ∈ B, one has γ(Ω1 + Ω2) ≤ γ(Ω1) + γ(Ω2).
(d) For all Ω1, Ω2 ∈ B, one has γ(Ω1 ∪ Ω2) ≤ max{γ(Ω1), γ(Ω2)}.

The extension of Schauder’s fixed point involves γ(·)-condensing map-
pings.

Definition 2.8. Let Ω be a nonempty subset of H, f : Ω → H be a continuous
mapping on Ω. One says that f is γ(·)-condensing whenever γ(f(B)) < γ(B)
for every bounded set B ⊂ Ω with γ(B) > 0.

Now, we are in position to state the following fixed point result.

Theorem 2.9 [13, Theorem 9.1] . Let C be a nonempty closed bounded convex
subset of H, f : C → C be a γ(·)-condensing mapping. Then, f has a fixed
point.

3. Preparatory results

This section is devoted to develop particular results which will be needed in
the proof of the main results of the paper.

Before stating the first theorem, let us recall the concept of mapping
with bounded variation. Let u : I = [0, T ] → H be a mapping. Any finite
sequence σ = (t0, . . . , tk) ∈ R

k+1 with k ∈ N such that 0 = t0 < · · · < tk = T
is called a subdivision σ of I. One associates with such a subdivision σ, the
real Sσ :=

∑k
i=1 ‖u(ti) − u(ti−1)‖. The variation of u on I is defined as the

extended real

var(u; I) := sup
σ∈S

Sσ,

where S is the set of all subdivisions of I. The mapping u is said to be of
bounded variation on I if var(u; I) < +∞.

The first result says that a sequence of uniformly bounded in norm and
in variation mappings has a pointwise weakly convergent subsequence (see,
e.g., [19, Theorem 2.1 p.10–11]).

Theorem 3.1. Let (fn)n∈N be a sequence of mappings from I to H. Assume
that:
(a) there exists a real M > 0 such that

‖fn(t)‖ ≤ M for all n ∈ N, t ∈ I;

(b) there exists a real L > 0 such that

var(fn; I) ≤ L for all n ∈ N.

Then, there exist a mapping f : I → H with bounded variation on I and
a subsequence (fs(n))n∈N of (fn)n∈N such that

fs(n)(t)
w→ f(t) for all t ∈ I,

where w→ denotes the weak convergence in H.
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Our aim is now to establish the following scalar upper semicontinuity
property for prox-regular sets. It is a variant of a previous result due to
Thibault and the author [23]. For the convenience of the reader, let us sketch
a proof.

Proposition 3.2. Let C : I×H ⇒ H be an r-prox-regular valued multimapping
for some r ∈]0,+∞]. Assume that there exist ρ ∈]0,+∞], L1, L2 ∈ [0,+∞[
such that for all τ, t ∈ I with τ ≤ t,

excρ(C(τ, x), C(t, y)) ≤ L1(t − τ) + L2 ‖x − y‖ . (3.1)

Let t ∈ I, x ∈ H with x ∈ C(t, x) ∩ ρU, (tn)n∈N be a sequence of [t, T ] with
tn → t and (xn)n∈N be a sequence of H with xn → x and xn ∈ C(tn, xn) for
all n ∈ N. Then, one has

lim sup
n→+∞

do
C(tn,xn)(xn;h) ≤ do

C(t,x)(x;h) for all h ∈ H,

or equivalently

lim sup
n→+∞

σ(h, ∂CdC(tn,xn)(xn)) ≤ σ(h, ∂CdC(t,x)(x)) for all h ∈ H.

Before giving the proof, we need the following lemmas (see also [23]).

Lemma 3.3. Let U be an open subset of H, x ∈ U and g : U → R be a
function. If there exists a real δ > 0 with B(x, δ) ⊂ U and such that g is
σ-semiconvex on B(x, δ) for a real σ ≥ 0, then one has for all h ∈ B,

go(x;h) = inf
t∈]0,δ[

t−1[g(x + th) − g(x) +
σ

2
(‖x + th‖2 − ‖x‖2)

]− σ 〈x, h〉 = g′(x;h).

Proof. Assume that there exists a real δ > 0 such that B(x, δ) ⊂ U and g is
σ-semiconvex on B(x, δ) for a real σ ≥ 0. Fix any h ∈ B. Set f := g + σ

2 ‖·‖2
which is convex on B(x, δ) according to the σ-semiconvexity on B(x, δ) of g.
From (2.7), one observes that

f ′(x;h) = fo(x;h)

= lim sup
t↓0,x′→x

t−1
[
(g(x′ + th) − g(x′)) +

σ

2
‖x′ + th‖2 − σ

2
‖x′‖2

]

= go(x;h) + D(
σ

2
‖·‖2)(x)(h).

Since f is convex on B(x, δ) and x + th ∈ B(x, δ) for each t ∈]0, δ[, we have

f ′(x;h) = inf
t∈]0,δ[

t−1(f(x + th) − f(x)).

It follows that

go(x;h) = −σ 〈x, h〉 + inf
t∈]0,δ[

t−1(f(x + th) − f(x)),
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so the first equality claimed is established. For the second, it remains to see
that

go(x;h) = f ′(x;h) − D
(σ

2
‖·‖2
)

(x)(h)

= f ′(x;h) −
(σ

2
‖·‖2
)′

(x;h)

=
(
f − σ

2
‖·‖2
)′

(x;h) = g′(x;h).

The proof is then complete. �

Lemma 3.4. Let S be an r-prox-regular subset of H for some r ∈]0,+∞].
Then, for each s ∈]0, r[, one has for all (x, h) ∈ S × B,

(dS)o(x;h) = lim
t↓0

t−1dS(x + th)

= inf
t∈]0,s[

t−1
[

dS(x + th) +
1

2(r − s)
(‖x + th‖2 − ‖x‖2)

]

− 1

r − s
〈x, h〉 .

Proof. If r = +∞, we know that S is convex as well as its associated distance
function dS . This justifies the equality claimed. Suppose now r < +∞. Fix
any s ∈]0, r[. Let (x, h) ∈ S × B. It is easy to check that B(x, s) ⊂ Us(S),
so we can apply Theorem 2.5 to get that dS is 1

r−s -semiconvex on B(x, s). It
remains to combine Lemma 3.3 with the equality dS(x) = 0. �

Now, we are able to prove Proposition 3.2.

Proof. (of Proposition 3.2) Fix any h ∈ B. Let s ∈]0, r[. Since C(t, x) is r-
prox-regular, the mapping projC(t,x) : Ur(C(t, x)) → H is well-defined and
norm-to-norm continuous. In particular, we have

lim
x→x

projC(t,x)(x) = projC(t,x)(x) = x ∈ ρU,

so we can find a real α ∈]0, s[ such that for all x ∈ B(x, α),

projC(t,x)(x) ∈ ρU ⊂ ρB.

From the latter inclusion and the inequalities valid for all x ∈ B(x, α), we
see that

‖x − projC(t,x)(x)‖ = dC(t,x)(x)

≤ dC(t,x)∩ρB(x)

≤ ‖x − projC(t,x)(x)‖,

which entails

dC(t,x)(x) = dC(t,x)∩ρB(x) for all x ∈ B(x, α). (3.2)

Applying Lemma 3.4 gives for every n ∈ N, τ ∈]0, α[, we have

do
C(tn,xn)(xn;h) ≤ τ−1dC(tn,xn)(xn + τh) − 1

r − s
〈xn, h〉

+
τ−1

2(r − s)
(‖xn + τh‖2 − ‖xn‖2). (3.3)
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Furthermore, for all n ∈ N, for all τ ∈]0, α[, we see that

τ−1dC(tn,xn)(xn + τh)

≤ τ−1
(
dC(tn,xn)(x + τh) + ‖xn − x‖

)

≤ τ−1
(
dC(t,x)∩ρB(x + τh) + excρ(C(t, x), C(tn, xn)) + ‖xn − x‖

)

≤ τ−1
(
dC(t,x)∩ρB(x + τh) + L1(tn − t) + L2 ‖xn − x‖ + ‖xn − x‖

)

= τ−1
(
dC(t,x)(x + τh) + L1(tn − t) + (1 + L2) ‖xn − x‖

)

where the second inequality is due to (2.3), the third to (3.1) and where the
equality is a direct consequence of (3.2). This entails that for all τ ∈]0, α[,

lim sup
n→+∞

τ−1dC(tn,xn)(xn + τh) ≤ τ−1dC(t,x)(x + τh). (3.4)

On the other hand for all τ ∈]0, α[,

lim sup
n→+∞

[

− 1
r − s

〈xn, h〉 +
1

2(r − s)τ
(‖xn + τh‖2 − ‖xn‖2)

]

= − 1
r − s

〈x, h〉 +
1

2(r − s)τ
(‖x + τh‖2 − ‖x‖2)

=
τ

2(r − s)
‖h‖2 . (3.5)

Putting (3.3), (3.4) and (3.5) together, we see that for all τ ∈]0, α[,

lim sup
n→+∞

do
C(tn,xn)(xn;h) ≤ τ−1dC(t,x)(x + τh) +

τ

2(r − s)
‖h‖2 .

On the other hand, since x ∈ C(t, x), we have

lim sup
τ↓0

τ−1dC(t,x)(x + τh) ≤ do
C(t,x)(x;h),

hence

lim sup
n→+∞

do
C(tn,xn)(xn;h) ≤ do

C(t,x)(x;h).

The latter inequality being true for any h ∈ B, the positive homogeneity of
the Clarke directional derivative guarantees that it holds for all h ∈ H. �

4. Existence result for unbounded moving set through implicit
algorithm

As mentioned above, in [18] Kunze and Monteiro Marques established in
any Hilbert space the existence of solutions for the following state-dependent
sweeping process

(SDSP)

⎧
⎪⎨

⎪⎩

−u̇(t) ∈ N(C(t, u(t));u(t)) + F (t, u(t)) + f(t, u(t)) λ -a.e. t ∈ I,

u(t) ∈ C(t, u(t)) for all t ∈ I,

u(0) = u0,
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with F, f ≡ 0 and C(·, ·) closed convex valued, under the Lipschitz behavior
of C(·, ·)

haus(C(t, x), C(τ, y)) ≤ L1 |t − τ | + L2 ‖x − y‖ , (4.1)

where L1 ≥ 0 and 0 ≤ L2 < 1 and under the compactness assumption (1.3).
Their technique involves the following implicit algorithm:

tni := i
T

2n
, un

0 := u0 and un
i+1 := projC(tn

i+1,un
i+1)

(un
i ), (4.2)

which is strongly based on the fixed point result stated in Theorem 2.9.
Our aim in the present section is to develop such an implicit approach for

an r-prox-regular moving set C(·, ·) (possibly unbounded) with a perturbation
described through a sum of a Carathéodory mapping f(·, ·) : I×H → H and a
scalarly upper semicontinuous multimapping F (·, ·) : I × H ⇒ H with closed
convex values satisfying respectively (1.5) and (1.6). It is worth mentioning
that the unperturbed (i.e., F, f ≡ 0) prox-regular case has already been
considered in [9] with the help of (4.2) in a general separable Hilbert space.
Besides the perturbation f + F and the prox-regularity of C(·, ·), we also
weaken the control on the moving set in (4.1) by replacing the Pompeiu–
Hausdorff distance haus(·, ·) by a truncated Hausdorff distance hausρ(·, ·)
i.e.,

hausρ(C(t, x), C(τ, y)) ≤ L1 |t − τ | + L2 ‖x − y‖ ,

for some suitable extended real ρ > 0 depending on the data r, ‖u0‖ , T, α
and β.

To construct our version of the implicit algorithm (4.2), namely

un
0 := u0, un

i+1 := projC(tn
i+1,un

i+1)

(
un

i − (tni+1 − tni )ζ(tni , un
i ) −

∫ tn
i+1

tn
i

f(τ, un
i )dτ

)

and

ζ(tni , un
i ) ∈ F (tni , un

i ),

the following result will be needed. With F, f ≡ 0, it can be seen as an
extension of [18, Lemma 2.1] to the prox-regular setting.

Proposition 4.1. Let C : I × H ⇒ H be a multimapping, s, θ ∈ I, t ∈ [s, T ],
u ∈ H with u ∈ C(s, u), z ∈ F (θ, u).

Let f : I ×H → H be a mapping and F : I ×H ⇒ H be a multimapping
such that:

(i) the mapping f(·, u) is measurable and there exists a real α ≥ 0 such
that

‖f(τ, u)‖ ≤ α(1 + ‖u‖) for all τ ∈ [s, t];

(ii) there exists a real β ≥ 0 such that

F (θ, u) ⊂ β(1 + ‖u‖)B.

With ϑ := (α + β)(1 + ‖u‖) assume that:
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(iii) there exist two reals L1 ≥ 0, 0 ≤ L2 < 1 and two extended reals r >
(L1+(1+L2)ϑ)(t−s)

1−L2
, ρ ≥ ϑ(t − s) + ‖u‖ + r such that for every τ, τ ′ ∈ I,

x, y ∈ H, C(τ, x) is r-prox-regular and

hausρ(C(τ, x), C(τ ′, y)) ≤ L1 |τ − τ ′| + L2 ‖x − y‖ ;

(iv) there exists a real δ ≥ L1+2ϑ
1−L2

(t − s) + ‖u‖ such that for every bounded
subset B of H with γ(B) > 0,

γ(C(t, B) ∩ δB) < γ(B).

Then, there exists v ∈ H such that

‖u − v‖ ≤ L1 + 2ϑ

1 − L2
(t − s) and v = projC(t,v)

(

u − (t − s)z −
∫ t

s

f(τ, u)dτ

)

.

Proof. We may assume that t 
= s. Set

u′ := u − (t − s)z −
∫ t

s

f(τ, u)dτ and c :=

(
L1 + (1 + L2)ϑ

)
(t − s)

1 − L2
.

From (i) and (ii), we observe that

‖u − u′‖ ≤ (t − s) ‖z‖ +
∫ t

s

‖f(τ, u)‖ dτ ≤ ϑ(t − s). (4.3)

Thanks to (iii), pick any real r′ ∈]c, r[. Assume for a moment that c =
0. Then, observe that ϑ = 0 and L1 = 0. Using the latter inequality and
assumption (iii), we get

u′ = u and hausρ(C(s, u), C(t, u)) = 0.

It follows (keeping in mind that u ∈ C(s, u) ∩ ρB and that C(·, ·) is closed-
valued since it takes prox-regular values) u ∈ C(t, u). Consequently, we have

‖u − u′‖ ≤ L1 + 2ϑ

1 − L2
(t − s) and u = projC(t,u)(u

′).

So, we may assume that c > 0. By virtue of the inclusion u ∈ C(s, u) ∩ ρB,
(4.3) and the inequality c < r′, we see that for all w ∈ B[u′, c],

dC(t,w)(u′) ≤ dC(t,w)(u) + ‖u − u′‖
≤ excρ(C(s, u), C(t, w)) + ϑ(t − s)

≤ (L1 + ϑ)(t − s) + L2 ‖u − w‖
≤ (L1 + ϑ)(t − s) + L2(‖u − u′‖ + ‖u′ − w‖)

≤
(
L1 + (1 + L2)ϑ

)
(t − s) + L2c

=

(
L1 + (1 + L2)ϑ

)
(t − s)

1 − L2
(1 − L2 + L2)

= c < r′. (4.4)

According to the r-prox-regularity of C(t, w) for each w ∈ B[u′, c], the latter
inequality allows us to consider the mapping g : B[u′, c] → B[u′, c] defined
by

g(w) := projC(t,w)(u
′) for all w ∈ B[u′, c].
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Now, set κ := ‖u‖ + ϑ(t − s) and note that (see (4.3)) ‖u′‖ ≤ κ. Hence, (by
virtue of (4.4)) we have

u′ = u−(t−s)z−
∫ t

s

f(τ, u)dτ ∈ Ur′(C(t, w))∩κB for allw ∈ B[u′, c]. (4.5)

Now, we claim that g is continuous on Ω. Fix any v ∈ Ω := B[u′, c] and let
(vn)n∈N be a sequence of Ω converging to v. Let us distinguish two cases.

Case 1: r = +∞. From (iii), we see that ρ = +∞, so hausρ(·, ·) coincides with
haus(·, ·). Combining Proposition 2.4, (iii) and (4.5), we obtain g(vn) → g(v).

Case 2: r < +∞. From (4.5) again, we have for all n ∈ N,

u′ = u − (t − s)z −
∫ t

s

f(τ, u)dτ ∈ Ur′(C(t, vn)) ∩ Ur′(C(t, v)) ∩ κB.

By assumption (keeping in mind that ρ ≥ r′ + κ) we have

hausr′+κ(C(t, vn), C(t, v)) → 0.

Thus, for n ∈ N large enough

hausr′+κ(C(t, vn), C(t, v)) ≤ r.

This allows us to apply Proposition 2.3 to obtain that g(vn) → g(v).
In any case, g is continuous at v. Consequently, g is continuous on Ω. Now,
fix any (bounded) subset B of Ω with γ(B) > 0. From the very definition
of g, we have g(B) ⊂ C(t, B). Thanks to (4.4), note that for each b ∈ B,
‖g(b) − u′‖ = dC(t,b)(u′) ≤ c which entails the inclusion

g(B) ⊂ (c + κ)B ⊂ δB.

Combining Proposition 2.7 with assumption (iv), we arrive to

γ(g(B)) ≤ γ(C(t, B) ∩ δB) < γ(B).

Applying Theorem 2.9, we get a fixed point v ∈ B[u′, c] for g, that is,

‖u′ − v‖ ≤ (L1 + (1 + L2)ϑ)(t − s)
1 − L2

and v = projC(t,v)(u
′).

In particular, we obtain through (4.3),

‖u − v‖ ≤
(

L1 + (1 + L2)ϑ
1 − L2

+ ϑ

)

(t − s) =
L1 + 2ϑ

1 − L2
(t − s).

The proof is complete. �

Remark 4.2. According to Proposition 2.7, it is clear that (iv) above is sat-
isfied if C(t, B) is relatively ball-compact (i.e., the intersection of C(t, B)
with any closed ball of H is relatively compact) which is always the case if
dimH < +∞. �

Now, we are able to prove one of the main results of the paper which
ensures the existence of solutions for the differential inclusion (SDSP). Be-
fore stating it, let us recall that a multimapping F : T ⇒ H from a real
Hausdorff topological space T to the Hilbert space H is said to be scalarly
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upper semicontinuous provided that for any ζ ∈ H, the function σ(ζ, F (·)) :
T → R ∪ {−∞,+∞} is upper semicontinuous.

Theorem 4.3. Let C : I × H ⇒ H be a multimapping with r-prox-regular
values for some r ∈]0,+∞], u0 ∈ H with u0 ∈ C(0, u0), ρ0 ∈]‖u0‖,+∞[.
Let f : I ×H → H be a mapping and F : I ×H ⇒ H be a multimapping such
that:

(i) f(·, x)(resp., f(t, ·)) is measurable for each x ∈
⋃

(t,a)∈I×H C(t, a) (resp.,
continuous for each t ∈ I) and there exists a real α ≥ 0 such that

‖f(t, x)‖ ≤ α(1 + ‖x‖) for all t ∈ I, x ∈
⋃

(t,a)∈I×H
C(t, a);

(ii) F (·, ·) is nonempty closed convex valued and scalarly upper-
semicontinuous and there exists a real β ≥ 0 such that

F (t, x) ⊂ β(1 + ‖x‖)B for all t ∈ I, x ∈
⋃

(t,a)∈I×H
C(t, a).

Assume that:
(iii) there exist a real L1 ≥ 0, L2 ∈ [0, 1[ with 1−L2

2(α+β) > T and an extended

real ρ ≥ ρ0+T (1−L2)
−1(L1+2(α+β))

1−2T (α+β)(1−L2)−1 + r such that for every τ, t ∈ I, x, y ∈
H,

hausρ(C(t, x), C(τ, y)) ≤ L1 |t − τ | + L2 ‖x − y‖ ;

(iv) there exists a real δ > ‖u0‖+T (1−L2)
−1(L1+2(α+β))

1−2T (α+β)(1−L2)−1 =: l such that for
every bounded subset B of H with γ(B) > 0,

γ(C(t, B) ∩ δB) < γ(B).

Then, there exists a Lipschitz continuous mapping u : I → H satisfying
the state-dependent sweeping process (SDSP) along with

‖u̇(t)‖ ≤ L1 + 2(α + β)(1 + l)
1 − L2

λ-a.e. t ∈ I.

Proof. For each n ∈ N, let us consider the partition of I defined by

tni := i
T

2n
for all i ∈ {0, . . . , 2n}

and let us set

ϑ := (α + β)(1 + l) and η :=
L1 + 2ϑ

1 − L2
.

Using the inequalities r > 0, ρ0 > ‖u0‖, ρ > l + r and δ > l, we can choose
N ∈ N such that for all integer n ≥ N ,

r > η
T

2n
, ρ ≥ ϑ

T

2n
+ l + r and δ ≥ η

T

2n
+ l. (4.6)

For each (t, x) ∈ I × H, choose (keeping in mind that F takes nonempty
values) ζ(t, x) ∈ F (t, x). Set un

0 := u0 for each integer n ≥ N . Fix for a
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moment any integer n ≥ N . By induction, let us construct a finite sequence
(un

i )1≤i≤2n of H such that for all i ∈ {1, . . . , 2n},

un
i := projC(tn

i ,un
i )

(

un
i−1 − (tni − tni−1)ζ(tni−1, u

n
i−1) −

∫ tn
i

tn
i−1

f(τ, un
i−1)dτ

)

,

(4.7)
∥
∥un

i − un
i−1

∥
∥ ≤

L1 + 2(α + β)(1 +
∥
∥un

i−1

∥
∥)

1 − L2
(tni − tni−1) (4.8)

and
∥
∥un

i−1

∥
∥ < l. (4.9)

Observe first that ‖un
0‖ < l. Further, from (4.6), it is clear that

r >
L1 + (1 + L2)(α + β)(1 + ‖un

0‖)
1 − L2

(tn1 − tn0 ),

ρ ≥ (α + β)(1 + ‖un
0‖)(tn1 − tn0 ) + ‖un

0‖ + r

and

δ ≥ L1 + 2(α + β)(1 + ‖un
0‖)

1 − L2
(tn1 − tn0 ) + ‖un

0‖ .

Hence, we can apply Proposition 4.1 to get un
1 ∈ H satisfying

un
1 := projC(tn

1 ,un
1 )

(

un
0 − (tn1 − tn0 )ζ(tn0 , un

0 ) −
∫ tn

1

tn
0

f(τ, un
0 )dτ

)

as well as

‖un
1 − un

0‖ ≤ L1 + 2(α + β)(1 + ‖un
0‖)

1 − L2
(tn1 − tn0 ).

Fix any k ∈ {1, . . . , 2n − 1}. If k = 1, there is nothing to prove, so assume
that k > 1. Suppose that all the steps of the induction from 1 to k − 1 have
been realized. Fix any q ∈ {1, . . . , k − 1}. Thanks to the inequality

∥
∥un

q − un
q−1

∥
∥ ≤

L1 + 2(α + β)(1 +
∥
∥un

q−1

∥
∥)

1 − L2
(tnq − tnq−1)

we have
∥
∥un

q

∥
∥ ≤

∥
∥un

q−1

∥
∥+

T

2n
(1 − L2)−1

(
L1 + 2(α + β)(1 +

∥
∥un

q−1

∥
∥)
)
.

It follows that

∥
∥un

q

∥
∥ ≤ ‖un

0‖ +
T

2n
(1 − L2)−1

q−1∑

j=0

(
L1 + 2(α + β)(1 +

∥
∥un

j

∥
∥)
)

≤ ‖un
0‖ + T (1 − L2)−1

(

L1 + 2(α + β)
(

1 + max
0≤j≤q

∥
∥un

j

∥
∥

))
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which entails

max
0≤j≤q

∥
∥un

j

∥
∥ ≤ ‖un

0‖ + T (1 − L2)−1

(

L1 + 2(α + β)
(

1 + max
0≤j≤q

∥
∥un

j

∥
∥

))

,

or equivalently

(1 − 2(α + β)T (1 − L2)−1) max
0≤j≤q

∥
∥un

j

∥
∥≤‖un

0‖ + T (1−L2)−1(L1 + 2(α + β)).

Coming back to the definition of l, we see that max0≤j≤q

∥
∥un

j

∥
∥ ≤ l. By (4.6),

we have

r >
L1 + (1 + L2)(α + β)(1 +

∥
∥un

k−1

∥
∥)

1 − L2
(tnk − tnk−1),

ρ ≥ (α + β)(1 +
∥
∥un

k−1

∥
∥)(tnk − tnk−1) +

∥
∥un

k−1

∥
∥+ r

and

δ ≥
L1 + 2(α + β)(1 +

∥
∥un

k−1

∥
∥)

1 − L2
(tnk − tnk−1) +

∥
∥un

k−1

∥
∥ .

This allows us to apply again Proposition 4.1 to obtain un
k ∈ H satisfying

un
k := projC(tn

k ,un
k )

(

un
k−1 − (tnk − tnk−1)ζ(tnk−1, u

n
k−1) −

∫ tn
k

tn
k−1

f(τ, un
k−1)dτ

)

along with

∥
∥un

k − un
k−1

∥
∥ ≤

(
L1 + 2(α + β)(1 +

∥
∥un

k−1

∥
∥)
)
(tnk − tnk−1)

1 − L2
.

This completes the induction. The inequalities (4.8) and (4.9) furnish

‖un
2n‖ ≤

∥
∥un

2n−1

∥
∥+

L1 + 2(α + β)(1 +
∥
∥un

2n−1

∥
∥)

1 − L2

T

2n

< l +
L1 + 2(α + β)(1 + l)

1 − L2

T

2n
,

which gives an integer N ′ ≥ N such that for all integer n ≥ N ′, ‖un
2n‖ ≤ l.

Thus, for all integer n ≥ N ′, we get

‖un
i ‖ ≤ l for all i ∈ {0, . . . , 2n} . (4.10)

We deduce for each i ∈ {0, . . . , 2n},

zn
i := ζ(tni , un

i ) ∈ F (tni , un
i )

⊂ β(1 + ‖un
i ‖)B

⊂ β(1 + l)B. (4.11)

For each integer n ≥ N ′, let us define un : I → H by un(T ) = un
2n and

un(t) := un
i for all t ∈ [tni , tni+1[ with i ∈ {0, . . . , 2n − 1}.
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To apply Theorem 3.1, note that from (4.10)

‖un(t)‖ ≤ l < ρ for all n ≥ N ′, t ∈ I. (4.12)

and from (4.8)

var(un; I) =
2n
∑

i=1

∥
∥un

i − un
i−1

∥
∥ ≤ ηT for all n ≥ N ′. (4.13)

Combining (4.12) and (4.13) and applying Theorem 3.1, we may assume
without loss of generality the existence of a mapping u(·) : I → H with
bounded variation on I such that

un(t) w→ u(t) for all t ∈ I. (4.14)

Observe that for each integer n ≥ N ′, for any p, q ∈ {0, . . . , 2n} with p < q,

∥
∥un

p − un
q

∥
∥ ≤

q−p−1∑

k=0

∥
∥un

p+k+1 − un
p+k

∥
∥ ≤ η

q−p+1∑

k=0

(tnp+k+1 − tnp+k) ≤ η(tnq − tnp ),

which yields for each integer n ≥ N ′,

‖un(t) − un(s)‖ ≤ η

(

|t − s| +
1
2n

)

for all t, s ∈ I.

Thanks to the weak lower semicontinuity of ‖·‖, the latter inequality entails
along with the weak convergence in (4.14)

‖u(t) − u(s)‖ ≤ lim inf
n→+∞ ‖un(t) − un(s)‖ ≤ η |t − s| for all t, s ∈ I.

Hence, u(·) is Lipschitz continuous on I and

‖u̇(t)‖ ≤ η λ-a.e. t ∈ I. (4.15)

Now, we show that u(·) is a solution of (SDSP). Concerning the initial con-
dition (i.e., the value of u(0)), since un(0) = un

0 = u0 for each integer n ≥ N ′,
the weak convergence provided by (4.14) ensures that

u(0) = u0. (4.16)

We claim that u(t) ∈ C(t, u(t)) for all t ∈ I. For each integer n ≥ N ′, define
the mapping δn : I → I by δn(T ) := T and

δn(t) := tni for all t ∈ [tni , tni+1[ with i ∈ {0, . . . , 2n − 1} .

By virtue of (4.12) and (4.7), we see that

un(t) ∈ C(δn(t), un(t)) ∩ lB for all n ≥ N ′, t ∈ I. (4.17)

Fix for a moment any integer n ≥ N ′ and t ∈ [0, T ] = I. From the inequality

excl[C(δn(t), un(t)), C(t, un(t))] ≤ L1 |δn(t) − t| <
L1T

2n
,

it follows that (see (2.2))

C(δn(t), un(t)) ∩ lB ⊂ C(t, un(t)) +
L1T

2n
B
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or equivalently

C(δn(t), un(t)) ∩ lB ⊂
[

C(t, un(t)) ∩
(

l +
L1T

2n

)

B

]

+
L1T

2n
B.

According to the third inequality of (4.6) and the latter inclusion, we have

un(t) ∈ C(δn(t), un(t)) ∩ lB ⊂ [C(t, un(t)) ∩ δB] +
L1T

2n
B. (4.18)

By contradiction assume that U(t) := {uk(t) : k ≥ N ′} is not relatively
compact or equivalently (see Proposition 2.7) γ(U(t)) > 0. Using assumption
(iv), we get

γ(U(t)) > γ[C(t, U(t)) ∩ δB]

and this obviously gives a real Δ > 0 such that

γ(U(t)) − γ[C(t, U(t)) ∩ δB] ≥ 2Δ > 0. (4.19)

Choose any integer n0 ≥ N ′ such that L1T
2n−1 ≤ Δ for all integer n ≥ n0. Using

Proposition 2.7, the inclusions provided by (4.18), the inequality (2.8) and
the choice of n0, we can write

γ(U(t)) = γ({uk(t) : k ≥ n0}) ≤ γ

(

C(t, U(t)) ∩ δB +
L1T

2n0
B

)

≤ γ(C(t, U(t)) ∩ δB) + γ

(
L1T

2n0
B

)

≤ γ(C(t, U(t)) ∩ δB) +
L1T

2n0−1

≤ γ(C(t, U(t)) ∩ δB) + Δ. (4.20)

It remains to combine (4.19) and (4.20) to get

γ(U(t)) ≤ γ(U(t)) − 2Δ + Δ = γ(U(t)) − Δ,

which is the desired contradiction. Hence, for all t ∈ I, U(t) is relatively
compact in H and this yields through (4.14)

un(t) → u(t) for all t ∈ I. (4.21)

Fix for a moment any t ∈ I and n ≥ N ′. Using assumption (iii) again, we
have

excl[C(δn(t), un(t)), C(t, u(t))] ≤ L1(t − δn(t)) + L2 ‖un(t) − u(t)‖

<
L1T

2n
+ L2 ‖un(t) − u(t)‖

and this ensures by (2.2) and (4.17)

un(t) ∈ C(δn(t), un(t)) ∩ lB ⊂ C(t, u(t)) +
(

L2 ‖un(t) − u(t)‖ +
L1T

2n

)

B.

Consequently, we obtain

dC(t,u(t))(un(t)) → 0 for all t ∈ I
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and thanks to the closedness of C(·, ·), we arrive to

u(t) ∈ C(t, u(t)) for all t ∈ I.

Now, for each integer n ≥ N ′, let us define the mapping vn : I → H by

vn(t) := un
i +

t − tni
tni+1 − tni

(

un
i+1 − un

i + (tni+1 − tni )zn
i +

∫ tn
i+1

tn
i

f(τ, un
i )dτ

)

− (t − tni )zn
i −

∫ t

tn
i

f(τ, un
i )dτ,

for all t ∈ I with i ∈ {0, . . . , 2n − 1} such that t ∈ [tni , tni+1]. Combining
the definition of vn(·), un(·) (with n ≥ N ′), (4.8), (4.10), (4.11) and the
assumption (i), we get for all t ∈ [tni , tni+1[ with i ∈ {0, . . . , 2n − 1}

‖vn(t) − un(t)‖ ≤
∥
∥un

i+1 − un
i

∥
∥+ 2(tni+1 − tni ) ‖zn

i ‖ + 2
∫ tn

i+1

tn
i

‖f(τ, un
i )‖ dτ

≤ T

2n

(
η + 2(α + β)(1 + l)

)
=

T

2n
(η + 2ϑ).

In particular, we have vn(t) − un(t) → 0 for all t ∈ I. Through (4.21), the
latter convergence obviously entails

vn(t) → u(t) for all t ∈ I.

Observe that for every integer n ≥ N ′, i ∈ {0, . . . , 2n − 1}, vn(·) is differen-
tiable at t ∈]tni , tni+1[ and

v̇n(t)+ zn
i + f(t, un

i ) =
un

i+1 − un
i + (tni+1 − tni )zn

i +
∫ tn

i+1
tn
i

f(s, un
i )ds

tni+1 − tni
. (4.22)

For each integer n ≥ N ′, let us define the mapping zn : I → H by zn(T ) :=
z2n ,

zn(t) := zn
i if t ∈ [tni , tni+1[ with i ∈ {0, . . . , 2n − 1}.

Fix for a moment any integer n ≥ N ′. Thanks to (4.11), note that

‖zn(t)‖ ≤ β(1 + l) for all t ∈ I. (4.23)

Combining (4.8), (4.22), (4.23) and the assumption (i), we see that

‖v̇n(t) + zn(t) + f(t, un(δn(t)))‖ ≤ η + ϑ =: ω λ-a.e. t ∈ I. (4.24)

According to (4.23), we may assume for a mapping z(·) ∈ L1(I,H, λ) that

zn(·) → z(·) weakly in L1(I,H, λ). (4.25)

Set for λ-almost every t ∈ I and all integer n ≥ N ′,

ζn(t) := ω−1(v̇n(t) + zn(t) + f(t, un(δn(t)))) and
ζ(t) := ω−1(u̇(t) + z(t) + f(t, u(t))).
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Putting (2.4), (4.7), (4.22) and (4.24) together, we observe that for λ-almost
every t ∈ I and for all integer n ≥ N ′,

ζn(t) ∈ −N
(
C
(
θn(t), un(θn(t))

)
;un(θn(t))

)
∩ B, (4.26)

where θn : I → I is the function defined by θn(0) := tn1 and

θn(t) := tni+1 for all t ∈]tni , tni+1] with i ∈ {0, . . . , 2n − 1} .

By virtue of (2.6), the inclusion (4.26) can be rewritten as:

ζn(t) ∈ −∂P d
C
(
θn(t),un(θn(t))

)(un(θn(t))) λ-a.e. t ∈ I, n ≥ N ′.

On the other hand, the inequality (see (4.24))

‖v̇n(t)‖ ≤ ω + (α + β)(1 + l) λ-a.e. t ∈ I, n ≥ N ′,

allows us to assume that (v̇n(·))n≥N ′ weakly converges in L2(I,H, λ) to some
h(·) ∈ L2(I,H, λ). The absolute continuity of each vn(·) with n ≥ N ′ guar-
antees

vn(t) = vn(0) +
∫ t

0

v̇n(s)ds for all n ≥ N ′, t ∈ I,

so passing to the limit gives

u(t) = u(0) +
∫ t

0

h(s)ds,

hence u̇(·) = h(·) λ-a.e. on I. In particular, we have

v̇n(·) → u̇(·) weakly in L2(I,H, λ)

and this yields
v̇n(·) → u̇(·) weakly in L1(I,H, λ). (4.27)

Thanks to the continuity assumption on f , note that

f(t, un(t)) → f(t, u(t)) for all t ∈ I.

The latter pointwise convergence and the inequality provided by (i) entail
through the Lebesgue dominated convergence theorem

f(·, un(·)) → f(·, u(·)) strongly in L1(I,H, λ). (4.28)

Now, we apply a classical technique due to Castaing [7]. By virtue of (4.25),
(4.27) and (4.28), observe first that

ζn(·) → ζ(·) weakly in L1(I,H, λ).

Thanks to Mazur’s lemma, there exists a sequence (ξn(·))n≥N ′ which con-
verges strongly in L1(I,H, λ) to ζ(·) with

ξn(·) ∈ co {ζk(·) : k ≥ n} for all n ≥ N ′.

Extracting a subsequence if necessary, we may suppose that

ξn(t) → ζ(t) λ-a.e. t ∈ I
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which allows us to write

ζ(t) ∈
⋂

n≥N ′
co {ζk(t) : k ≥ n} λ-a.e. t ∈ I

and such an inclusion yields for λ-almost every t ∈ I that

〈ξ, ζ(t)〉 ≤ inf
n≥N ′

sup
k≥n

〈ξ, ζk(t)〉 for all ξ ∈ H.

It follows that, for λ-almost every t ∈ I,

〈ξ, ζ(t)〉 ≤ lim sup
n→+∞

σ
(
ξ,−∂P dC(θn(t),un(θn(t)))(un(θn(t)))

)
for all ξ ∈ H.

Hence, according to Proposition 3.2, for λ-almost every t ∈ I,

〈ξ, ζ(t)〉 ≤ σ
(
ξ, ∂CdC(t,u(t))(u(t))

)
for all ξ ∈ H.

Thanks to (2.1), we have

{ζ(t)} ⊂ co
(
−∂CdC(t,u(t))(u(t))

)
λ-a.e. t ∈ I

or equivalently (since the Clarke subdifferential is always closed and convex)

ζ(t) ∈ −∂CdC(t,u(t))(u(t)) λ-a.e. t ∈ I.

This inclusion and (2.6) furnish

ζ(t) ∈ −N(C(t, u(t));u(t)) λ-a.e. t ∈ I.

Coming back to the definition of ζ(·), we arrive to the inclusion

ω−1
(
u̇(t) + z(t) + f(t, u(t))

)
∈ −N(C(t, u(t));u(t)) λ-a.e. t ∈ I,

or equivalently

u̇(t) + z(t) + f(t, u(t)) ∈ −N(C(t, u(t));u(t)) λ-a.e. t ∈ I. (4.29)

Now, we show that, z(t) ∈ F (t, u(t)) for λ-almost every t ∈ I. Thanks to
the fact that zk(·) converges to z(·) weakly in L1(I,H, λ) (see (4.25)), via
Mazur’s lemma again, extracting a subsequence if necessary, we may write

z(t) ∈
⋂

n≥N ′
co {zk(t) : k ≥ n} λ-a.e. t ∈ I.

On the other hand, it can be checked (with the help of (4.11)) that for every
integer n ≥ N ′ and all t ∈ I,

zn(t) ∈ F (δn(t), un(t)).

Thus, for λ-almost every t ∈ I, we have

〈ξ, z(t)〉 ≤ lim sup
n→+∞

σ
(
ξ, F (δn(t), un(t))

)
for all ξ ∈ H

and this entails (through the fact that F (·, ·) is scalarly upper semicontinuous)
that for ν-almost every t ∈ I

〈ξ, z(t)〉 ≤ σ(ξ, F (t, u(t))) for all ξ ∈ H.
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Since F (t, u(t)) is closed and convex for all t ∈ I, we have (thanks to (2.1))

z(t) ∈ F (t, u(t)) λ-a.e. t ∈ I. (4.30)

It remains to put together (4.15), (4.16), (4.29) and (4.30) to complete the
proof. �

An important consequence of the latter theorem with α = 0 and β = 0
corresponds to the unperturbed case (i.e., F, f ≡ 0).

Corollary 4.4. Let C : I × H ⇒ H be a multimapping with r-prox-regular
values for some r ∈]0,+∞], u0 ∈ H with u0 ∈ C(0, u0), ρ0 ∈] ‖u0‖ ,+∞[.
Assume that:

(i) there exist a real L1 ≥ 0, a real L2 ∈ [0, 1[ and an extended real ρ ≥
ρ0 + L1T (1 − L2)−1 + r such that

hausρ(C(t, x), C(τ, y)) ≤ L1 |t − τ | + L2 ‖x − y‖ for all t, τ ∈ I, x, y ∈ H;

(ii) there exists a real δ > ‖u0‖+L1T (1−L2)−1 such that for every bounded
subset B of H with γ(B) > 0,

γ(C(t, B)) ∩ δB) < γ(B).

Then, there exists a Lipschitz continuous mapping u : I → H satisfying
⎧
⎪⎨

⎪⎩

−u̇(t) ∈ N(C(t, u(t));u(t)) λ-a.e. t ∈ I,

u(t) ∈ C(t, u(t)) for all t ∈ I,

u(0) = u0

along with

‖u̇(t)‖ ≤ L1

1 − L2
λ-a.e. t ∈ I.

Remark 4.5. It is worth pointing out that we recover the first general result of
the theory of state-dependent sweeping process ([18, Theorem 3.3]) whenever
r = ρ = +∞ in the latter corollary (that is, C(·, ·) is nonempty closed convex
valued and Lipschitz with respect to the Hausdorff–Pompeiu distance). �

5. Semi-implicit algorithm for bounded state-dependent
sweeping process

To deal with the evolution problem (P) described in the introduction, Haddad
developed [14] the semi-implicit scheme (with G = F )

tni := i
T

2n
, un

0 := u0 and un
i+1 := projC(tn

i+1,un
i )(u

n
i − (tni+1 − tni )fn

i ),

(5.1)
where fn

i ∈ F (tni+1, u
n
i+1). The existence of solutions for (P) is established

under the Lipschitz control (1.2) on the prox-regular moving set C(·, ·), the
existence of a fixed strong compact set K satisfying

C(t, x) ⊂ K for all (t, x) ∈ I × H
and under the growth linear condition (1.6) for the semicontinuous convex
weakly compact valued multimapping F (·, ·). The algorithm (5.1) has been



Truncated nonconvex state-dependent sweeping process Page 25 of 32  121 

also recently used in [16] for the same differential inclusion (P) associated
with a subsmooth moving set C(·, ·). Recall that the class of subsmooth
sets has been introduced by Aussel, Daniilidis and Thibault [3] and contains
strictly the class of prox-regular sets. However, subsmooth sets do not possess
in general any property on nearest points and this leads the authors of [16]
to assume a property of ball-compactness of the moving set in order to get
ProjC(t,y)(x) 
= ∅.

The main objective here is to provide, besides Theorem 4.3, another
existence result for (SDSP) described by a prox-regular bounded moving
set, say C(t, x) ⊂ ρB, with the help of the semi-implicit scheme

un
0 := u0 and un

i+1 := projC(tn
i ,un

i )

(

un
i − (tni+1 − tni )fn

i −
∫ tn

i+1

tn
i

f(τ, un
i )dτ

)

.

Doing so, we will relax the control on C(·, ·) in (1.2) through the Hausdorff–
Pompeiu excess; more precisely, we will assume that for every τ < t, for all
x, y ∈ H,

exc(C(τ, x), C(t, y)) ≤ L1(t − τ) + L2 ‖x − y‖ ,

for some reals L1 ≥ 0 and L2 ∈ [0, 1[. The compactness hypothesis on C(·, ·)
and the involved perturbations f, F of the normal cone will be of the same
type as in Theorem 4.3.

Theorem 5.1. Let C : I × H ⇒ H be an r-prox-regular-valued multimapping
for some r ∈]0,+∞], u0 ∈ H with u0 ∈ C(0, u0). Let f : I × H → H be a
mapping, F : I × H ⇒ H be a multimapping such that:

(i) f(·, x) (resp., f(t, ·)) is measurable for each x ∈
⋃

(t,a)∈I×H C(t, a)
(resp., continuous for each t ∈ I) and there exists a real α ≥ 0 such
that

‖f(t, x)‖ ≤ α(1 + ‖x‖) for all (t, x) ∈ I ×
⋃

(t,a)∈I×H
C(t, a);

(ii) the multimapping F (·, ·) is nonempty closed convex valued and scalarly
upper-semicontinuous and there exists a real β ≥ 0 such that

F (t, x) ⊂ β(1 + ‖x‖)B for all t ∈ I, x ∈
⋃

(t,a)∈I×H
C(t, a).

Assume that:
(iii) there exist three reals ρ > 0, L1 ≥ 0 and 0 ≤ L2 < 1 such that for every

(t, x) ∈ H × I,

C(t, x) ⊂ ρB

and for every x, y ∈ H and every τ, t ∈ I with τ < t,

exc(C(τ, x), C(t, y)) ≤ L1(t − τ) + L2 ‖x − y‖ ;

(iv) for every bounded subset B of H with γ(B) > 0,

γ(C(t, B)) < γ(B).
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Then, there exists a Lipschitz continuous mapping u : I → H satisfying
(SDSP) along with

‖u̇(t)‖ ≤ L1 + 2(α + β)(1 + ρ)
1 − L2

λ-a.e. t ∈ I.

Proof. Set κ := L1+2(α+β)(1+ρ)
1−L2

. For each n ∈ N, let us consider (as above)
the partition of I

tni := i
T

2n
for all i ∈ {0, . . . , 2n} .

Since T
2n → 0, we can choose (keeping in mind that 0 ≤ L2 < 1) N ∈ N such

that for all integer n ≥ N ,

T

2n
(L1 + 2(α + β)(1 + ρ))

+∞∑

j=0

Lj
2 =

T

2n
κ < r. (5.2)

Fix for a moment any n ∈ N with n ≥ N . For each (t, x) ∈ I × H, choose
ζ(t, x) ∈ F (t, x) 
= ∅. Set un

0 := u0. By induction, let us construct a sequence
(un

i )i∈{1,...,2n} such that for each i ∈ {1, . . . , 2n},

un
i := projC(tn

i ,un
i−1)

(

un
i−1 − (tni − tni−1)ζ(tni−1, u

n
i−1) −

∫ tn
i

tn
i−1

f(τ, un
i−1)dτ

)

and

∥
∥un

i − un
i−1

∥
∥ ≤ T

2n

(
L1 + 2(α + β)(1 + ρ)

) i−1∑

j=0

Lj
2 ≤ T

2n
κ. (5.3)

From (i), (ii), the inclusion un
0 ∈ C(tn0 , un

0 ), (iii) and (5.2), we see that

dC(tn
1 ,un

0 )

(

un
0 − (tn1 − tn0 )ζ(tn0 , un

0 ) −
∫ tn

1

tn
0

f(τ, un
0 )dτ

)

≤ dC(tn
1 ,un

0 )
(un

0 ) + (tn1 − tn0 ) ‖ζ(tn0 , un
0 )‖ +

∫ tn
1

tn
0

‖f(τ, un
0 )‖ dτ

≤ exc(C(tn0 , un
0 ), C(tn1 , un

0 )) + (tn1 − tn0 )(α + β)(1 + ‖un
0‖)

≤ (tn1 − tn0 )
(
L1 + (α + β)(1 + ρ)

)
=

T

2n

(
L1 + (α + β)(1 + ρ)

)

< r. (5.4)

Hence, the r-prox-regularity of C(tn0 , un
0 ) allows us to set

un
1 := projC(tn

1 ,un
0 )

(

un
0 − (tn1 − tn0 )ζ(tn0 , un

0 ) −
∫ tn

1

tn
0

f(τ, un
0 )dτ

)

. (5.5)
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Using (5.5), (i), (ii), (5.4) and (iii), it is clear that

‖un
1 − un

0‖ ≤
∥
∥
∥
∥
∥
un
1 −

(

un
0 − (tn1 − tn0 )ζ(tn0 , un

0 ) −
∫ tn

1

tn
0

f(τ, un
0 )dτ

)∥
∥
∥
∥
∥

+ (tn1 − tn0 ) ‖ζ(tn0 , un
0 )‖ +

∫ tn
1

tn
0

‖f(τ, un
0 )‖ dτ

≤ dC(tn
1 ,un

0 )

(

un
0 − (tn1 − tn0 )ζ(tn0 , un

0 ) −
∫ tn

1

tn
0

f(τ, un
0 )dτ

)

+ (tn1 − tn0 )(α + β)(1 + ‖un
0‖)

≤ T

2n

(
L1 + 2(α + β)(1 + ρ)

)
≤ T

2n
κ.

Fix any k ∈ {1, . . . , 2n}. We may assume that k > 1 otherwise there
is nothing to establish. Suppose that the steps 1, . . . , k − 1 of the induction
have been completed, i.e., we have un

1 , . . . , un
k−1 ∈ H such that for each

i ∈ {1, . . . , k − 1},

un
i := projC(tn

i ,un
i−1)

(

un
i−1 − (tni − tni−1)ζ(tni−1, u

n
i−1) −

∫ tn
i

tn
i−1

f(τ, un
i−1)dτ

)

.

and
∥
∥un

i − un
i−1

∥
∥ ≤ T

2n

(
L1 + 2(α + β)(1 + ρ)

) i−1∑

j=0

Lj
2 ≤ T

2n
κ. (5.6)

Let us construct un
k . Using the inclusion un

k−1 ∈ C(tnk−1, u
n
k−2), the assump-

tions (i)–(iii) and (5.2), (5.6), we have

dC(tn
k ,un

k−1)

(

un
k−1 − (tnk − tnk−1)ζ(tnk−1, u

n
k−1) −

∫ tn
k

tn
k−1

f(τ, un
k−1)dτ

)

≤ dC(tn
k ,un

k−1)
(un

k−1) + (tnk − tnk−1)
∥
∥ζ(tnk−1, u

n
k−1)

∥
∥+

∫ tn
k

tn
k−1

∥
∥f(τ, un

k−1)
∥
∥dτ

≤ exc
(
C(tnk−1, u

n
k−2), C(tnk , un

k−1)
)

+ (tnk − tnk−1)(α + β)(1 + ρ)

≤ (tnk − tnk−1)
(
L1 + (α + β)(1 + ρ)

)
+ L2

∥
∥un

k−1 − un
k−2

∥
∥

≤ T

2n

(
L1 + 2(α + β)(1 + ρ)

)

⎛

⎝1 +
k−2∑

j=0

Lj+1
2

⎞

⎠

=
T

2n

(
L1 + 2(α + β)(1 + ρ)

) k−1∑

j=0

Lj
2 < r (5.7)

and (thanks to the r-prox-regularity of C(tnk , un
k−1)) we can set

un
k := projC(tn

k ,un
k−1)

(

un
k−1 − (tnk − tnk−1)ζ(tnk−1, u

n
k−1) −

∫ tn
k

tn
k−1

f(τ, un
k )dτ

)

.



 121 Page 28 of 32 F. Nacry

To complete the induction, it remains to note from the latter equality, (i)–
(iii), (5.6) and (5.7) that

∥
∥un

k − un
k−1

∥
∥ ≤

∥
∥
∥
∥
∥
un

k −
(

un
k−1 − (tn

k − tn
k−1)ζ(t

n
k−1, u

n
k−1) −

∫ tn
k

tn
k−1

f(τ, un
k−1)dτ

)∥
∥
∥
∥
∥

+ (tn
k − tn

k−1)
∥
∥ζ(tn

k−1, u
n
k−1)

∥
∥+

∫ tn
k

tn
k−1

∥
∥f(τ, un

k−1)
∥
∥dτ

≤ dC(tn
k ,un

k−1)

(

un
k−1 − (tn

k − tn
k−1)ζ(t

n
k−1, u

n
k−1) −

∫ tn
k

tn
k−1

f(τ, un
k−1)dτ

)

+ (tn
k − tn

k−1)(α + β)(1 + ρ)

≤ (tn
k − tn

k−1)
(
L1 + 2(α + β)(1 + ρ)

)
+ L2

∥
∥un

k−1 − un
k−2

∥
∥

≤ T

2n

(
L1 + 2(α + β)(1 + ρ)

)

⎛

⎝1 +

k−2∑

j=0

Lj+1
2

⎞

⎠

≤ T

2n

(
L1 + 2(α + β)(1 + ρ)

) k−1∑

j=0

Lj
2 ≤ T

2n
κ.

Now, for every integer n ≥ N , note that

un
i ∈ C(tni , un

i−1) ⊂ ρB for each i ∈ {1, . . . , 2n}, (5.8)

set

zn
i := ζ(tni , un

i ) ∈ β(1 + ρ)B for each i ∈ {0, . . . , 2n}
and define the mapping un : I → H by un(T ) = un

2n and

un(t) := un
i for all t ∈ [tni , tni+1[ with i ∈ {0, . . . , 2n − 1}.

Combining the latter definition, the inclusion u0 ∈ C(0, u0) and (5.8), we
observe that for all integer n ≥ N and all t ∈ I,

‖un(t)‖ ≤ ρ.

As in Theorem 4.3, concerning the variation of un with n ≥ N , note that
(see (5.3))

sup
n≥N

var(un; I) ≤ κT.

Consequently, we may suppose through Theorem 3.1 the existence of a map-
ping u(·) : I → H with bounded variation on I such that

un(t) w→ u(t) for all t ∈ I. (5.9)

Again, as in Theorem 4.3, we establish that u(·) is Lipschitz continuous on I
and

‖u̇(t)‖ ≤ κ =
L1 + 2(α + β)(1 + ρ)

1 − L2
λ-a.e. t ∈ I.

We are going to establish that u(t) ∈ C(t, u(t)) for all t ∈ I. For each
integer n ≥ N , define the mapping δn : I → I by δn(T ) := T and

δn(t) := tni for all t ∈ [tni , tni+1[ with i ∈ {0, . . . , 2n − 1} .
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Fix any n ∈ N with n ≥ N and τ ∈]0, T ]. There is j ∈ {0, . . . , 2n − 1} such
that τ ∈]tnj , tnj+1]. Assume for a moment that τ 
= tnj+1, i.e., τ ∈]tnj , tnj+1[. If
j = 0, set ϕ(τ) = 0 otherwise set ϕ(τ) = tnj−1. From the definition of un(·)
and (5.3), we have

‖un(τ) − un(ϕ(τ))‖ ≤ T

2n
κ (5.10)

and from (5.8) and the definition of δn(·),

un(τ) ∈ C(δn(τ), un(ϕ(τ))). (5.11)

Now, suppose that τ = τn
j+1. Setting ϕ(τ) = tnj , we see that (5.10) and (5.11)

still holds.
Let n ∈ N with n ≥ N and t ∈]0, T ]. Set t′ := ϕ(t) ∈ I. By virtue of

(iii) and (5.10), we see that

exc[C(δn(t), un(t′)), C(t, un(t))] <
L1T

2n
+ L2

∥
∥un(t) − un(t′)

∥
∥ ≤ T

2n
(L1 + L2κ),

which entails by (2.2)

C(δn(t), un(t′)) ⊂ C(t, un(t)) +
T

2n
(L1 + L2κ)B.

Then, it follows from (5.11)

un(t) ∈ C(t, un(t)) +
T

2n
(L1 + L2κ)B (5.12)

and this inclusion still holds if t = 0. Now, assume that t ∈ [0, T ]. By contra-
diction assume that U(t) := {uk(t) : k ≥ N} is not relatively compact, i.e.,
γ(U(t)) > 0. Using assumption (iv), we get

γ(U(t)) > γ
(
C(t, U(t))

)

and this gives a real Δ > 0 such that

γ(U(t)) − γ
(
C(t, U(t))

)
≥ 2Δ > 0. (5.13)

Choose any integer n0 ≥ N such that T
2n0−1 (L1 + L2κ) < Δ. According to

Proposition 2.7, the inclusion provided by (5.12), the inequality (2.8) and the
choice of n0, we have

γ(U(t)) = γ({uk(t) : k ≥ n0}) ≤ γ

(

C(t, U(t)) +
T

2n0
(L1 + L2κ)B

)

≤ γ
(
C(t, U(t))

)
+ γ

(
T

2n0
(L1 + L2κ)B

)

≤ γ
(
C(t, U(t))

)
+

T

2n0−1
(L1 + L2κ)

≤ γ
(
C(t, U(t))

)
+ Δ. (5.14)

Putting together (5.13) and (5.14), we arrive to

γ(U(t)) ≤ γ(U(t)) − 2Δ + Δ = γ(U(t)) − Δ,
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which is the desired contradiction. Consequently, for all t ∈ I, U(t) is rela-
tively compact in H, so the weak convergence in (5.9) holds for the strong
topology, i.e.,

uk(τ) → u(τ) for all τ ∈ I. (5.15)

Using assumption (iii) again, we have

exc[C(δn(t), un(t′)), C(t, u(t))] ≤ L1(t − δn(t)) + L2 ‖un(t′) − u(t)‖

<
L1T

2n
+ L2 ‖un(t′) − u(t)‖

and this ensures by (2.2) and (5.11)

un(t) ∈ C(δn(t), un(t′)) ⊂ C(t, u(t)) +
(

L1T

2n
+ L2 ‖un(t′) − u(t)‖

)

B.

In particular, we have

dC(t,u(t))(un(t)) ≤ L1T

2n
+ L2 ‖un(t′) − u(t)‖ .

Since ‖un(t′) − un(t)‖ → 0, the latter inequality entails

dC(t,u(t))(un(t)) → 0.

We deduce from the latter convergence and the fact that C(·, ·) is closed-
valued

u(t) ∈ C(t, u(t)) for all t ∈ I. (5.16)

The rest of the proof is similar to those of Theorem 4.3. �

We derive from the latter result the unperturbed (i.e., F, f ≡ 0) bounded
prox-regular case.

Corollary 5.2. Let C : I × H ⇒ H be a multimapping with r-prox-regular
values for some r ∈ ]0,+∞]. Assume that:

(i) there exist three reals ρ > 0, L1 ≥ 0 and 0 ≤ L2 < 1 such that for every
(t, x) ∈ H × I,

C(t, x) ⊂ ρB

and for every x, y ∈ H and every τ, t ∈ I with τ < t,

exc(C(τ, x), C(t, y)) ≤ L1(t − τ) + L2 ‖x − y‖ ;

(ii) for every bounded subset B of H with γ(B) > 0,

γ(C(t, B)) < γ(B).

Then, for each u0 ∈ H with u0 ∈ C(0, u0), there exists a Lipschitz
continuous mapping u : I → H satisfying (SDSP) and

‖u̇(t)‖ ≤ L1

1 − L2
λ-a.e. t ∈ I.
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