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PERTURBED BV SWEEPING PROCESS INVOLVING

PROX-REGULAR SETS

FLORENT NACRY

Abstract. In this paper, we study the existence of solutions for a variant of
discontinuous Moreau sweeping process in the infinite dimensional setting. The
sets involved are assumed to be uniformly prox-regular and move with bounded
variation. The sweeping process is perturbed by a sum of Lipschitz continu-
ous single-valued mapping and a scalarly upper semicontinuous multimapping
satisfying a linear growth condition with respect to a compact set.

1. Introduction

In 1971, J.J. Moreau introduced and developed the notion of sweeping process
in the absolute continuous framework ([19, 20]). Given T0, T ∈ R with T0 < T , a
Hilbert space H and a multimapping C : [T0, T ] ⇒ H with nonempty convex values,
a sweeping process consists to find an absolutely continuous mapping u : [T0, T ] → H
with u(t) ∈ C(t) for all t ∈ [T0, T ] satisfying{

−u̇(t) ∈ N(C(t);u(t)) λ-a.e. t ∈ [T0, T ]

u(T0) ∈ C(T0),

where for each t ∈ [T0, T ], N(C(t);u(t)) denotes the (outward) normal cone to the
set C(t) at u(t), in the sense of convex analysis. Such differential inclusions are of
great interest in elastoplasticity, quasistatics and dynamics (see, e.g., [21, 24]).
Motivated by unilateral mechanics where jumps could appear, J.J. Moreau considers
in [23] the bounded variation sweeping process

(1.1)

{
−du ∈ N(C(t);u(t))

u(T0) ∈ C(T0).

Over the years, many variants of Moreau sweeping process have been studied in
the literature, in particular

(1.2)

{
−du ∈ N(C(t);u(t)) +G(t, u(t))

u(T0) ∈ C(T0),

with G : [T0, T ]×H ⇒ H a multimapping, which is called perturbed sweeping pro-
cess. The case where the moving set C(·) is convex has been extensively developed
(see, e.g., [8, 9, 1, 28] and references therein). It is of interest in infinite dimensions
to remove the convexity assumption of C(·) as in [30, 9], where C(·) = Rn \ intK(·)
with K(·) a convex moving set (the normal cone involved is in the sense of Clarke).
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Due to their good properties of metric projection, prox-regular sets ([26]) are well
appropriate for the study of sweeping process in the nonconvex setting in infinite
dimensions (see, e.g., [12, 6, 14, 3, 2]).

In [14], J.F. Edmond and L. Thibault showed in infinite dimensional Hilbert
space that (1.2) with G = F and C(·) a prox-regular moving set with bounded
variation, has at least one solution, under a compact linear growth condition for the
multimapping F , that is,

(1.3) F (t, x) ⊂ β(t)(1 + ∥x∥)K for all (t, x) ∈ [T0, T ]×H,
where β(·) ∈ L1([T0, T ],R+) and K ⊂ B is a compact set. More recently, under
the bounded variation of C(·) the well-posedness (in the sense of existence and
uniqueness of a solution) of (1.2) with G = f single-valued satisfying a Lipschitz
type condition, was stated and proved in the general setting of Hilbert space, for
a convex moving set C(·) in [14] and for a prox-regular valued multimapping C(·)
in [2]. Those works lead naturally to study the sweeping process (1.2) with the
perturbation G = F + f . The existence of solutions for such a Moreau sweeping
process was established in [3], but only in the absolutely continuous framework,
that is

(1.4)

{
−u̇(t) ∈ N(C(t);u(t)) + F (t, u(t)) + f(t, u(t)) λ-a.e.t ∈ [T0, T ]

u(T0) ∈ C(T0),

with F a multimapping scalarly upper semicontinuous satisfying (1.3), f a Lipschitz
single-valued mapping, and for a prox-regular set C(t) moving in an absolutely
continuous way in a general Hilbert space.

The aim of the present paper is to analyze the variant of Moreau sweeping process
(1.4) in the bounded variation framework, that is, the discontinuous perturbed
sweeping process (1.1) with G = F + f , a sum of a single-valued mapping f and a
multimapping F , as the perturbation of the normal cone, and C(t) is prox-regular
with bounded variation.

The paper is organized as follows:
Section 2 is devoted to introduce notations and recall fundamental results for the
study of discontinuous sweeping process. In Sections 3-4, we develop the concept
of solution of our measure differential inclusion and then we state and prove an
existence result. Some consequences are provided in the last part, in particular, it
is shown that there is a solution u(·) which satisfies (as in [23, 2, 28])

projC(t)(u(t
−)) = u(t) for all t ∈]T0, T ],

where u(t−) := limτ↑t u(τ).

2. Preliminaries

Throughout, R = R ∪ {−∞,+∞} is the extended real-line, R+ = [0,+∞[ is
the set of the nonnegative reals, N is the set of the positive integers, n = 1, . . .,
I := [T0, T ] is an interval of R with T0 < T and λ is the Lebesgue measure on I. In
all the paper, H is a real Hilbert space whose inner product is denoted by ⟨·, ·⟩, the
associated norm ∥·∥ and B the closed unit ball centered at zero. For any subset S
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of H, coS (resp., coS) stands for the convex (resp., closed convex) hull of S and
dS(·) (or d(·, S)) is the distance function to S, i.e.,

dS(x) := inf
s∈S

∥x− s∥ for all x ∈ H.

2.1. Nonsmooth analysis. In this subsection, S is a nonempty susbset of the real
Hilbert space H, U is a nonempty open subset of H and f : U → R is a function.

For any x ∈ H, the possibly empty set of all nearest points of x in S is defined by

ProjS(x) := {y ∈ S : dS(x) = ∥x− y∥} .

If ProjS(x) = {y} for some y ∈ S, one says that projS(x) (or PS(x)) is well-defined
and in such a case one sets projS(x) := y (or PS(x) := y).

The proximal normal cone to S at x ∈ S is the set

NP (S;x) := {v ∈ H : ∃r > 0, x ∈ ProjS(x+ rv)} ,

which is obviously a cone containing 0. By convention, one sets

NP (S;x) = ∅ for all x ∈ H \ S.

It is readily seen that for v ∈ H such that ProjS(v) ̸= ∅,

(2.1) v − w ∈ NP (S;w) for all w ∈ ProjS(v).

One defines the proximal subdifferential ∂P f(x) of f at x ∈ U as the set

(2.2) ∂P f(x) =
{
v ∈ H : (v,−1) ∈ NP

(
epi f ; (x, f(x))

)}
,

where epi f is the epigraph of f , i.e.,

epi f := {(u, r) ∈ H × R : u ∈ U, f(u) ≤ r}

and where H× R is endowed with the usual product structure. In particular, note
that ∂P f(x) = ∅ if f is not finite at x ∈ U .

The Clarke tangent cone to S at x ∈ S, TC(S;x), is the set of h ∈ H such that
for every sequence (xn)n∈N of S with xn → x, for every sequence (tn)n∈N of positive
reals with tn → 0, there is a sequence (hn)n∈N of H with hn → h satisfying

xn + tnhn ∈ S for all n ∈ N.

It is known that this set is a closed convex cone containing 0. The Clarke normal
cone of S at x ∈ S is denoted by NC(S;x) and defined as the polar cone of TC(S;x),
i.e.,

NC(S;x) :=
{
v ∈ H : ⟨v, h⟩ ≤ 0, ∀h ∈ TC(S;x)

}
.

By convention again, one puts

TC(S;x) = NC(S;x) = ∅ for all x ∈ H \ S.

It is not difficult to check that

(2.3) NP (S;x) ⊂ NC(S;x) for all x ∈ H.
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As for the proximal subdifferential, one defines the Clarke subdifferential ∂Cf(x) of
f at x ∈ U by

(2.4) ∂Cf(x) :=
{
v ∈ H : (v,−1) ∈ NC

(
epif ; (x, f(x))

)}
,

so ∂Cf(x) = ∅ whenever f is not finite at x ∈ U . According to (2.2), (2.4) and
(2.3), it is straightforward that

∂P f(x) ⊂ ∂Cf(x) for all x ∈ U.

If f is γ-Lipschitz near x ∈ U for some real γ ≥ 0, it is well-known that ∂Cf(x) ⊂ γB.
In particular, this yields

∂CdS(y) ⊂ B for all y ∈ H.
Furthermore, if S is closed, the following relations between the proximal (resp.,
Clarke) subdifferential of the distance function of S and the proximal (resp., Clarke)
normal cone to S hold true for all x ∈ S (see, e.g., [6]):

(2.5) ∂PdS(x) = NP (S;x) ∩ B
and

(2.6) ∂CdS(x) ⊂ NC(S;x) ∩ B.
For more details, we refer the reader to [27, 17, 10].

2.2. Prox-regular sets. In this paper, we deal with the concept of uniform prox-
regularity in the Hilbert setting, which is due to R.A. Poliquin, R.T. Rockafellar and
L.Thibault ([26]). In this subsection, r is an extended real of ]0,+∞]. Whenever
r = +∞, we set by convention, 1

r := 0.

Definition 2.1. Let S be a nonempty closed subset of H. One says that S is
r-prox-regular (or uniformly prox-regular with constant r) whenever, for all x ∈ S,
for all v ∈ NP (S;x) ∩ B and for all t ∈]0, r[, one has x ∈ ProjS(x+ tv).

The following theorems provide some useful characterizations and properties of
uniform prox-regularity (see, e.g., [11]).

Theorem 2.2. Let S be a nonempty closed subset of H. The following assertions
are equivalent.

(a) The set S is r-prox-regular.
(b) For all x1, x2 ∈ S, for all v ∈ NP (S;x1), one has

⟨v, x2 − x1⟩ ≤
1

2r
∥v∥ ∥x1 − x2∥2 .

(c) For all x1, x2 ∈ S, for all v1 ∈ NP (S;x1), for all v2 ∈ NP (S;x2), one has

⟨v1 − v2, x1 − x2⟩ ≥ −1

2

(
∥v1∥
r

+
∥v2∥
r

)
∥x1 − x2∥2 .

Theorem 2.3. Let S be an r-prox-regular subset of H.

(a) For any x ∈ S, one has

NP (S;x) = NC(S;x) and ∂PdS(x) = ∂CdS(x).

(b) For any x ∈ Ur(S) := {u ∈ H : dS(u) < r}, projS(x) is well-defined.
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(c) The well-defined mapping projS : Ur(S) → S is locally Lipschitz on Ur(S).

As in [2], according to (a) of Theorem 2.3, we put

N(S;x) := NP (S;x) = NC(S;x) for all x ∈ S,

whenever S is a uniform prox-regular set of the real Hilbert space H.

In order to prove that our perturbed sweeping process has a solution, we need
the following proposition. We refer to [14] for the proof.

Proposition 2.4. Let S be an r-prox-regular subset of H, x ∈ S, v ∈ ∂PdS(x).
Then, for all z ∈ H such that dS(z) < r, one has

⟨v, z − x⟩ ≤ 1

2r
∥z − x∥2 + 1

2r
d2S(z) +

(
1

r
∥z − x∥+ 1

)
dS(z).

The last result of this subsection deals with the nearest points of a uniformly
prox-regular set (see [2] for the proof).

Proposition 2.5. Let S be an r-prox-regular subset of H and let x, x′ ∈ H. If
x− x′ ∈ N(S;x′) and ∥x− x′∥ ≤ r (resp., ∥x− x′∥ < r) then x′ ∈ ProjS(x) (resp.,
x′ = projS(x)).

2.3. Scalar upper semicontinuity. For any subset S of the real Hilbert space H,
its support function σ(·, S) is defined by

σ(v, S) := sup
x∈S

⟨v, x⟩ for all v ∈ H.

Thanks to the Hahn-Banach separation Theorem, we know that for any two closed
convex subsets S1, S2 of H, one has

(2.7) S1 ⊂ S2 ⇔ σ(·, S1) ≤ σ(·, S2).
Recall that a multimapping F : T ⇒ X from a real Hausdorff topological space

T to a topological space X is said to be scalarly upper semicontinuous whenever, for
any ξ ∈ X, the extended real-valued function σ(ξ, F (·)) is upper semicontinuous.

The following scalar upper semicontinuity property will be useful (see [2] for the
proof).

Proposition 2.6. Let C : I = [T0, T ] ⇒ H be a multimapping satisfying:

(i) there exists r ∈]0,+∞] such that C(t) is r-prox-regular for all t ∈ I;
(ii) there exists µ a positive measure on I such that, for all s1, s2 ∈ I with

s1 ≤ s2, for all y ∈ H,

dC(s2)(y)− dC(s1)(y) ≤ µ(]s1, s2]).

Let (tn)n∈N be a sequence of I converging to some t ∈ I with tn ≥ t for
all n ∈ N, (xn)n∈N a sequence of H converging to some x ∈ C(t) with
xn ∈ C(tn) for all n ∈ N. If there exists N ∈ N with µ(]t, tN ]) < +∞, then
for any z ∈ H, one has

lim sup
n→+∞

σ(z, ∂PdC(tn)(xn)) ≤ σ(z, ∂PdC(t)(x)).
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2.4. Differential measure and BV mappings. For the convenience of the reader,
let us recall some preliminaries about the measure theory that will be required by
the main result of the paper. One can also see [13, 14, 1, 2, 28].

For a set A ⊂ I, the notation 1A stands for the characteristic function (in the
sense of measure theory) of A relative to I, that is, for all x ∈ I

1A(x) =

{
1 if x ∈ A,

0 otherwise.

Let ν be a positive measure on I, p ≥ 1 be a real. We denote by Lp(I,H, ν) the
real space of (classes of) Bochner measurable mappings from I to H for which the
p-th power of their norm value is integrable with respect to the measure ν.

Let ν and ν̂ be two positive Radon measures on I. We recall (see, e.g., [15]) that,
with I(t, r) := I ∩ [t− r, t+ r] (r > 0 and t ∈ I) the limit

(2.8)
dν̂

dν
(t) := lim

r↓0

ν̂(I(t, r))

ν(I(t, r))

(with the convention 0
0 = 0) exists and is finite for ν-almost every t ∈ I. The

(nonnegative Borel) function dν̂
dν (·) is called the derivative of the measure ν̂ with

respect to ν. Moreover, the measure ν̂ is absolutely continuous with respect to ν if
and only if ν̂ = dν̂

dν (·)ν (i.e., dν̂
dν (·) is a density relative to ν). If the latter equality

holds, a mapping u(·) : I → H is ν̂-integrable on I if and only if u(·)dν̂dν (·) is ν-
integrable on I. In such a case, one has

(2.9)

∫
I
u(t)dν̂(t) =

∫
I
u(t)

dν̂

dν
(t)dν(t).

If the two Radon measures ν and ν̂ are each one absolutely continuous with
respect to the other one, one says that ν and ν̂ are absolutely continuously equivalent.

It is worth pointing out that the relation (2.8) gives

dλ

dν
(t) =

λ({t})
ν({t})

= 0 for all t ∈ I with ν({t}) > 0,

hence

(2.10)
dλ

dν
(t)ν({t}) = 0 ν-a.e. t ∈ I.

Let u : [T0, T ] → H be a mapping. Any finite sequence σ = (t0, . . . , tk) ∈ Rk+1

with k ∈ N such that T0 = t0 < · · · < tk = T is called a subdivision σ of [T0, T ].

One associates to such a subdivision σ, the real Sσ :=
∑k

i=1 ∥u(ti)− u(ti−1)∥. The
variation of u on [T0, T ] is defined as the extended real

V (u;T0, T ) := sup
ζ∈S

Sζ ,

where S is the set of all subdivisions of [T0, T ]. The mapping u is said to be of
bounded variation on [T0, T ] if V (u;T0, T ) < +∞.
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It is well-known that u(·) has one sided limits at each point of I whenever it is
of bounded variation on I. In such a case, one defines

u(τ−) := lim
t↑τ

u(t) for all τ ∈]T0, T ],

where in the whole paper, t ↑ τ means t→ τ with t < τ .

Let u(·) : I → H be a mapping of bounded variation and right continuous on
I = [T0, T ]. Then, there exists a vector measure du on I with values in H associated
with u(·) (see N. Dinculeanu [13] and J.J. Moreau [18]). This measure is called the
differential measure (or the Stieltjes measure) of u(·) and it satisfies for all s, t ∈ I
with s ≤ t,

u(t) = u(s) +

∫
]s,t]

du.

Now, consider ν a positive Radon measure on I, u(·) : I → H a mapping and
ũ(·) ∈ L1(I,H, ν). If, for any t ∈ I,

u(t) = u(T0) +

∫
]T0,t]

ũ dν,

then u(·) is of bounded variation, right continuous on I and

du = ũ dν.

In such a case, the mapping ũ(·) is said to be a density of the measure du relative
to ν. According to J.J. Moreau and M.Valadier ([25]), for ν-almost every t ∈ I,

ũ(t) =
du

dν
(t) := lim

r↓0

du(I(t, r))

ν(I(t, r))
= lim

r↓0

du(I+(t, r))

ν(I+(t, r))
= lim

r↓0

du(I−(t, r))

ν(I−(t, r))
,

where I−(t, r) = [t− r, t]∩ I and I+(t, r) = [t, t+ r]∩ I for each t ∈ I and each real
r > 0. It follows from this

(2.11)
du

dν
(t) = lim

s↑t

du(]s, t] ∩ I)
ν(]s, t] ∩ I)

ν-a.e. t ∈ I.

The following proposition, due to J.J. Moreau ([18]), is fundamental in the paper.

Proposition 2.7. Let ν be a positive Radon measure on I = [T0, T ], u(·) : I → H be
a right continuous mapping of bounded variation such that the differential measure
du has a density du

dν relative to ν. Then, the function Φ(·) = ∥u(·)∥2 : I → R
is a right continuous function of bounded variation whose differential measure dΦ
satisfies, in the sense of the ordering of real measures,

dΦ ≤ 2

⟨
u(·), du

dν
(·)
⟩
dν.

The last result of this section is a variant of Gronwall Lemma which is due to
M.D.P. Monteiro Marques ([16]).

Lemma 2.8. Let ν be a positive Radon measure on [T0, T ], g, φ : [T0, T ] → R+ two
functions such that:
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(i) For some fixed θ ∈ R+, one has, for all t ∈ ]T0, T ],

0 ≤ g(t)ν({t}) ≤ θ < 1

and g ∈ L1([T0, T ] ,R+, ν).
(ii) For some fixed α ∈ R+, one has, for all t ∈ [T0, T ],

φ(t) ≤ α+

∫
]T0,t]

g(s)φ(s)dν(s)

and φ ∈ L∞([T0, T ] ,R+, ν).

Then, one has

φ(t) ≤ α exp
( 1

1− θ

∫
]T0,t]

g(s)dν(s)
)

for all t ∈ [T0, T ].

3. Concept of solution

Following [14, 1, 2, 28], one defines the concept of solution for our measure dif-
ferential inclusion.

Let f : I×H → H be a mapping, F : I×H ⇒ H be a multimapping, C : I ⇒ H be
a r-prox-regular valued multimapping for some extended real r ∈]0,+∞]. Assume
that there exists a finite positive Radon measure µ on I such that

|d(y, C(s))− d(y, C(t))| ≤ µ(]s, t]) for all y ∈ H, for all s, t ∈ I with s ≤ t.

Given u0 ∈ C(T0), a mapping u : I → H is a solution of the measure differential
inclusion

(P)

{
−du ∈ N(C(t);u(t)) + F (t, u(t)) + f(t, u(t))

u(T0) = u0,

whenever:
(a) the mapping u(·) is of bounded variation on I, right continuous on I and satisfies
u(T0) = u0 and u(t) ∈ C(t) for all t ∈ I;
(b) there exist a λ-integrable mapping z(·) : I → H with z(t) ∈ F (t, u(t)) for λ-
almost every t ∈ I and a positive Radon measure ν on I, absolutely continuously
equivalent to λ + µ and with respect to which the differential measure du of u is
absolutely continuous with du

dν (·) as an L
1(I,H, ν)-density and

(3.1)
du

dν
(t) + z(t)

dλ

dν
(t) + f(t, u(t))

dλ

dν
(t) ∈ −N(C(t);u(t)) ν-a.e. t ∈ I.

As in [14, 1, 2, 28], the concept of solution does not depend on the measure ν in the
sense that a mapping u(·) : I → H satisfying (a) above is a solution of (P) if and
only if (3.1) holds for any positive Radon measure ν which is absolutely continuously
equivalent to λ+ µ. Indeed, let u(·) : I → H be a solution of (P) and let ν1, given
by the definition of a solution to (P) be an associated Radon measure absolutely
continuous equivalent to λ+ µ for which

(3.2)
du

dν1
(t) + z(t)

dλ

dν1
(t) + f(t, u(t))

dλ

dν1
(t) ∈ −N(C(t);u(t)) ν1-a.e. t ∈ I.

Fix any other Radon measure ν2 absolutely continuously equivalent to λ+µ. Then,
the measures ν1 and ν2 are absolutely continuously equivalent. Consequently, dν1

dν2
(·)
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and dν2
dν1

(·) exist as densities and for du
dν2

(·) and the derivative dλ
dν2

(·) the following
equalities hold

du

dν2
(t) =

du

dν1
(t)
dν1
dν2

(t),
dλ

dν2
(t) =

dλ

dν1
(t)
dν1
dν2

(t) ν2-a.e. t ∈ I.

This yields according to (3.2)

du

dν2
(t) + z(t)

dλ

dν2
(t) + f(t, u(t))

dλ

dν2
(t) ∈ −N(C(t);u(t)) ν2-a.e. t ∈ I.

4. Existence result

In this section, we prove under assumptions on f , F , C and µ that (P) has at
least one solution.

Theorem 4.1. Let C(·) : I ⇒ H be an r-prox-regular valued multimapping for some
extended real r ∈]0,+∞], for which there exists a finite positive Radon measure on
I with sups∈]T0,T ] µ({s}) < r

2 such that for all y ∈ H, for all s, t ∈ I with s < t,

(4.1) |d(y, C(t))− d(y, C(s))| ≤ µ(]s, t]).

Let F : I ×H ⇒ H be a multimapping with nonempty convex compact values such
that:

(i) F (·, ·) is scalarly upper-semicontinuous.
(ii) There exist some compact set K ⊂ B and a function β : I → R+ with

β(·) ∈ L1(I,R, λ) such that

F (t, x) ⊂ β(t)(1 + ∥x∥)K for all t ∈ I, for all x ∈
∪
s∈I

C(s).

Let f : I ×H → H be a mapping such that:
(iii) For each real s > 0, there exists a function Ls : I → R+ with Ls ∈ L1(I,R, λ)

such that

∥f(t, x)− f(t, y)∥ ≤ Ls(t) ∥x− y∥ for all t ∈ I, for all x, y ∈ sB.
(iv) f(·, x) is Lebesgue measurable for all x ∈ H and there exists a function

α : I → R+ with α ∈ L1(I,R, λ) such that

∥f(t, x)∥ ≤ α(t)(1 + ∥x∥) for all t ∈ I, for all x ∈
∪
s∈I

C(s).

Then, for each u0 ∈ C(T0), the following perturbed sweeping process{
−du ∈ N(C(t);u(t)) + F (t, u(t)) + f(t, u(t))

u(T0) = u0

has at least one solution satisfying∥∥u(t)− u(t−)
∥∥ ≤ 2µ({t}) for all t ∈]T0, T ].

Proof. Fix any u0 ∈ C(T0). We denote by (P) the perturbed sweeping process

(P)

{
−du ∈ N(C(t);u(t)) + F (t, u(t)) + f(t, u(t))

u(T0) = u0.
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As in [14, 3], we suppose, without loss of generality, that K is convex and contains
0 (if not so, we may replace it by co(K ∪ {0})).
Case 1: Assume that

(4.2)

∫ T

T0

(β(s) + 1)dλ(s) ≤ 1

8
and

∫ T

T0

α(s)dλ(s) ≤ 1

8

Set

(4.3) l = 2
(
µ(]T0, T ]) + ∥u0∥+

3

2

)
and define the positive Radon measure on I

(4.4) ν = µ+ l(β(·) + 1 + α(·))λ.
Let us consider the function v(·) : I → R defined by

v(t) = ν(]T0, t]) for all t ∈ I

and set
V = v(T ) = ν(]T0, T ]).

Let (εn)n∈N be a sequence of positive real numbers with εn ↓ 0. Following J.J.
Moreau in [23], choose for each n ∈ N, 0 = V n

0 < V n
1 < . . . < V n

qn = V (with qn ∈ N)
such that
(a) for all j ∈ {0, . . . , qn − 1}, V n

j+1 − V n
j ≤ εn ;

(b) for all k ∈ N,
{
V k
0 , . . . , V

k
qk

}
⊂ {V k+1

0 , . . . , V k+1
qk+1

}.
For each n ∈ N, set V n

1+qn := V + εn and consider the partition (Jn
j )j∈{0,...,qn−1} of

I where for each j ∈ {0, . . . , qn − 1}
Jn
j := v−1(

[
V n
j , V

n
j+1

[
) = {t ∈ I : V n

j ≤ ν(]T0, t]) < V n
j+1}.

Note that (Jm
j )0≤j≤qm is a refinement of (Jn

j )0≤j≤qn for all m,n ∈ N with m ≥ n.

Since v(·) is nondecreasing and right continuous on I, it is easy to see that, for each
n ∈ N, j ∈ {0, . . . , qn − 1}, the set Jn

j is either empty or an interval of the form

[a, b[ with a < b. Furthermore, we have Jn
qn = {T} for all n ∈ N. This gives for each

n ∈ N an integer p(n) ∈ N and a finite sequence

T0 = tn0 < . . . < tnp(n) = T

such that for each i ∈ {0, . . . , p(n)− 1}, there is some j ∈ {0, . . . , qn − 1} satisfying
Jn
j =

[
tni , t

n
i+1

[
. Observe that (p(n))n∈N is an nondecreasing sequence. For all n ∈ N,

put En = {0, . . . , p(n)− 1}. Fix for a moment any n ∈ N. For each i ∈ En, put

ηni = tni+1 − tni , αn
i =

∫ tni+1

tni

α(s)dλ(s) and βni =

∫ tni+1

tni

(β(s) + 1)dλ(s).

Set also,
∆n = max

i∈En

(tni+1 − tni ) and ξn = max
i∈En

(βni + αn
i ).

For all i ∈ En and t ∈
[
tni , t

n
i+1

[
, one has

ν(]tni , t]) = v(t)− v(tni ) ≤ εn,

so

(4.5) µ(
]
tni , t

n
i+1

[
) ≤ ν(

]
tni , t

n
i+1

[
) ≤ εn.
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Hence (since λ ≤ ν), one has

(4.6) ηni = tni+1 − tni ≤ εn for all i ∈ En.

As a consequence, we observe that limk→+∞∆k = 0 and hence, limk→+∞ ξk = 0.
Fix any n0 ∈ N such that for all integers n ≥ n0,

(4.7) ξn + εn <
r

2l
.

Fix any integer n ≥ n0. Let us define (sni )0≤i≤p(n)−1 as follows. If p(n) = 1, choose
sn0 ∈ [T0, T ] such that

β(sn0 ) ≤ inf
s∈[T0,T ]

β(s) + 1.

If p(n) > 1, choose (as in [14]) for each i ∈ {0, . . . , p(n)− 2} some sni ∈ [tni , t
n
i+1[

satisfying

β(sni ) ≤ inf
s∈[tni ,tni+1[

β(s) + 1,

and some snp(n)−1 ∈ [tnp(n)−1, t
n
p(n)] such that

β(snp(n)−1) ≤ inf
s∈[tn

p(n)−1
,tn
p(n)

]
β(s) + 1.

Let us define κn(·) : I → I by

κn(t) =

{
sni if t ∈ [tni , t

n
i+1[ with i ∈ En,

snp(n)−1 if t = T.

For each (t, x) ∈ I ×H, choose (thanks to the fact that F takes nonempty values)
ζ(t, x) ∈ F (t, x). Let us set un0 = u0 and, as in [3], let us construct by induction a
sequence (unk)0≤k≤p(n) such that, for all k ∈ {1, . . . , p(n)},

1 +
∥∥unk−1

∥∥ < l,

dC(tnk )

(
unk−1 − ηnk−1ζ(κn(t

n
k−1), u

n
k−1)−

∫ tnk

tnk−1

f(s, unk−1)dλ(s)
)

≤ µ(]tnk−1, t
n
k ]) + lβn

k−1 + lαn
k−1 < r,

and

unk := PC(tnk )

(
unk−1 − ηnk−1ζ(κn(t

n
k−1), u

n
k−1)−

∫ tnk

tnk−1

f(s, unk−1)dλ(s)
)
.

Step 1: Construction of the finite sequence.
It is obvious that 1+∥u0∥ < l. Using (ii), the inclusion ζ(κn(t

n
0 ), u

n
0 ) ∈ F (κn(t

n
0 ), u

n
0 ),

the latter inequality and the fact un0 = u0 ∈ C(tn0 ), we get

∥ζ(κn(tn0 ), un0 )∥ ≤ β(κn(t
n
0 ))(1 + ∥u0∥) ≤ lβ(κn(t

n
0 )).
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This ensures, thanks to the equality sn0 = κn(t
n
0 ),

ηn0 ∥ζ(κn(tn0 ), un0 )∥ ≤ l

∫ tn1

tn0

β(κn(t
n
0 ))dλ(s)

≤ l

∫ tn1

tn0

(β(s) + 1)dλ(s)

= lβn0 .(4.8)

By (iv) and the inclusion un0 ∈ C(tn0 ), we have

∥f(s, un0 )∥ ≤ α(s)(1 + ∥u0∥) ≤ lα(s) for all s ∈ I.

Hence, we obtain ∥∥∥∥∥
∫ tn1

tn0

f(s, un0 )dλ(s)

∥∥∥∥∥ ≤
∫ tn1

tn0

∥f(s, un0 )∥ dλ(s)

≤ l

∫ tn1

tn0

α(s)dλ(s)

= lαn
0 .(4.9)

According to the assumption on the variation of C(·) in (4.1), (4.5), the fact that
un0 ∈ C(tn0 ), (4.8), (4.9), the definition of ξn, the inequality l ≥ 1 and (4.7), one has

dC(tn1 )

(
un0 − ηn0 ζ(κn(t

n
0 ), u

n
0 )−

∫ tn1

tn0

f(s, un0 )dλ(s)
)

≤µ(]T0, tn1 ]) + dC(tn0 )

(
un0 − ηn0 ζ(κn(t

n
0 ), u

n
0 )−

∫ tn1

tn0

f(s, un0 )dλ(s)
)

≤εn + ηn0 ∥ζ(κn(tn0 ), un0 )∥+

∥∥∥∥∥
∫ tn1

tn0

f(s, un0 )dλ(s)

∥∥∥∥∥+ µ({tn1})

≤εn + lβn
0 + lαn

0 +
r

2

≤εn + lξn +
r

2

≤l(εn + ξn) +
r

2
<r.

Since C(tn1 ) is r-prox-regular,

un1 := PC(tn1 )

(
un0 − ηn0 ζ(κn(t

n
0 ), u

n
0 )−

∫ tn1

tn0

f(s, un0 )dλ(s)
)
,

is well-defined according to Theorem 2.3. Now, assume that p(n) > 1 (otherwise,
the induction is complete). Fix any k ∈ {1, . . . , p(n)− 1}. Suppose that all the steps
of the induction from 1 to k have been realized. Let q ∈ {0, . . . , k − 1}. By the

equality unq+1 = PC(tnq+1)

(
unq − ηnq ζ(κn(t

n
q ), u

n
q )−

∫ tnq+1

tnq
f(s, unq )dλ(s)

)
, the variation



PERTURBED BV SWEEPING PROCESS 1631

assumption on C(·) in (4.1) and the inclusion unq ∈ C(tnq ), we have∥∥∥∥∥unq+1 − unq + ηnq ζ(κn(t
n
q ), u

n
q ) +

∫ tnq+1

tnq

f(s, unq )dλ(s)

∥∥∥∥∥
=dC(tnq+1)

(
unq − ηnq ζ(κn(t

n
q ), u

n
q )−

∫ tnq+1

tnq

f(s, unq )dλ(s)
)

≤µ(]tnq , tnq+1]) + dC(tnq )

(
unq − ηnq ζ(κn(t

n
q ), u

n
q )−

∫ tnq+1

tnq

f(s, unq )dλ(s)
)

≤µ(]tnq , tnq+1]) + ηnq
∥∥ζ(κn(tnq ), unq )∥∥+

∥∥∥∥∥
∫ tnq+1

tnq

f(s, unq )dλ(s)

∥∥∥∥∥ ,
and then ∥∥unq+1

∥∥ ≤
∥∥unq ∥∥+ µ(]tnq , t

n
q+1])

+ 2ηnq
∥∥ζ(κn(tnq ), unq )∥∥+ 2

∥∥∥∥∥
∫ tnq+1

tnq

f(s, unq )dλ(s)

∥∥∥∥∥ .
From this inequality, we deduce∥∥unq+1

∥∥ ≤ ∥un0∥+
q∑

p=0

µ(]tnp , t
n
p+1]) + 2

q∑
p=0

ηnp
∥∥ζ(κn(tnp ), unp )∥∥

+ 2

q∑
p=0

∥∥∥∥∥
∫ tnp+1

tnp

f(s, unp )dλ(s)

∥∥∥∥∥ .(4.10)

For all p ∈ {0, . . . , q}, we have by (ii)

(4.11)
∥∥ζ(κn(tnp ), unp )∥∥ ≤ β(κn(t

n
p ))(1 +

∥∥unp∥∥) ≤ β(κn(t
n
p ))(1 + max

0≤i≤q
∥uni ∥),

and by (iv)

(4.12)
∥∥f(s, unp )∥∥ ≤ α(s)(1 +

∥∥unp∥∥) ≤ α(s)(1 + max
0≤i≤q

∥uni ∥) for all s ∈ I.

It follows from (4.10), (4.11) and (4.12) that∥∥unq+1

∥∥ ≤ ∥un0∥+
q∑

p=0

µ(]tnp , t
n
p+1])

+ 2(1 + max
0≤i≤q

∥uni ∥)
( q∑

p=0

ηnpβ(κn(t
n
p )) +

q∑
p=0

∫ tnp+1

tnp

α(s)dλ(s)
)
.

Since q < k and
∑q

p=0 µ(]t
n
p , t

n
p+1]) ≤ µ(]T0, T ]), we have∥∥unq+1

∥∥ ≤ ∥un0∥+ µ(]T0, T ])

+ 2(1 + max
0≤i≤k

∥uni ∥)
( q∑

p=0

ηnpβ(κn(t
n
p )) +

q∑
p=0

∫ tnp+1

tnp

α(s)dλ(s)
)
.
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As

q∑
p=0

ηnpβ(κn(t
n
p )) =

q∑
p=0

∫ tnp+1

tnp

β(κn(t
n
p ))ds ≤

∫ T

T0

(β(s) + 1)dλ(s),

and

q∑
p=0

∫ tnp+1

tnp

α(s)dλ(s) ≤
∫ T

T0

α(s)dλ(s),

we get∥∥unq+1

∥∥ ≤ ∥un0∥+ µ(]T0, T ])

+ 2(1 + max
0≤i≤k

∥uni ∥)
(∫ T

T0

(β(s) + 1)dλ(s) +

∫ T

T0

α(s)dλ(s)

)
.

Combining this and (4.2), it follows

max
0≤i≤k

∥uni ∥ ≤ ∥un0∥+ µ(]T0, T ]) + 2(1 + max
0≤i≤k

∥uni ∥)
(1
8
+

1

8

)
.

Consequently,

max
0≤i≤k

∥uni ∥ ≤ 2
(
∥u0∥+ µ(]T0, T ]) +

1

2

)
= l − 2,

the equality being due to the definition of l in (4.3). In particular, we have

1 + ∥unk∥ < l.

By (ii), we get

ηnk ∥ζ(κn(tnk), unk)∥ ≤ ηnkβ(κn(t
n
k))(1 + ∥unk∥)

≤ (1 + ∥unk∥)
∫ tnk+1

tnk

β(κn(t
n
k))dλ(s)

≤ l

∫ tnk+1

tnk

(β(s) + 1)dλ(s)

≤ lβnk ,(4.13)

and by (iv)

(4.14)

∥∥∥∥∥
∫ tnk+1

tnk

f(s, unk)dλ(s)

∥∥∥∥∥ ≤ (1 + ∥unk∥)
∫ tnk+1

tnk

α(s)dλ(s) ≤ lαn
k .
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According to the variation assumption on C(·) in (4.1), (4.5), the inclusion unk ∈
C(tnk), (4.13), (4.14), the definition of ξn, the inequality l ≥ 1 and (4.7), we have

dC(tnk+1)

(
unk − ηnk ζ(κn(t

n
k), u

n
k)−

∫ tnk+1

tnk

f(s, unk)dλ(s)
)

≤µ(]tnk , tnk+1]) + dC(tnk )

(
unk − ηnk ζ(κn(t

n
k), u

n
k)−

∫ tnk+1

tnk

f(s, unk)dλ(s)
)

≤εn + ηnk ∥ζ(κn(tnk), unk)∥+
∥∥∥ ∫ tnk+1

tnk

f(s, unk)dλ(s)
∥∥∥+ µ(

{
tnk+1

}
)

≤εn + lβnk + lαn
k +

r

2

≤l(εn + ξn) +
r

2
<r.

Since C(tnk+1) is r-prox-regular

unk+1 := PC(tnk+1)

(
unk − ηnk ζ(κn(t

n
k), u

n
k)−

∫ tnk+1

tnk

f(s, unk)dλ(s)
)
,

is well-defined and this completes the induction. Let us define

zni := ζ(κn(t
n
i ), u

n
i ) for all i ∈ {0, . . . , p(n)− 1} .

With this definition and thanks to the latter induction, we have for all i ∈
{0, . . . , p(n)− 1},

(4.15) zni ∈ F (κn(t
n
i ), u

n
i ),

dC(tni+1)

(
uni − ηni z

n
i −

∫ tni+1

tni

f(s, uni
)
dλ(s)

)
≤ µ(]tni , t

n
i+1]) + lβn

i + lαn
i

< r,(4.16)

(4.17) uni+1 = PC(tni+1)

(
uni − ηni z

n
i −

∫ tni+1

tni

f(s, uni )dλ(s)
)

and

(4.18) 1 + ∥uni ∥ < l.

Note that by (4.17), (4.16) and (4.4) for any i ∈ {0, . . . , p(n)− 1},∥∥∥∥∥uni+1 − uni + ηni z
n
i +

∫ tni+1

tni

f(s, uni )dλ(s)

∥∥∥∥∥ ≤ µ(]tni , t
n
i+1]) + lβni + lαn

i

≤ ν(]tni , t
n
i+1]).(4.19)

Fix any i ∈ {0, . . . , p(n)− 1}. By (4.15) and (ii), we have

zni ∈ β(κn(t
n
i ))(1 + ∥uni ∥)K
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and this entails
l

(1 + ∥uni ∥)
zni ∈ lβ(κn(t

n
i ))K.

Using the fact that K is a convex set containing 0 and the inequality (1+∥uni ∥) < l,
we see that

1 + ∥uni ∥
l

( l

1 + ∥uni ∥
zni

)
+
(
1− 1 + ∥uni ∥

l

)
0 ∈ lβ(κn(t

n
i ))K,

that is,

(4.20) zni ∈ lβ(κn(t
n
i ))K.

Hence,

(4.21) ∥zni ∥ ≤ lβ(κn(t
n
i )) for all i ∈ {0, . . . , p(n)− 1} ,

according to the inclusion K ⊂ B.
Step 2: Definition of the sequence (un(·))n≥n0 .
Fix any integer n ≥ n0. Let us define zn(·), un(·) : I → H by

zn(t) =

{
zni if t ∈ [tni , t

n
i+1[ with i ∈ En,

znp(n)−1 if t = T

and

un(t) = uni +
ν(]tni , t])

ν(]tni , t
n
i+1])

(
uni+1 − uni + ηni z

n
i +

∫ tni+1

tni

f(s, uni )dλ(s)
)

− (t− tni )z
n
i −

∫ t

tni

f(s, uni )dλ(s)

where i ∈ {0, . . . , p(n)− 1} such that t ∈ [tni , t
n
i+1]. Observe that un(·) is right

continuous and of bounded variation on each [tni , t
n
i+1]. Hence it is right continuous

and of bounded variation on the whole interval I. Set for all t ∈ I,

Πn(t) =

p(n)−1∑
i=0

uni+1 − uni + ηni z
n
i +

∫ tni+1

tni
f(s, uni )dλ(s)

ν(]tni , t
n
i+1])

1]tni ,tni+1]
(t).

Define δn : I → H by

δn(t) =

{
tni if t ∈ [tni , t

n
i+1[ with i ∈ En,

tnp(n)−1 if t = T.

Using the definition of un(·), Πn(·) and δn(·), we get for all t ∈ I

un(t) = un(T0) +

∫
]T0,t]

Πn(s)dν(s)−
∫
]T0,t]

(
zn(s) + f

(
s, un(δn(s)

))
dλ(s).

Since λ is absolutely continuous with respect to ν, it has dλ
dν as a density in

L∞(I,R+, ν) relative to ν and then by (2.9), we have for all t ∈ I

un(t) = un(T0) +

∫
]T0,t]

(
Πn(s)− zn(s)

dλ

dν
(s)− f

(
s, un(δn(s))

)dλ
dν

(s)

)
dν(s).
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This tells us that the vector measure dun has Πn(·)−zn(·)dλdν (·)−f(·, un(δn(·)))
dλ
dν (·)

(that is, the latter integrand) as a density in L∞(I,H, ν) relative to ν. Consequently,
the derivative dun

dν (·) is a density of dun relative to ν and

(4.22)
dun
dν

(t) + zn(t)
dλ

dν
(t) + f(t, un(δn(t)))

dλ

dν
(t) = Πn(t) ν-a.e. t ∈ I.

By (4.19), for ν-almost every t ∈ I, we have∥∥∥∥dundν (t) + zn(t)
dλ

dν
(t) + f(t, un(δn(t)))

dλ

dν
(t)

∥∥∥∥ = ∥Πn(t)∥

≤ 1.(4.23)

On the other hand, by (4.4), the measure l(β(·)+1+α(·))λ is absolutely continuous

with respect to ν, thus it has d(l(β(·)+1+α(·))
dν as a density relative to ν. Hence, for

ν-almost every t ∈ I, we have

(4.24) 0 ≤ l(β(t) + 1 + α(t))
dλ

dν
(t) =

d(l(β(·) + α(·) + 1)λ)

dν
(t) ≤ 1.

Using (4.21), we get

(4.25) ∥zn(t)∥ ≤ l(β(t) + 1) for all t ∈ I.

From the assumption (iv) and (4.18), we deduce

(4.26) ∥f(t, un(δn(t)))∥ ≤ lα(t) for all t ∈ I.

Thanks to (4.25) and (4.24), we have

(4.27)

∥∥∥∥zn(t)dλdν (t)
∥∥∥∥ ≤ l(β(t) + 1)

dλ

dν
(t) ≤ 1 ν-a.e. t ∈ I.

Using (4.25), (4.26) and (4.24), we obtain

(4.28)

∥∥∥∥zn(t)dλdν (t) + f(t, un(δn(t)))
dλ

dν
(t)

∥∥∥∥ ≤ 1 ν-a.e. t ∈ I.

Taking the latter inequality into account, it results from (4.23) that

(4.29)

∥∥∥∥dundν (t)

∥∥∥∥ ≤ 2 ν-a.e. t ∈ I.

Combining this inequality with the fact that dun
dν is a density of dun relative to ν,

we obtain

(4.30) ∥un(τ1)− un(τ2)∥ ≤ 2ν(]τ1, τ2]) for all τ1, τ2 ∈ I with τ1 ≤ τ2.

By (4.15), we have

zn(t) ∈ F (κn(δn(t)), un(δn(t))) for all t ∈ I.

Let us define θn : I → H by

θn(t) =

{
tni+1 if t ∈]tni , tni+1] with i ∈ En,

tn1 if t = T0.

Using the definition of Πn, (4.17) and (2.1), we have

(4.31) Πn(t) ∈ −NP
(
C(θn(t));un(θn(t))

)
ν-a.e. t ∈ I.
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According to (4.31), (4.23) and (2.5), we have

(4.32) Πn(t) ∈ −∂PdC(θn(t))

(
un(θn(t))

)
ν-a.e. t ∈ I.

Step 3: Convergence of (un(·))n up to a subsequence.
As in [14], we are going to prove that (un(·))n has a subsequence that converges
pointwise to a mapping u(·) which is a solution of (P).
According to (4.27), the sequence (zn(·)dλdν (·))n is bounded in L2([T0, T ],H, ν).
Without loss of generality, we can suppose that (zn(·)dλdν (·))n converges weakly in

L2([T0, T ],H, ν) to some mapping z̃ : I → H with z̃ ∈ L2([T0, T ],H, ν). Fix any
integer n ≥ n0. Let us define Zn : I → H by

Zn(t) =

∫
]T0,t]

zn(s)
dλ

dν
(s)dν(s) for all t ∈ I.

For all t ∈ I, we have

(4.33) Zn(t) →
∫
]T0,t]

z̃(s)dν(s) weakly in H.

By (4.20), the definition of zn(·), the fact that K is a convex set containing 0, and
the choice of sni (i ∈ {0, . . . , p(n)− 1}), we get

(4.34) zn(t) ∈ l(β(t) + 1)K for all t ∈ I.

According to (4.34), (4.24) and the fact that K is a closed convex set containing 0,
we have

Zn(t) ∈ ν(]T0, t])K for all t ∈ I,

hence,

Zn(t) ∈ ν(]T0, T ])K for all t ∈ I.

Since K is strongly compact, the convergence in (4.33) holds with respect to the
strong topology of H. Observe that the mapping Z : I → H defined by

Z(t) =

∫
]T0,T ]

z̃(s)dν(s) for all t ∈ I,

is right continuous on I, of bounded variation on I and satisfies for all t ∈ I

Zn(t) → Z(t).

Let us define the mapping wn : I → H by

wn(t) = un(t) + Zn(t) for all t ∈ I,

which is right continuous on I and of bounded variation on I. We are going to
prove that for any t ∈ I, the sequence (wn(t))n is a Cauchy sequence of H. Fix any
m,n ∈ N with m,n ≥ n0. According to the definitions of un and θn, we have

(4.35) un(θn(t)) ∈ C(θn(t)) for all t ∈ I.
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From the latter inclusion and the variation assumption on C(·), it results for any
t ∈ I

dC(θn(t))(um(t)) = dC(θn(t))(um(t))− dC(θm(t))(um(θm(t)))

≤ dC(θn(t))(um(t))− dC(θm(t))(um(t)) + ∥um(θm(t))− um(t)∥
≤ max {µ(]t, θn(t)], µ(]t, θm(t)])}+ ∥um(θm(t))− um(t)∥ .(4.36)

Fix any s ∈ [T0, T [. Choose any is ∈ {0, . . . , p(m)− 1} such that s ∈ [tmis , t
m
is+1[.

According to the definitions of θm(·) and um(·), we have

um(θm(s))− um(s)

= umis+1 − umis −
ν(]tmis , s])

ν(]tmis , t
m
is+1])

(
umis+1 − umis + ηmis z

m
is +

∫ t

tmis

f(w, umis )dλ(w)

)

− (t− tmis )z
m
is −

∫ t

tmis

f(w, umis )dλ(w).

Combining the latter equality with (4.19) and with the assumptions (ii) and (iv),
we get

∥um(θm(s))− um(s)∥

≤ ν(]tmis , s]) +

∥∥∥∥∥umis+1 − umis + (t− tmis )z
m
is +

∫ t

tmis

f(w, umis )dλ(w)

∥∥∥∥∥
≤ εm +

∥∥∥∥∥umis+1 − umis + ηmis z
m
is +

∫ tmis+1

tims

f(w, umis )dλ(w)

∥∥∥∥∥
+

∫ tmis+1

tims

∥∥f(w, umis )∥∥ dλ(w) + ηmis
∥∥zmis ∥∥

≤ εm + ν(]tmis , t
m
is+1]) + (1 + l)αm

is + lβm
is

≤ 2εm + (1 + l)αm
is + lβmis + sup

τ∈]T0,T ]
µ({τ}).

This inequality with (4.36) and (4.5) give

dC(θn(s))(um(s)) ≤ max {µ(]s, θn(s)], µ(]s, θm(s)])}+ ∥um(θm(s))− um(s)∥
≤ max {µ(]s, θn(s)[, µ(]s, θm(s)[)}+ ∥um(θm(s))− um(s)∥
+ sup

τ∈]T0,T ]
µ({τ})

≤ max {εn, εm}+ 2εm + (1 + l)αm
is + lβmis + 2 sup

τ∈]T0,T ]
µ({τ})

≤ max {εn, εm}+ 2εm + (1 + l)ξm + 2 sup
τ∈]T0,T ]

µ({τ}).

Since the right-hand side of the latter inequality (which is independent of s) goes
to 2 supτ∈]T0,T ] µ({τ}) < r as n,m → +∞, there exists some integer n1 ≥ n0 such
that, for all integers k1, k2 ≥ n1, for all t ∈ I

(4.37) dC(θk1 (t))
(uk2(t)) < r.
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Fix now any integers m,n ≥ n1 and t ∈ I. Thanks to (4.37), (4.32) and (4.22), we
can apply Proposition 2.4 to obtain⟨

dun
dν

(t) + zn(t)
dλ

dν
(t) + f

(
t, un(δn(t))

)dλ
dν

(t), un(θn(t))− um(t)

⟩
≤ 1

2r
∥un(θn(t))− um(t)∥2 + 1

2r
d2C(θn(t))

(um(t))

+

[
1

r
∥un(θn(t))− um(t)∥+ 1

]
dC(θn(t))(um(t))

≤ 1

2r

(
∥un(t)− um(t)∥+ ∥un(θn(t))− un(t)∥

)2
+

1

2r
d2C(θn(t))

(um(t))

+

[
1

r
(∥un(θn(t))− un(t)∥+ ∥un(t)− um(t)∥) + 1

]
dC(θn(t))(um(t)).(4.38)

Set

γk(t) := ν(]t, θk(t)]) + µ(]t, θk(t)]) for all k ∈ N with k ≥ n1.

By (4.36) and (4.29), we have

(4.39) dC(θn(t))(um(t)) ≤ µ(]t, θn(t)])+µ(]t, θm(t)])+2ν(]t, θm(t)]) ≤ γn(t)+2γm(t).

Note that by (4.30)

(4.40) ∥uk(θk(τ))− uk(τ)∥ ≤ 2ν(]τ, θk(τ)]) ≤ 2γk(τ)

for all τ ∈ I, all integers k ≥ n1. Referring to (4.38), (4.39) and (4.40), we have⟨
dun
dν

(t) + zn(t)
dλ

dν
(t) + f

(
t, un(δn(t))

)dλ
dν

(t), un(θn(t))− um(t)

⟩
≤ 1

2r

(
∥un(t)− um(t)∥+ 2γn(t)

)2
+

1

2r

(
γn(t) + 2γm(t)

)2
+

[
1

r

(
2γn(t) + ∥un(t)− um(t)∥

)
+ 1

] (
γn(t) + 2γm(t)

)
.(4.41)

Put

ψk(t) := γk(t) + ∥Zk(t)− Z(t)∥ for all k ∈ N with k ≥ n1.

Using the definition of Zn(·) and (4.27), we obtain

∥Zn(θn(t))− Zn(t)∥ =

∥∥∥∥∥
∫
]T0,θn(t)]

zn(s)
dλ

dν
(s)dν(s)−

∫
]T0,t]

zn(s)
dλ

dν
(s)dν(s)

∥∥∥∥∥
=

∥∥∥∥∥
∫
]t,θn(t)]

zn(s)
dλ

dν
(s)dν(s)

∥∥∥∥∥
≤
∫
]t,θn(t)]

∥∥∥∥zn(s)dλdν (s)
∥∥∥∥ dν(s)

≤
∫
]t,θn(t)]

dν(s)

= ν(]t, θn(t)])

≤ γn(t).(4.42)
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It follows

∥Zn(θn(t))− Zm(t)∥ ≤ ∥Zn(θn(t))− Zn(t)∥+ ∥Zn(t)− Z(t)∥+ ∥Z(t)− Zm(t)∥
≤ γn(t) + ∥Zn(t)− Z(t)∥+ ∥Z(t)− Zm(t)∥
≤ ψn(t) + ψm(t).(4.43)

Observe that, according to the definition of wn(·), the differential measure dwn of

wn(·) has dwn
dν ∈ L∞(I,H, ν) as a density relative to ν such that

(4.44)
dwn

dν
(t) =

dun
dν

(t) + zn(t)
dλ

dν
(t) ν-a.e. t ∈ I.

According to (4.41), (4.44) and (4.23), we have⟨
dwn

dν
(t) + f

(
t, un(δn(t))

)dλ
dν

(t), wn(θn(t))− wm(t)

⟩
=

⟨
dwn

dν
(t) + f

(
t, un(δn(t))

)dλ
dν

(t), un(θn(t))− um(t)

⟩
+

⟨
dwn

dν
(t) + f

(
t, un(δn(t))

)dλ
dν

(t), Zn(θn(t))− Zm(t)

⟩
≤ 1

2r

(
∥un(t)− um(t)∥+ 2γn(t)

)2
+

1

2r

(
γn(t) + 2γm(t)

)2
+

[
1

r

(
2γn(t) + ∥un(t)− um(t)∥

)
+ 1

] (
γn(t) + 2γm(t)

)
+ ∥Zn(θn(t))− Zm(t)∥ .(4.45)

for ν-almost every t ∈ I. Keeping in mind the definition of wn(·) and wm(·), it is
readily seen that for all t ∈ I,

(4.46) ∥un(t)− um(t)∥ ≤ ∥wn(t)− wm(t)∥+ ∥Zm(t)− Zn(t)∥ .

Using (4.45) and (4.46), we obtain⟨
dwn

dν
(t) + f

(
t, un(δn(t))

)dλ
dν

(t), wn(θn(t))− wm(t)

⟩
≤ 1

2r

(
∥wn(t)− wm(t)∥+ ∥Zm(t)− Zn(t)∥+ 2γn(t)

)2
+

[
1

r

(
2γn(t) + ∥un(t)− um(t)∥

)
+ 1

] (
γn(t) + 2γm(t)

)
+

1

2r

(
γn(t) + 2γm(t)

)2
+ ∥Zn(θn(t))− Zm(t)∥ .(4.47)

It is straightforward that for all t ∈ I,

∥Zn(t)− Zm(t)∥+ 2γn(t) ≤ ∥Zn(t)− Z(t)∥+ ∥Zm(t)− Z(t)∥+ 2γn(t)

≤ 2ψn(t) + ψm(t).(4.48)
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Combining (4.47), (4.48) and (4.43), we get⟨
dwn

dν
(t) + f

(
t, un(δn(t))

)dλ
dν

(t), wn(θn(t))− wm(t)

⟩
≤ 1

2r

(
∥wn(t)− wm(t)∥+ ψm(t) + 2ψn(t)

)2
+

1

2r

(
ψn(t) + 2ψm(t)

)2
+

[
1

r

(
2ψn(t) + ∥un(t)− um(t)∥

)
+ 1

] (
ψn(t) + 2ψm(t)

)
+
(
ψn(t) + ψm(t)

)
.(4.49)

for ν-almost every t ∈ I. According to (4.40) and (4.42), we have

∥wn(θn(t))− wn(t)∥ ≤ ∥un(θn(t))− un(t)∥+ ∥Zn(θn(t))− Zn(t)∥
≤ 2γn(t) + γn(t)

= 3γn(t),(4.50)

for all t ∈ I. Using (4.50), (4.49), (4.23) and the inequality γn ≤ ψn, it follows⟨
dwn

dν
(t) + f

(
t, un(δn(t))

)dλ
dν

(t), wn(t)− wm(t)

⟩
=

⟨
dwn

dν
(t) + f

(
t, un(δn(t))

)dλ
dν

(t), wn(t)− wn(θn(t))

⟩
+

⟨
dwn

dν
(t) + f

(
t, un(δn(t))

)dλ
dν

(t), wn(θn(t))− wm(t)

⟩
≤
∥∥∥∥dundν (t) + zn(t)

dλ

dν
(t) + f

(
t, un(δn(t))

)dλ
dν

(t)

∥∥∥∥ 3γn(t)
+

1

2r

(
∥wn(t)− wm(t)∥+ ψm(t) + 2ψn(t)

)2
+

1

2r
(ψn(t) + 2ψm(t))2

+

[
1

r

(
2ψn(t) + ∥un(t)− um(t)∥

)
+ 1

] (
ψn(t) + 2ψm(t)

)
+
(
ψn(t) + ψm(t)

)
≤ 1

2r

(
∥wn(t)− wm(t)∥+ 2(ψm(t) + ψn(t))

)2
+

2

r

(
ψn(t) + ψm(t)

)2
+ 2

[
1

r

(
2ψn(t) + ∥un(t)− um(t)∥

)
+ 1

] (
ψn(t) + ψm(t)

)
+ 4
(
ψn(t) + ψm(t)

)
,

for ν-almost every t ∈ I. By interchanging m and n, we get⟨
dwm

dν
(t) + f

(
t, um(δm(t))

)dλ
dν

(t), wm(t)− wn(t)

⟩
≤ 1

2r

(
∥wn(t)− wm(t)∥+ 2(ψn(t) + ψm(t))

)2
+ 2

[
1

r

(
2ψm(t) + ∥un(t)− um(t)∥

)
+ 1

] (
ψn(t) + ψm(t)

)
+

2

r

(
ψn(t) + ψm(t)

)2
+ 4
(
ψn(t) + ψm(t)

)
,
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for ν-almost every t ∈ I. For ν-almost every t ∈ I, for all integers k ≥ n1, put

Bk(t) :=
dwk

dν
(t) + f(t, uk(δk(t)))

dλ

dν
(t).

Since the sequences (uk(·))k≥n1 , (wk(·))k≥n1 and (ψk(·))k≥n1 are uniformly bounded
on I, adding the two latter inequalities, there exists some real A > 0 (depending on
r) such that, for ν-almost every t ∈ I, for all integers k1, k2 ≥ n1,

⟨Bk1(t)−Bk2(t), wk1(t)− wk2(t)⟩ ≤ A
((
ψk1(t) + ψk2(t)

)2
+
(
ψk1(t) + ψk2(t)

))
+

1

r
∥wk1(t)− wk2(t)∥

2 .(4.51)

Fix any real c > 0 such that, for all integers k ≥ n1, for all t ∈ I

∥uk(t)∥ ≤ c and ∥wk(t)∥ ≤ c.

Applying assumption (iii), we get for all t ∈ I,

∥f(t, un(δn(t)))− f(t, um(δm(t)))∥
≤Lc(t) ∥un(δn(t))− um(δm(t))∥(4.52)

From (4.51) and (4.52), it results⟨
dwn

dν
(t)− dwm

dν
(t), wn(t)− wm(t)

⟩
≤dλ
dν

(t)
⟨
f
(
t, un(δn(t))

)
− f

(
t, um(δm(t))

)
, wm(t)− wn(t)

⟩
+

1

r
∥wn(t)− wm(t)∥2 +A

((
ψn(t) + ψm(t)

)2
+
(
ψn(t) + ψm(t)

))
≤dλ
dν

(t)
∥∥f(t, un(δn(t)))− f

(
t, um(δm(t))

)∥∥ ∥wm(t)− wn(t)∥

+
1

r
∥wn(t)− wm(t)∥2 +A

((
ψn(t) + ψm(t)

)2
+
(
ψn(t) + ψm(t)

))
≤dλ
dν

(t)Lc(t) ∥un(δn(t))− um(δm(t))∥ ∥wm(t)− wn(t)∥

+
1

r
∥wn(t)− wm(t)∥2 +A

((
ψn(t) + ψm(t)

)2
+
(
ψn(t) + ψm(t)

))
.(4.53)

for ν-almost every t ∈ I. According to the definition of (wk(·))k, we have for all
t ∈ I

∥un(δn(t))− um(δm(t))∥
≤∥un(δn(t))− un(t)∥+ ∥un(t)− um(t)∥+ ∥um(t)− um(δm(t))∥
≤∥un(δn(t))− un(t)∥+ ∥um(t)− um(δm(t))∥

+ ∥wn(t)− wm(t)∥+ ∥Zn(t)− Zm(t)∥ .(4.54)

Note that, for all t ∈ I

∥Zn(t)− Zm(t)∥ ≤ ∥Zn(t)− Z(t)∥+ ∥Z(t)− Zm(t)∥
≤ ψn(t) + ψm(t).(4.55)
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Keeping in mind that ∥wn(t)− wm(t)∥ ≤ 2c for all t ∈ I and using (4.53), (4.54),
(4.55) and (4.40), we get⟨

dwn

dν
(t)− dwm

dν
(t), wn(t)− wm(t)

⟩
≤
(dλ
dν

(t)Lc(t) +
1

r

)
∥wn(t)− wm(t)∥2 +A

((
ψn(t) + ψm(t)

)2
+
(
ψn(t) + ψm(t)

))
+ 2c

dλ

dν
(t)Lc(t)

(
∥un(δn(t))− un(t)∥+ ∥um(t)− um(δm(t))∥+ ∥Zn(t)− Zm(t)∥

)
≤
(dλ
dν

(t)Lc(t) +
1

r

)
∥wn(t)− wm(t)∥2 +A

((
ψn(t) + ψm(t)

)2
+
(
ψn(t) + ψm(t)

))
+ 2c

dλ

dν
(t)Lc(t)

(
2ν(]δn(t), t]) + 2ν(]δm(t), t]) + ψn(t) + ψm(t)

)
,

for ν-almost every t ∈ I. According to Proposition 2.7, we have

d(∥wn(·)− wm(·)∥2) ≤ 2

⟨
dwn

dν
(·)− dwm

dν
(·), wn(·)− wm(·)

⟩
dν.

Let us define, for all t ∈ I

Φn,m(t) := ∥wn(t)− wm(t)∥2 ,

and

An,m(t) :=A
((
ψn(t) + ψm(t)

)2
+
(
ψn(t) + ψm(t)

))
+ 2c

dλ

dν
(t)Lc(t)

(
2ν(]δn(t), t]) + 2ν(]δm(t), t]) + ψn(t) + ψm(t)

)
.

Set

αn,m :=

∫
]T0,T ]

An,m(s)dν(s).

Since wn(T0) = wm(T0), we obtain, for all t ∈]T0, t]

Φn,m(t) ≤
∫
]T0,t]

2
(dλ
dν

(s)Lc(s) +
1

r

)
Φn,m(s)dν(s) + αn,m.

According to µ({t}) = ν({t}) for all t ∈ I and sups∈]T0,T ] µ({s}) < r
2 , we have

sup
s∈]T0,T ]

ν({s}) < r

2
.

Let us set

a :=
2

r
sup

s∈]T0,T ]
ν({s}) < 1.

Since Lc(·) is λ-integrable on [T0,T ] and λ is absolutely continuous with respect to

ν, we know that Lc(·)dλdν (·) is ν-integrable on [T0,T ] and∫
]T0,t]

Lc(s)dλ(s) =

∫
]T0,t]

Lc(s)
dλ

dν
(s)dν(s) for all t ∈ I.
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Applying Lemma 2.8, it follows

Φn,m(t) ≤ αn,m exp

(
2

1− a

∫
]T0,t]

(dλ
dν

(s)Lc(s) +
1

r

)
dν(s)

)
for all t ∈ I.

So, we have

Φn,m(t) ≤ αn,m exp

(
2

1− a

(∫
]T0,t]

Lc(s)dλ(s) +
1

r
ν(]T0, t])

))
for all t ∈ I.

As a consequence, we get

sup
t∈[T0,T ]

Φn,m(t) ≤ αn,m exp

(
2

1− a

(∫
]T0,T ]

Lc(s)dλ(s) +
1

r
ν(]T0, T ])

))
.

Observe that, limn,m→+∞ αn,m = 0 via Lebesgue dominated convergence theorem,
since the sequence (ψn(·))n is uniformly bounded and limn→+∞ ψn(t) = 0 for all
t ∈]T0, T ] and thanks to the fact that ν(]δn(t), t]) ≤ εn for all integers n ≥ n1, all
t ∈ I. This proves that (wn(t))n is a Cauchy sequence for each t ∈ [T0, T ]. Then,
we get some mapping w(·) : I → H such that, for all t ∈ [T0,T ],

un(t) → u(t) := w(t)− Z(t).

On the other hand, according to (4.29), extracting a subsequence if necessary,

we may suppose that (dun
dν (·))n converges weakly in L2(I,H, ν) to some mapping

g(·) ∈ L2(I,H, ν). So, for any t ∈ I∫
]T0,t]

dun
dν

(s)dν(s) →
∫
]T0,t]

g(s)dν(s) weakly inH.

As un(t) → u(t), it results that

u(t) = u0 +

∫
]T0,t]

g(s)dν(s),

hence u(·) is right continuous on I and of bounded variation on I, and du has
du
dν (·) = g(·) ∈ L2(I,H, ν) as a density relative to ν. As a result,

dun
dν

(·) → du

dν
(·) weakly in L2(I,H, ν),

and this yields
dun
dν

(·) → du

dν
(·) weakly in L1(I,H, ν).

Step 4: Let us prove that, u(·) is a solution of (P).
Fix for a moment any t ∈ I. Using (4.6), we get

(4.56) lim
n→+∞

δn(t) = t and lim
n→+∞

θn(t) = t.

By the continuity of f(t, ·) on cB and the inequality ∥un(t)∥ ≤ c for all n ≥ n1, we
have

lim
n→+∞

f
(
t, un(δn(t))

)
= f(t, u(t)).
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From (4.30), we obtain

∥un(θn(t))− u(t)∥ ≤ ∥un(θn(t))− un(t)∥+ ∥un(t)− u(t)∥
≤ 2ν(]t, θn(t)]) + ∥un(t)− u(t)∥ .

By (4.56), we have

lim
n→+∞

un(θn(t)) = u(t).

Using the variation assumption on C(·) in (4.1) and (4.35), it follows

dC(t)(un(θn(t))) = dC(t)(un(θn(t)))− dC(θn(t))(un(θn(t)))

≤ µ(]t, θn(t)]).

Combining the latter inequality, (4.56) and the fact that C(t) is closed, we have

u(t) ∈ C(t).

According to (4.25), we may suppose that, (zn(·))n converges weakly in L1(I,H, λ)
to some mapping z(·) ∈ L1(I,H, λ). Since dλ

dν (·) ∈ L∞(I,R+, ν), it entails that

zn(·)
dλ

dν
(·) → z(·)dλ

dν
(·) weakly in L1(I,H, ν).

By Lebesgue dominated convergence, we have for ν-almost every t ∈ I

f
(
t, un(δn(t))

)dλ
dν

(t) → f(t, u(t))
dλ

dν
(t) strongly in L1(I,H, ν).

Now, we apply a classical technique due to C. Castaing ([7]). Thanks to Mazur’s
lemma, there exists a sequence (ζn(·))n which converges strongly in L1(I,H, ν) to
du
dν (·) + z(·)dλdν (·) + f(·, u(·))dλdν with

ζn(·) ∈ co

{
duk
dν

(·) + zk(·)
dλ

dν
(·) + f(·, uk(·)) : k ≥ n

}
for each n ≥ n1. Extracting a subsequence if necessary, we may suppose that

ζn(t) →
du

dν
(t) + z(t)

dλ

dν
(t) + f(t, u(t))

dλ

dν
(t) ν-a.e. t ∈ I.

Then, we have

du

dν
(t)+z(t)

dλ

dν
(t)+f(t, u(t))

dλ

dν
∈
∩

n≥n1

co

{
duk
dν

(·) + zk(·)
dλ

dν
(·) + f(·, uk(·)) : k ≥ n

}
,

for ν-almost every t ∈ I. This inclusion yields for ν-almost every t ∈ I that⟨
ξ,
du

dν
(t) + z(t)

dλ

dν
(t) + f(t, u(t))

dλ

dν
(t)

⟩
≤ inf

n≥n1

sup
k≥n

⟨
ξ,
duk
dν

(t) + zk(t)
dλ

dν
(t) + f(t, uk(t))

⟩
,

for all ξ ∈ H. It follows that, for ν-almost every t ∈ I, for all ξ ∈ H,⟨
ξ,
du

dν
(t) + z(t)

dλ

dν
(t) + f(t, u(t))

dλ

dν
(t)

⟩
≤ lim sup

n→+∞
σ(ξ,−∂PdC(θn(t))(un(θn(t)))).
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Hence, for ν-almost every t ∈ I, according to Proposition 2.6⟨
ξ,
du

dν
(t) + z(t)

dλ

dν
(t) + f(t, u(t))

dλ

dν
(t)

⟩
≤ σ(ξ,−∂CdC(t)(u(t))),

for all ξ ∈ H. Thanks to (2.7), we have{
du

dν
(t) + z(t)

dλ

dν
(t) + f(t, u(t))

dλ

dν
(t)

}
⊂ co

(
−∂CdC(t)(u(t))

)
ν-a.e. t ∈ I

Since the Clarke subdifferential is always closed and convex, this last inclusion gives
us

du

dν
(t) + z(t)

dλ

dν
(t) + f(t, u(t))

dλ

dν
(t) ∈ −∂CdC(t)(u(t)) ν-a.e. t ∈ I.

Combining this inclusion, (2.6) and (4.23), we have

du

dν
(t) + z(t)

dλ

dν
(t) + f(t, u(t))

dλ

dν
(t) ∈ −N(C(t);u(t)) ν-a.e. t ∈ I.

Let us show that, z(t) ∈ F (t, u(t)) for λ-almost every t ∈ I. Fix any t ∈ I and
n ≥ n1 an integer. Note that, by (4.6)

|κn(δn(t))− t| ≤ εn.

It results
lim

k→+∞
κk(δk(t)) = t.

Thanks to the fact that zk(·) converges to z(·) weakly in L1(I,H, ν), via Mazur’s
lemma again, extracting a subsequence if necessary, we may write

z(t) ∈
∩

n≥n1

co {zk(t) : k ≥ n} ν-a.e. t ∈ I.

Thus, for ν-almost every t ∈ I, we have

⟨ξ, z(t)⟩ ≤ lim sup
n→+∞

σ
(
ξ, F

(
κn(δn(t)), un(δn(t)

))
.

for all ξ ∈ H. Applying assumption (i), we get for ν-almost every t ∈ I

⟨ξ, z(t)⟩ ≤ σ(ξ, F (t, u(t))).

for all ξ ∈ H. Since F (t, u(t)) is closed and convex for all t ∈ I, we have (thanks to
(2.7))

z(t) ∈ F (t, u(t)) ν-a.e. t ∈ I.

As u(T0) = limn→+∞ un(T0) = u0, u(·) is a solution of (P). On the other hand, by
passing to the limit in (4.30), we have

∥u(τ1)− u(τ2)∥ ≤ 2ν(]τ1, τ2]) for all τ1, τ2 ∈ I with τ1 ≤ τ2.

It results ∥∥u(t)− u(t−)
∥∥ ≤ 2ν({t}) = 2µ({t}) for all t ∈]T0, T ].

This completes the first case.
Case 2: Now, we assume∫ T

T0

(β(s) + 1)dλ(s) >
1

8
or

∫ T

T0

α(s)dλ(s) >
1

8
.
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Consider a subdivision (T0, . . . , Tk) (with k ≥ 2) such that,

T0 < · · · < Tk = T,

and satisfying for each i ∈ {1, . . . , k}∫ Ti

Ti−1

(β(s) + 1)dλ(s) ≤ 1

8
and

∫ Ti

Ti−1

α(s)dλ(s) ≤ 1

8
.

For each i ∈ {1, . . . , k}, denote by µi the Radon measure induced on [Ti−1, Ti] by µ
and set νi := µi + λ. Then, the case 1 provides a mapping u1 : [T0, T1] → H, a λ-
integrable mapping z1 : [T0, T1] → H such that, u1(·) is right continuous on [T0, T1]
and of bounded variation on [T0, T1], u1(T0) = u0, u1(t) ∈ C(t) for all t ∈ [T0, T1],

du1 has du1
dν1

as a density in L1([T0, T ],H, ν1) relative to ν1,∥∥u1(t)− u1(t
−)
∥∥ ≤ 2µ1({t}) for all t ∈]T0, T ],

z1(t) ∈ F (t, u1(t)) λ-a.e.t ∈ [T0, T1].

and

du1
dν1

(t) + z1(t)
dλ

dν1
(t) + f(t, u1(t))

dλ

dν1
(t) ∈ −N(C(t);u1(t)) λ-a.e.t ∈ [T0, T1].

By finite induction, we obtain a finite sequence of right continuous mappings of
bounded variations ui(·) : [Ti−1, Ti] → H (2 ≤ i ≤ k) and a finite sequence of
λ-integrable mappings zi(·) : [Ti−1, Ti] → H such that, for each i ∈ {2, . . . , k},
ui(Ti−1) = ui−1(Ti−1), ui(t) ∈ C(t) for all t ∈ [Ti−1, Ti], dui has

dui
dνi

as a density in

L1([Ti−1, Ti],H, νi) relative to νi,∥∥ui(t)− ui(t
−)
∥∥ ≤ 2µi({t}) for all t ∈]Ti−1, Ti],

zi(t) ∈ F (t, ui(t)) λ-a.e.t ∈ [Ti−1, Ti].

and

dui
dνi

(t) + zi(t)
dλ

dνi
(t) + f(t, ui(t))

dλ

dνi
(t) ∈ −N(C(t);ui(t)) λ-a.e.t ∈ [Ti−1, Ti].

Now, let us define u(·), z(·), g(·) : [T0, T ] → H by

u(t) = ui(t) if t ∈ [Ti−1, Ti] for some i ∈ {1, . . . , k} ,{
z1(t) if t ∈ [T0, T1],

zi(t) if t ∈]Ti−1, Ti] for some i ∈ {2, . . . , k} ,
and

g(t) = 1[T0,T1](t)
du1
dν1

(t) +
k∑

i=2

1]Ti−1,Ti](t)
dui
dνi

(t).

It is clear that z(·) is λ-integrable on [T0, T ] and u(·) is right continuous and of
bounded variation on [T0, T ] satisfying u(T0) = u0 and for ν̃ := µ+ λ, one has

u(t) ∈ C(t) and u(t) = u(T0) +

∫
]T0,t]

g(s)dν̃(s).
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Note that, the differential measure du of u(·) has du
dν̃ (·) = g(·) ∈ L1([T0, T ],H, ν̃) as

a density relative to ν̃. Moreover,∥∥u(t)− u(t−)
∥∥ ≤ 2µ({t}) for all t ∈]T0, T ],

z(t) ∈ F (t, u(t)) λ-a.e. t ∈ I.

and

du

dν̃
(t) + z(t)

dλ

dν̃
(t) + f(t, u(t))

dλ

dν̃
(t) ∈ −N(C(t);u(t)) ν̃-a.e. t ∈ I.

This finishes the proof. �

Remark 4.2. It is straightforward that Theorem 4.1 encompasses [2, Theorem 4.1]
(with F ≡ {0}) and [14, Theorem 3.1] (with f ≡ 0).

5. Consequences

In this section, we deal with consequences of our existence theorem.

Profiting from an idea of [2], we have the following result.

Corollary 5.1. Under the assumption of Theorem 4.1, for each u0 ∈ C(T0), the
perturbed sweeping process{

−du ∈ N(C(t);u(t)) + F (t, u(t)) + f(t, u(t))

u(T0) = u0

has a solution satisfying

u(t) = PC(t)(u(t
−)) for all t ∈]T0, T ].

Proof. By Theorem 4.1, there exists a mapping u(·) : I → H satisfying{
−du ∈ N(C(t);u(t)) + F (t, u(t)) + f(t, u(t))

u(T0) = u0

and

(5.1)
∥∥u(t)− u(t−)

∥∥ ≤ 2µ({t}) for all t ∈]T0, T ].

Fix any t ∈]T0, T ].
Case 1: µ({t}) = 0.
The inequality (5.1) gives us

u(t−) = u(t) ∈ C(t).

So, it is readily seen that, u(t) = PC(t)(u(t
−)).

Case 2: µ({t}) > 0.
In this second case, we have

(5.2)
∥∥u(t)− u(t−)

∥∥ ≤ 2µ({t}) ≤ 2 sup
s∈]T0,T ]

µ({s}) < r.
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Set ν := µ + λ. The inequality µ({t}) > 0 entails straightforwardly ν({t}) > 0.
Combining the definition of a solution and the equality dλ

dν (t) = 0 (thanks to (2.10)),
we get

du

dν
(t) ∈ −N(C(t);u(t)).

This inclusion with (2.11) give us

du

dν
(t) = lim

s↑t

du(]s, t])

ν(]s, t])
= lim

s↑t

u(t)− u(s)

ν(]s, t])
=
u(t)− u(t−)

ν({t})
∈ −N(C(t);u(t)),

Since N(C(t);u(t)) is a cone, the latter inclusion is equivalent to

(5.3) u(t−)− u(t) ∈ N(C(t);u(t)).

It follows,

(5.4) u(t) ∈ C(t).

Using (5.2), (5.3), (5.4) and Proposition 2.5, we get

u(t) = PC(t)(u(t
−)).

�

Now, in the same way as [2], we deal with the case where the measure µ is
absolutely continuous relative to λ.

Proposition 5.2. Let C : I ⇒ H be a multimapping such that for some extended
real r ∈]0,+∞], C(t) is r-prox-regular for every t ∈ I. Assume that there exists a
nondecreasing absolutely continuous function v(·) : I → R on I such that

|d(y, C(s))− d(y, C(t))| ≤ v(t)− v(s) for all y ∈ H, for all s, t ∈ I with s ≤ t.

Let F : I×H ⇒ H (resp., f : I×H → H) be a multimapping with nonempty convex
compact values satisfying (i) and (ii) (resp., be a mapping satisfying (iii) and (iv))
in Theorem 4.1.

Then, with µ the Radon measure on I satisfying µ(]s, t]) = v(t) − v(s) for all
s, t ∈ I with s < t, any solution of the measure differential sweeping process

(P)

{
−du ∈ N(C(t);u(t)) + F (t, u(t)) + f(t, u(t))

u(T0) = u0 ∈ C(T0)

is a solution in the classical sense, that is,

(a) u is absolutely continuous on I;
(b) there is a λ-integrable mapping z(·) : I → H with z(t) ∈ F (t, u(t)) λ-a.e.

t ∈ I such that

−du
dt

(t) ∈ N(C(t);u(t)) + z(t) + f(t, u(t)) λ− a.e. t ∈ I;

(c) u(T0) = u0 and u(t) ∈ C(t) for all t ∈ I.

So, (P) admits at least one absolutely continuous solution u(·) on I.
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Proof. Let u(·) : I → H be a solution of (P) in the measure differential sense. Set
ν = µ+ λ and observe that ν is absolutely continuously equivalent to the Lebesgue
measure λ. Then, there exists a mapping h : I → [0,+∞[ λ-integrable on I such
that

ν = h(·)λ.
Thanks to the equalities (λ-a.e.) h(·) = dν

dλ(·) and
dν
dλ(·)

du
dν (·) =

du
dλ(·), we have

u(t) = u0 +

∫
]T0,t]

h(s)
du

dν
(s)dλ(s) for all t ∈ I.

As a consequence, the mapping u(·) is absolutely continuous on I and there exists
a Borel set B1 of I with λ(B1) = 0 such that

du

dt
(t) = h(t)

du

dν
(t) for all t ∈ I \B1.

Since u(·) is a solution of (P) in the measure differential sense, there exist a λ-
integrable mapping z : I → H with z(t) ∈ F (t, u(t)) for λ-almost every t ∈ I and a
Borel set B2 in I with ν(B2) = 0 such that

du

dν
(t) + f(t, u(t))

dλ

dν
(t) + z(t)

dλ

dν
(t) ∈ −N(C(t);u(t)) for all t ∈ I \B2.

Setting B = B1 ∪B2, we see that λ(B) = 0 and, for all t ∈ I \B,

h(t)
du

dν
(t) + f(t, u(t))h(t)

dλ

dν
(t) + z(t)h(t)

dλ

dν
∈ −N(C(t);u(t)).

On the other hand, for all s, t ∈ I with s < t,∫
]s,t]

h(θ)
dλ

dν
(θ)dλ(θ) =

∫
]s,t]

dλ

dν
(θ)h(θ)dλ(θ) =

∫
]s,t]

dλ

dν
(θ)dν(θ) =

∫
]s,t]

dλ(θ).

It follows that

du

dt
(t) + f(t, u(t)) + z(t) ∈ −N(C(t);u(t)) λ-a.e. t ∈ I,

and this finishes the proof. �

Remark 5.3. As a direct consequence of Proposition 5.2, we get [3, Theorem 3.1].

6. Concluding remarks

In this paper, we proved that the perturbed discontinuous Moreau’s sweeping
process with a prox-regular moving set{

−du ∈ N(C(t);u(t)) + f(t, u(t)) + F (t, u(t)) λ-a.e.t ∈ [T0, T ]

u(T0) ∈ C(T0),

has at least one solution satisfying u(t) = PC(t)(u(t
−)) for all t ∈]T0, T ]. It is of

interest to deal with a discontinuous second order sweeping process with a perturba-
tion in the form f +F as above. Such a study is out of the scope of this manuscript
and will be the subject of a future work.
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