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PERTURBED BV SWEEPING PROCESS INVOLVING
PROX-REGULAR SETS

FLORENT NACRY

ABSTRACT. In this paper, we study the existence of solutions for a variant of
discontinuous Moreau sweeping process in the infinite dimensional setting. The
sets involved are assumed to be uniformly prox-regular and move with bounded
variation. The sweeping process is perturbed by a sum of Lipschitz continu-
ous single-valued mapping and a scalarly upper semicontinuous multimapping
satisfying a linear growth condition with respect to a compact set.

1. INTRODUCTION

In 1971, J.J. Moreau introduced and developed the notion of sweeping process
in the absolute continuous framework ([19, 20]). Given Ty, T € R with Ty < T, a
Hilbert space H and a multimapping C : [T, 7] = H with nonempty convex values,
a sweeping process consists to find an absolutely continuous mapping u : [Ty, 7] — H
with u(t) € C(t) for all ¢t € [Ty, T satisfying

—u(t) € N(C(t);u(t)) Mae.te [Ty, T]
u(Ty) € C(Tv),

where for each ¢ € [Ty, T, N(C(t);u(t)) denotes the (outward) normal cone to the
set C'(t) at u(t), in the sense of convex analysis. Such differential inclusions are of
great interest in elastoplasticity, quasistatics and dynamics (see, e.g., [21, 24]).
Motivated by unilateral mechanics where jumps could appear, J.J. Moreau considers
in [23] the bounded variation sweeping process

{—du e N(C(t); u(t))

(1.1) u(Tp) € C(Tp).

Over the years, many variants of Moreau sweeping process have been studied in
the literature, in particular

{du e N(C(t);u(t)) + G(t, u(t))

(12) u(Ty) € C(Th),

with G : [Tp, T] x H = H a multimapping, which is called perturbed sweeping pro-
cess. The case where the moving set C(-) is convex has been extensively developed
(see, e.g., [8, 9, 1, 28] and references therein). It is of interest in infinite dimensions
to remove the convexity assumption of C(-) as in [30, 9], where C(-) = R™ \ intK(+)
with K(-) a convex moving set (the normal cone involved is in the sense of Clarke).

2010 Mathematics Subject Classification. 34A60, 49J52, 49J53.
Key words and phrases. Sweeping process, prox-regular set, bounded variation, radon measure,
measure differential inclusion.



1620 FLORENT NACRY

Due to their good properties of metric projection, prox-regular sets ([26]) are well
appropriate for the study of sweeping process in the nonconvex setting in infinite
dimensions (see, e.g., [12, 6, 14, 3, 2]).

In [14], J.F. Edmond and L. Thibault showed in infinite dimensional Hilbert
space that (1.2) with G = F and C(-) a prox-regular moving set with bounded
variation, has at least one solution, under a compact linear growth condition for the
multimapping F', that is,

(1.3) F(t,z) C B(t)(1 + ||=||) K for all (¢,z) € [To, T] x H,

where () € LY([To,T]),Ry) and K C B is a compact set. More recently, under
the bounded variation of C(-) the well-posedness (in the sense of existence and
uniqueness of a solution) of (1.2) with G = f single-valued satisfying a Lipschitz
type condition, was stated and proved in the general setting of Hilbert space, for
a convex moving set C(-) in [14] and for a prox-regular valued multimapping C|(+)
in [2]. Those works lead naturally to study the sweeping process (1.2) with the
perturbation G = F' + f. The existence of solutions for such a Moreau sweeping
process was established in [3], but only in the absolutely continuous framework,
that is

(1.4) —u(t) € N(C(t);u(t)) + F(t,u(t)) + f(t,u(t)) Maete [Ty, T]
' U(To) S C(TD),

with F' a multimapping scalarly upper semicontinuous satisfying (1.3), f a Lipschitz
single-valued mapping, and for a prox-regular set C(t) moving in an absolutely
continuous way in a general Hilbert space.

The aim of the present paper is to analyze the variant of Moreau sweeping process
(1.4) in the bounded variation framework, that is, the discontinuous perturbed
sweeping process (1.1) with G = F + f, a sum of a single-valued mapping f and a
multimapping F, as the perturbation of the normal cone, and C(t) is prox-regular
with bounded variation.

The paper is organized as follows:
Section 2 is devoted to introduce notations and recall fundamental results for the
study of discontinuous sweeping process. In Sections 3-4, we develop the concept
of solution of our measure differential inclusion and then we state and prove an
existence result. Some consequences are provided in the last part, in particular, it
is shown that there is a solution u(-) which satisfies (as in [23, 2, 28])

projoey (u(t™)) = u(t) for allt €]Tp, T},
where u(t™) = limq u(7).
2. PRELIMINARIES

Throughout, R = R U {—o00,+00} is the extended real-line, R, = [0, 4oo[ is
the set of the nonnegative reals, N is the set of the positive integers, n = 1,...,
I := [Ty, T] is an interval of R with Ty < T" and A is the Lebesgue measure on I. In
all the paper, H is a real Hilbert space whose inner product is denoted by (-, ), the
associated norm ||-|| and B the closed unit ball centered at zero. For any subset S
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of H, coS (resp., c0 S) stands for the convex (resp., closed convex) hull of S and
ds(+) (or d(-,S)) is the distance function to S, i.e.,

ds(x) := inf |z — s|| forallx € H.
seS
2.1. Nonsmooth analysis. In this subsection, S is a nonempty susbset of the real
Hilbert space H, U is a nonempty open subset of H and f : U — R is a function.

For any = € H, the possibly empty set of all nearest points of x in S is defined by
Projg(z) :={y € S :dg(x) = [z —y|}.

If Projg(x) = {y} for some y € S, one says that projg(x) (or Ps(x)) is well-defined
and in such a case one sets projg(z) : =y (or Ps(x) :=7).

The proxzimal normal cone to S at x € S is the set

NP(S;z):={veM:Ir>0,z¢cProjg(z+rv)},
which is obviously a cone containing 0. By convention, one sets
NP(S;z) =0 forallz e H\S.

It is readily seen that for v € H such that Projg(v) # 0,

(2.1) v—we NP (S;w) for allw € Projg(v).
One defines the prozimal subdifferential Opf(x) of f at x € U as the set
(2.2) opfx)={veH:(v,-1)€ NP(epif; (z, f(x)))},

where epi f is the epigraph of f, i.e.,
epi f:={(u,7r) e HxR:ueU,f(u) <r}

and where H x R is endowed with the usual product structure. In particular, note
that Opf(xz) = 0 if f is not finite at z € U.

The Clarke tangent cone to S at x € S, TY(S;z), is the set of h € H such that
for every sequence (z,,)nen of S with z, — x, for every sequence (t,)nen of positive
reals with ¢, — 0, there is a sequence (hy)nen of H with h,, — h satisfying

Ty +thhy, €S foralln e N.

It is known that this set is a closed convex cone containing 0. The Clarke normal
coneof S at x € S is denoted by N¢(S; ) and defined as the polar cone of T (S; z),
ie.,

NO(S;z) == {veMH: (v,h) <0,Yh e TY(S;z)}.
By convention again, one puts

TC(S;xz) = NY(S;2) =0 forallz e H\ S.

It is not difficult to check that
(2.3) NP(S;z) c NO(S;z) for allz € H.
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As for the proximal subdifferential, one defines the Clarke subdifferential Oc f(x) of
fatzeU by

(2.4) dof(x):={veH: (v,-1)€ Nc(epif; (z, f(2)))},

so dcf(z) = () whenever f is not finite at € U. According to (2.2), (2.4) and
(2.3), it is straightforward that

Opf(x) C dcf(x) forallx € U.

If f is v-Lipschitz near x € U for some real v > 0, it is well-known that d¢ f () C vB.
In particular, this yields

Ocds(y) CB forally € H.

Furthermore, if S is closed, the following relations between the proximal (resp.,
Clarke) subdifferential of the distance function of S and the proximal (resp., Clarke)
normal cone to S hold true for all x € S (see, e.g., [6]):

(2.5) Opds(z) = NP(S;z)NB
and
(2.6) dcds(x) C NC(S;x) NB.

For more details, we refer the reader to [27, 17, 10].

2.2. Prox-regular sets. In this paper, we deal with the concept of uniform prox-
regularity in the Hilbert setting, which is due to R.A. Poliquin, R.T. Rockafellar and

L.Thibault ([26]). In this subsection, r is an extended real of |0, 4+occ]. Whenever

r = +00, we set by convention, % = 0.

Definition 2.1. Let S be a nonempty closed subset of H. One says that S is
r-prox-regular (or uniformly prox-regular with constant r) whenever, for all x € S,
for all v € NP (S;2) NB and for all t €]0, [, one has = € Projg(x + tv).

The following theorems provide some useful characterizations and properties of
uniform prox-regularity (see, e.g., [11]).

Theorem 2.2. Let S be a nonempty closed subset of H. The following assertions
are equivalent.

(a) The set S is r-proz-regular.
(b) For all x1,29 € S, for allv € NP(S;x1), one has

1
(v,29 — x1) < > o]l |1 — 22|

c or att x1,x9 € 5, jor all v € ;x1), Jor all vg € ;X2), one has
For all S, for all NP(S for all NFP(s h

1 v v
(v1 — Vg, 1 — x2) > 3 (Hl” + HQH) 21 — 2.
r r

Theorem 2.3. Let S be an r-proz-regular subset of H.
(a) For any x € S, one has

NP(S;2) = NY(S;2) and 0Opds(z) = dcds(x).
(b) For any x € Up(S) :={u € H :ds(u) <r}, projg(x) is well-defined.
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(¢) The well-defined mapping projg : Ur(S) — S is locally Lipschitz on U,(S).
As in [2], according to (a) of Theorem 2.3, we put
N(S;z) := NP(S;2) = N¢(S;2) forallze S,

whenever S is a uniform prox-regular set of the real Hilbert space H.

In order to prove that our perturbed sweeping process has a solution, we need
the following proposition. We refer to [14] for the proof.

Proposition 2.4. Let S be an r-proz-regular subset of H, © € S, v € dpdg(x).
Then, for all z € H such that dg(z) < r, one has

1 s 1, 1
(o= 0 < 3 o=l + 5o ) + (11—l +1) ds(o)

The last result of this subsection deals with the nearest points of a uniformly
prox-regular set (see [2] for the proof).

Proposition 2.5. Let S be an r-proz-reqular subset of H and let x,2’ € H. If
r—2a' € N(S;2') and ||z — 2'|| <r (resp., |z — 2'|| < r) then ' € Projg(x) (resp.,
' = projg(z)).
2.3. Scalar upper semicontinuity. For any subset S of the real Hilbert space H,
its support function o(-,S) is defined by
o(v,S):=sup(v,z) forallveH.
€S

Thanks to the Hahn-Banach separation Theorem, we know that for any two closed
convex subsets Sp, .59 of H, one has

(2.7) S1C S < o(,S) <o(952).

Recall that a multimapping F': 7 = X from a real Hausdorff topological space
T to a topological space X is said to be scalarly upper semicontinuous whenever, for
any £ € X, the extended real-valued function o (&, F'(+)) is upper semicontinuous.

The following scalar upper semicontinuity property will be useful (see [2] for the
proof).

Proposition 2.6. Let C : I = [Ty, T] = H be a multimapping satisfying:
(1) there exists r €]0,+00] such that C(t) is r-prox-regular for all t € I;
(13) there exists p a positive measure on I such that, for all si,sy € I with
s1 < 89, for ally € H,

de(sy)(Y) = dos) (y) < pl]s1, 52).-
Let (tn)nen be a sequence of I converging to some t € I with t,, > t for
all n € N, (xp)nen a sequence of H converging to some x € C(t) with
xyn, € C(tyn) for all n € N. If there exists N € N with u(]t, tn]) < +oo, then
for any z € H, one has
limsup o(z, dpdc(r,) (Tn)) < 0(2,0pdo(ry (7))

n—-+o0o
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2.4. Differential measure and BV mappings. For the convenience of the reader,
let us recall some preliminaries about the measure theory that will be required by
the main result of the paper. One can also see [13, 14, 1, 2, 28].

For a set A C I, the notation 14 stands for the characteristic function (in the
sense of measure theory) of A relative to I, that is, for all x €

La(z) = {1 ifxe A,

0 otherwise.

Let v be a positive measure on I, p > 1 be a real. We denote by LP(I,H,v) the
real space of (classes of ) Bochner measurable mappings from I to H for which the
p-th power of their norm value is integrable with respect to the measure v.

Let v and © be two positive Radon measures on I. We recall (see, e.g., [15]) that,
with I(t,r) :==IN[t—r,t+7r] (r>0andt e ) the limit
dv . p(I(t,r))
2.8 —(t) :=lim ————=%
(28) oD = )

(with the convention § = 0) exists and is finite for v-almost every ¢ € I. The
(nonnegative Borel) function 22(-) is called the derivative of the measure i with
respect to v. Moreover, the measure v is absolutely continuous with respect to v if
and only if 7 = %(-)I/ (i.e., %(-) is a density relative to v). If the latterA equality
holds, a mapping u(-) : I — H is D-integrable on I if and only if “()%() is v-
integrable on I. In such a case, one has
. dv
(2.9) u(t)do(t) = [ u(t)—(t)dv(t).
I I dl/
If the two Radon measures v and © are each one absolutely continuous with
respect to the other one, one says that v and ¥ are absolutely continuously equivalent.

It is worth pointing out that the relation (2.8) gives
dh . A{t})

E(t) = =0 forallt e Iwithv({t}) >0,
hence
(2.10) %(t)y({t}) =0 v-aetel.

Let u : [Ty, T] — H be a mapping. Any finite sequence o = (i, ...,t;) € RF!
with & € N such that Ty = tg < -+ < t, = T is called a subdivision o of [Ty, T].
One associates to such a subdivision o, the real S, := Zle ||u(t;) — u(ti—1)||. The
variation of u on [Ty, T is defined as the extended real

V(u; To, T') := sup S¢,
CeS

where S is the set of all subdivisions of [Tp,7]. The mapping u is said to be of
bounded variation on [To, T| if V(u;To,T) < +00.
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It is well-known that wu(-) has one sided limits at each point of I whenever it is
of bounded variation on I. In such a case, one defines

u(r™) = ltiTmu(t) for all 7 €]Tp, T7,
T
where in the whole paper, ¢ T 7 means t — 7 with ¢ < 7.

Let u(-) : I — H be a mapping of bounded variation and right continuous on
I = [Ty, T]. Then, there exists a vector measure du on I with values in H associated
with u(-) (see N. Dinculeanu [13] and J.J. Moreau [18]). This measure is called the
differential measure (or the Stieltjes measure) of u(-) and it satisfies for all s,t € I
with s <'t,

u(t) = u(s) —i—/] ] du.

Now, consider v a positive Radon measure on I, u(-) : I — H a mapping and
a(-) € LY(I,H,v). If, for any t € I,

u(t) = u(To) + / adv,
]Tﬂvt}
then u(-) is of bounded variation, right continuous on I and
du = udv.

In such a case, the mapping @(-) is said to be a density of the measure du relative
to v. According to J.J. Moreau and M.Valadier ([25]), for v-almost every ¢ € I,

_ du . du(I(t,r)) .. du(IT(t,r)) .. du(I(t,71))

) = 2L (t) = lim “a ) —1

i) = g, O =y T ) R )
where [~ (t,r) = [t —r,t]N I and I (t,r) = [t,t + r]N I for each ¢t € I and each real
r > 0. It follows from this

du du(]s,t]N1I)

2.11 —(t) = lim ———————=~ -a.e.t € 1.
(2.11) oW = nn aete

The following proposition, due to J.J. Moreau ([18]), is fundamental in the paper.

Proposition 2.7. Let v be a positive Radon measure on I = [To,T|, u(-) : I — H be
a right continuous mapping of bounded variation such that the differential measure
du has a density % relative to v. Then, the function ®(-) = |u()|* : I — R
s a Tight continuous function of bounded variation whose differential measure d®
satisfies, in the sense of the ordering of real measures,

dd < 2 <u(-), Z”(-)> dv.

1%

The last result of this section is a variant of Gronwall Lemma which is due to
M.D.P. Monteiro Marques ([16]).

Lemma 2.8. Let v be a positive Radon measure on [Ty, T], g,¢ : [To,T] — R4 two
functions such that:
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(1) For some fixed 0 € Ry, one has, for all t € |Ty, T},
0<gtv({t}) <0<1

and g € LY([To, T, R4, v).
(ii) For some fized o € Ry, one has, for all t € [Ty, T],

o) <a+ [ gls)pls)dn(s
]To,t]
and ¢ € LOO([T()aT] 7R+7 V)'
Then, one has

o(t) < aexp (ilﬁ /]Tmt] g(s)du(s)) for allt € [Ty, T1.

3. CONCEPT OF SOLUTION

Following [14, 1, 2, 28], one defines the concept of solution for our measure dif-
ferential inclusion.

Let f : IXxH — H be amapping, F' : I xH = H be a multimapping, C' : I = H be
a r-prox-regular valued multimapping for some extended real r €]0, +00]. Assume
that there exists a finite positive Radon measure p on I such that

|d(y,C(s)) — d(y,C(t))| < u(]s,t]) forally € H, for all s,t € I with s <¢.

Given ug € C(Ty), a mapping u : I — H is a solution of the measure differential
inclusion
P —du € N(C(t);u(t)) + F(t,u(t)) + f(t,u(t))
u(To) = uo,

whenever:
(a) the mapping u(+) is of bounded variation on I, right continuous on I and satisfies
u(Th) = up and u(t) € C(t) for all ¢t € I;
(b) there exist a A-integrable mapping z(-) : I — H with z(t) € F(t,u(t)) for A
almost every ¢ € I and a positive Radon measure v on I, absolutely continuously
equivalent to A 4+ p and with respect to which the differential measure du of u is
absolutely continuous with %(-) as an L' (I, H,v)-density and

du d\ dA
(B1) 0+ + S ()
Asin [14, 1, 2, 28], the concept of solution does not depend on the measure v in the
sense that a mapping u(-) : I — H satisfying (a) above is a solution of (P) if and
only if (3.1) holds for any positive Radon measure v which is absolutely continuously
equivalent to A\ + p. Indeed, let u(-) : I — H be a solution of (P) and let vy, given
by the definition of a solution to (P) be an associated Radon measure absolutely
continuous equivalent to A + p for which

du dA dA

—(Z t)—(¢ t,u(t))—I(% —N(C(t);u(t -a.e.tel.
T (8) + 2050+ S u(®) 5o (1) € ~N(C(O:u(t) m-ae.t €

Fix any other Radon measure v5 absolutely continuously equivalent to A+ p. Then,
the measures 1 and vs are absolutely continuously equivalent. Consequently, %(‘)

(t) € =N(C(t);u(t)) v-ae.tel.

(3.2)
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and %() exist as densities and for c%(') and the derivative 42 (.) the following

dvo
equalities hold

du du ,  dig dA d\ , dig
—(t) = —()—(¢ —(t) = —(t)—(t -a.e. t e .
dV2 dVl ( dl/Q ’ dV2 ( ) dVl ( dVQ ( ) vara.e <
This yields according to (3.2)
du d\ d\
— — — —N ; -a.e. I
s (t) + z(t) s (t) + f(t,u(t))dy2 (t) € (C(t);u(t)) we-ae.te

4. EXISTENCE RESULT

In this section, we prove under assumptions on f, F', C' and p that (P) has at
least one solution.

Theorem 4.1. Let C(-) : I = H be an r-proz-reqular valued multimapping for some
extended real v €]0,4+00|, for which there exists a finite positive Radon measure on
I with supgepp, 7y u({s}) < 5 such that for all y € H, for all s,t € I with s <1,

(4.1) |d(y, C(t)) — d(y, C(s))| < p(]s, 1]).

Let F : I x H = H be a multimapping with nonempty convexr compact values such
that:

(i) F(-,-) is scalarly upper-semicontinuous.

(7i) There exist some compact set K C B and a function f : I — Ry with
B(-) € LY(I,R, \) such that

F(t,z) C Bt)(1 + ||z|) K for allt € I, forallx € U C(s).
sel

Let f: I xH — H be a mapping such that:
(iii) For each real s > 0, there exists a function Ls : I — R,y with Ly € L'(I,R, \)
such that

Wf(t,z) — f(t,y)|| < Ls(t) ||z —y|| forallt € I, forallz,y € sB.

(iv) f(-,x) is Lebesgue measurable for all x € H and there ezists a function
a: I — Ry with a € LY(I,R,\) such that

|f(t,2)|| < o)X+ ||z|) foralltel, forallx € U C(s).
sel

Then, for each uy € C(Tp), the following perturbed sweeping process
—du € N(C(t);u(t)) + F(t,u(t)) + f(t,u(t))
{U(TO) = up
has at least one solution satisfying
|u(t) = w(t )| < 2u({t}) forallt €T, T).
Proof. Fix any ug € C(Tp). We denote by (P) the perturbed sweeping process

—du € N(C(t);u(t)) + F(t,u(t)) + f(t,u(t))
P)Y uizh)
u 0) = Uup.
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As in [14, 3], we suppose, without loss of generality, that K is convex and contains
0 (if not so, we may replace it by co(K U {0})).
Case 1: Assume that

T 1 T 1
(4.2) /T (B + D) < 5 and [ a()are) <
Set
(43) 1= 2(u(To, 7)) + fluo]| + 5
and define the positive Radon measure on [
(4.4) v=pu+1B()+1+al))A

Let us consider the function v(-) : I — R defined by
v(t) =v(To,t]) forallt el

and set

V =ou(T) =v(Ty,T]).
Let (en)nen be a sequence of positive real numbers with €, | 0. Following J.J.
Moreau in [23], choose for eachn € N, 0 = Vi* < V{* < ... < V! =V (with ¢, € N)
such that
(a) for all j € {0,...,q, — 1}, V1 = V' <ep;

k

(b) for all k € N, {V{F,..., Vi } c {Vg+, .. Ve
For each n € N, set V{, | :=V + ¢, and consider the partition (J}');c(o,...4,-1} Of
I where for each j € {0,...,¢, — 1}

T= o (VP VD =t € T VP < (o f]) < Vi)

Note that (J")o<j<g,, is a refinement of (J7')o<j<q, for all m,n € N with m > n.
Since v(-) is nondecreasing and right continuous on I, it is easy to see that, for each

n €N, je{0,...,q, — 1}, the set Ji is either empty or an interval of the form
[a, b with a < b. Furthermore, we have J;! = {T'} for all n € N. This gives for each
n € N an integer p(n) € N and a finite sequence

such that for each i € {0,...,p(n) — 1}, there is some j € {0,..., g, — 1} satisfying

Jr = [t?, i [ Observe that (p(n))nen is an nondecreasing sequence. For alln € N,
put E, ={0,...,p(n) — 1}. Fix for a moment any n € N. For each i € E,,, put

t:?+1 t?ﬁ»l
=ttt o= [ aldie) ad g7 = [ 750+ D)
tn tn
Set also,
Ap = ?fel%}:(tz‘ﬂ —t) and & = ?el%}:(ﬁz + aj).
Forallie F, and t € [t?,t?_u [, one has
v(Jt?t]) = o(t) —o(t}) < en,
SO

(4.5) p(er 6 ) < vt ) <en
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Hence (since A < v), one has
(4.6) N =ty —t <e, forallie E,.

As a consequence, we observe that limg_, . Ax = 0 and hence, limyg_ o0 & = 0.
Fix any ng € N such that for all integers n > ny,

r
Fix any integer n > ng. Let us define (s}')o<i<pn)—1 as follows. If p(n) = 1, choose
s¢ € [To, T such that

6) < inf + 1.
Blso) < inf  B(s)
If p(n) > 1, choose (as in [14]) for each i € {0,...,p(n) — 2} some s7 € [t7, 7]
satisfying

BsP) < imf Bls)+1,

o OsE[tR

and some s}, | € [t;(n)fl, tZ(n)] such that

B(spimy—1) < inf B(s) + 1.

€ty —1tp(m)
Let us define k,(-) : I — I by

ST if t € [¢7, 7, [withi € By,
" ift =T.

For each (t,x) € I x H, choose (thanks to the fact that F' takes nonempty values)
((t,z) € F(t,z). Let us set ug = up and, as in [3], let us construct by induction a
sequence (u})o<p<p(n) Such that, for all k € {1,...,p(n)},

1+ |lup_y| <1,

ty
dotag) (s = aCCin () ) = [ © T, 1)aN(s))
k—1
< pJti—y, t]) + 18—y +log_y <,
and
ti
= P (woy = Clon(B0) ) = [ (s )ANG)).
k—1

Step 1: Construction of the finite sequence.
It is obvious that 14||ug|| < I. Using (i7), the inclusion ( (K, (t()), ug) € F(kn (1), ug),
the latter inequality and the fact uj = ug € C(ty), we get

1€ (kn(t5), ug)ll < Brn(tg)) (1 + [luoll) < 18(kn(t5))-
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This ensures, thanks to the equality s{ = K, (3),

TG uf)l < T [ Blrn(t)dA(s)

ty

t

<t [ (36 + 1)
to

(4.8) S

By (iv) and the inclusion uj € C(t}), we have

1£(s.uf)]| < a(s) (1 + Jluoll) < las) forall s € I.

Hence, we obtain

i i
| F(s,uf)dr(s)|| < / 1 (s, )| dA(s)
tn tn
i
[ d\
< / a(s)dA(s)
(4.9) — lal.

According to the assumption on the variation of C(-) in (4.1), (4.5), the fact that
ug € C(tf), (4.8), (4.9), the definition of &, the inequality [ > 1 and (4.7), one has

$n

deqpy (w5 = MCOon(t8) u) — | F(s,uf)dA(s))

ty
¢y

<([To, 15) + dep) (1 = MCUan (), uf) = | Fls,u)aA(s))

tg

¢y
f (s, ug)dA(s)

tg

<en + 08 |1C(kn(t5), ul)|| + +p({t1})

Sen +165 +1af + 5

r
<ep +l£n + 5

<r.

|3

Since C(t}) is r-prox-regular,
t

ul = Pogy) (uf = mC(rn (th), u) — / F(s,ug)dA(s)))

tg

is well-defined according to Theorem 2.3. Now, assume that p(n) > 1 (otherwise,
the induction is complete). Fix any k € {1,...,p(n) — 1}. Suppose that all the steps
of the induction from 1 to k have been realized. Let ¢ € {0,...,k —1}. By the

. iy ..
equality ug, ; = PC(tZH) (u,’; — Ny C(rn(ty), ug) — tf;gﬂ f(s, uZ)dA(s)), the variation
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assumption on C(-) in (4.1) and the inclusion u; € C(t), we have

2
U1 — Uy + 0y C(kn(ty), ug) + / f(s,ug)dA(s)

n
tq

4} .
:dC(tZL_H f(S,Uq)d)\(S)>

(5 = (e ) - [

tg

.
< t5eal) + ety (v = ) ) = [ s, up)an )

n
q

tgv
|7 s

q

<p(tg, )+ [|CCan (), u) || +

i

and then

legeall < g +n0tg, D)

+ 2015 [|C(kn (tg), ug) || + 2

t;‘ 1
| rean

From this inequality, we deduce

q q
g || < llugll+ D (g, tpa]) +2> mp [[C(knlty), up) |
p=0 p=0

(4.10) +2)° / s F(s,um)dA(s))| .
p=0 ||V
For all p € {0,...,q}, we have by (ii)
(411)  [[¢(ra(tp) up)|| < Blra(tp)) (L + [Jup|]) < Blra(E)) (1 + Joax luz']),
and by (iv)
(4.12) Hf(s,u;)H <a(s)(1+ HUZH) < a(s)(1+ gg?écq |luit||) forallsel.

It follows from (4.10), (4.11) and (4.12) that

q
g || < Mgl + > w0ty tpeal)
p=0

9 LI

201+ g [ D (Bt + 3 [ 7 alins).
p=0 p=0""p

Since ¢ < k and Y71 _o u(Jty, tp,1]) < p(To, T1), we have

Jugea || < llugll + p(To, T])
q q tn

+2(1 + max [luf) ( D Bn(t) + Z/ -

p=0 p=0"%5

a(s)d)\(s)).
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As
! ZA) T
;L/B(Fcn(tg)) = ! ﬂ(/in(t;‘))ds < (B(s) + 1)dA(s),
and
g t;ﬂ T
pZO/tg a(s)dA(s) < /TO a(s)dA(s),
we get

[ugia || < lug |l + w(1To, T1)

#2014 g ) ([ 560+ 036 + [ ans) ).

To

Combining this and (4.2), it follows

1 1
< Ty, T 2(1 m (f 7>.
Org%\\uz | < llugll + p(To, TT) + 2( +0rg?§<k!\uz ) sT3

Consequently,

1
< 7) =1-2
Jfoax [|uy| _2(Iluo|!+u(]To,T])+ 5)=1-2

the equality being due to the definition of [ in (4.3). In particular, we have
1+ JJug|| <.
By (i7), we get

i € Cn (8R), wi) | < mie B () (L + Jluge )
i

< (1+ ) / B (t))dA(s)

te

< l/t:k+1(ﬁ(s) +1)dA(s)

k

(4.13) < BK,
and by (iv)

n
t k

) +1
(4.14) /t £(s,ul)dA(s) a(s)dA(s) < laf.

n
k

<(1+ Hu;:n)/

ty
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According to the variation assumption on C(-) in (4.1), (4.5), the inclusion u} €
C(t}), (4.13), (4.14), the definition of &,, the inequality [ > 1 and (4.7), we have

n
tk+1

detg, o (s = ) ) = [ Flspyin)
) tita
<8t )+ oy (w = mCra ) ) — [ 1o ut)aNGs)

ti

b+
<en 100D ) + ) [ s utan)| + it )
k
Sen+ U8} +laf + 3
<Uen+&)+ 5
<T.
Since C(t},,) is r-prox-regular
tht1

ey = Py (1 = <)) = [ Flu)drs)),
k
is well-defined and this completes the induction. Let us define

2z = C(kn(t]),u}) forallie {0,...,p(n) —1}.

With this definition and thanks to the latter induction, we have for all ¢ €
{0,...,p(n) — 1},

(4.15) 2t € F(kn(t}), ui),
dC(t?+1)<ui T /t” f(San)dA(S)) < p(lt i) + 187 + g
(4.16) <,
(4.17) s = Po (u =t = [ fs.u)an ()
and
(4.18) L4 [l < L.
Note that by (4.17), (4.16) and (4.4) for any i € {0,...,p(n) — 1},
(250
iy =t [ s NG| < 8 ) + 157 + ]
1
(4.19) < v(Jti, ti])-

Fix any ¢ € {0,...,p(n) — 1}. By (4.15) and (i7), we have
2 € Blrn () (1 + [luf DK
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and this entails

A € PN

Using the fact that K is a convex set containing 0 and the inequality (1+||u}'||) <,
we see that

Ll (L) (1= o e e, ek,

C T z
that is,
(4.20) zi' € IB(kn(t])) K.
Hence,
(4.21) |2]] < 1B(kn(t})) forallie {0,...,p(n)—1},

according to the inclusion K C B.
Step 2: Definition of the sequence (un(+))n>ng-
Fix any integer n > ng. Let us define z,(-), u,(:) : I — H by

S A s
Zpmy—1 Ht=T
and
V(]tn’ t]) i1
Un(t) = ui + — (u? —u + iz + / f(s,u;‘)d)\(s))
v(Jty tr ) VT "

Ct—emyer— [ s utan(s)
i

where 7 € {0,...,p(n) — 1} such that ¢ € [t} ,]. Observe that wu,(-) is right
continuous and of bounded variation on each [t{*, ¢} ;]. Hence it is right continuous
and of bounded variation on the whole interval I. Set for all t € I,

PO ) — R [l f (s, u?)dAA(s)

Hn<t): ; V(]t’-l m ]) 1]t?,t?+1](t)'

1 Y141

Define 0,, : I — H by

5. = el gy ithi € B,
tho o ift="1T.
p(n)—1

Using the definition of u,(-), II,,(-) and J,(-), we get for all ¢t € I

un(t) = Un(TO) + / Hn(s)dlj(s) - / (Zn(s) + f(svun((sn(s))>d)‘(s)

]T(]vt} }To,t]

Since A is absolutely continuous with respect to v, it has % as a density in
L>(I,R4,v) relative to v and then by (2.9), we have for all t € T

) =)+ [ (Tge) = ) 5 (0) s Gule) G 0 ) o).
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This tells us that the vector measure du,, has IT,(-) — z, (- )‘;ﬁ( )= f(un(0n())) 21))( )

(that is, the latter integrand) as a density in L (I, H, v) relative to v. Consequently,

the derivative dc’;—"(-) is a density of du, relative to v and

B ) 4 200) 2 (0) 4 10, n (50 (0)))

By (4.19), for v-almost every ¢ € I, we have

[0+ 2020 + 16t 5a00) )] = 10

(4.23) <1.

On the other hand, by (4.4), the measure [((-) +1+a(-))A is absolutely continuous
d(l(ﬁ(-);1+a(~))

(4.22) (t) =1L,(t) v-ae.tel.

with respect to v, thus it has
v-almost every t € I, we have

as a density relative to v. Hence, for

(4.24) 0<I(B(t)+1+ a(t))%(t) _ dus) *di(') DN <1,

Using (4.21), we get

(4.25) llzn ()| < 1(B(t) +1) forallte I.
From the assumption (iv) and (4.18), we deduce

(4.26) | f (&, un(0n(8)))]] < la(t) forallte I.
Thanks to (4.25) and (4.24), we have

w0] <00y

(4.27) dl/( ) <1 v-ae.tel.

Using (4.25), (4.26) and (4.24), we obtain

dA A
. n n\%n T S .. .
(4.28) z (t)dy()+f(tu (0 (t)))dz/(t)H 1 v-aetel
Taking the latter inequality into account, it results from (4.23) that
(4.29) ‘ %( <2 vaetel

Combining this inequality with the fact that % is a density of du, relative to v,
we obtain

(4.30) lun (1) — un(m)|| < 2v(]m, 1)) forall 7,7 € I with 71 < 7.
By (4.15), we have
2n(t) € F(kn(0n(t)), un(dn(t))) forallte I.
Let us define 0, : I — H by
6.8) = {t?ﬂ it €, 11| withi € B,
ty  iftt =1Tp.
Using the definition of I, (4.17) and (2.1), we have
(4.31) IL,(t) € =NT(C(0,(1); un(0n(t))) v-ae.tel.
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According to (4.31), (4.23) and (2.5), we have
(4.32) IL,(t) € —0pdc(a, 1) (un(On(t))) v-ae.t €.

Step 3: Convergence of (un(-))n up to a subsequence.

As in [14], we are going to prove that (un(-))n has a subsequence that converges
pointwise to a mapping u(-) which is a solution of (P).

According to (4.27), the sequence (z,(-)2(-)), is bounded in L2([Ty,T],H,v).
Without loss of generality, we can suppose that (zn()%())n converges weakly in
L*([Ty, T),H,v) to some mapping ? : I — H with z € L*([Ty,T],H,v). Fix any
integer n > ng. Let us define Z,, : I — H by

dA
Zn (1) :/ zn(s)——(s)dv(s) for allt € I.
]T07t]
For all t € I, we have

(4.33) Zn(t) — Z(s)dv(s) weakly in H.
}T(),t]

By (4.20), the definition of z,(-), the fact that K is a convex set containing 0, and
the choice of s} (i € {0,...,p(n) —1}), we get

(4.34) zp(t) € 1(B(t) + 1)K forallt e I.

According to (4.34), (4.24) and the fact that K is a closed convex set containing 0,
we have

Zn(t) € v(|To, t)) K forallt eI,

hence,
Zn(t) € v(|To, T))K forallt € I.

Since K is strongly compact, the convergence in (4.33) holds with respect to the
strong topology of H. Observe that the mapping Z : I — H defined by

2(t) = / 2(s)dv(s) forallt € I,
170,77

is right continuous on I, of bounded variation on I and satisfies for all ¢t € I
Zn(t) — Z(t).
Let us define the mapping w,, : I — H by
W (t) = up(t) + Z,(t) forallt €I,

which is right continuous on I and of bounded variation on I. We are going to
prove that for any t € I, the sequence (wy(t)), is a Cauchy sequence of H. Fix any
m,n € N with m,n > ng. According to the definitions of u,, and 6,, we have

(4.35) un (0, (1)) € C(0,(t)) forallt e I.
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From the latter inclusion and the variation assumption on C(-), it results for any
tel

A9, (8)) (Um (1)) = doo, ) (um (1)) = doo,, 1)) (um (Om(t)))
< de(o, 1) (um(t) — m(t ) (Um(t) + [[um (Om(t)) — um @]
(4.36) < maX{M(]t On (1)), (] m ()]} + [t (Om (t) — um ()] -
Fix any s € [Ty, T[. Choose any is € {0,...,p(m) — 1} such that s € [t]*,¢]", [.

According to the definitions of 6,,(-) and um( ), we have
U (O (5)) — tm(s)

s t
ey~ - “tm”]) (m S Ry

l/(]tzs » Yis+1 tn

(-t — /f (w). Zs

Combining the latter equality with (4.19) and with the assumptions (i7) and (iv),
we get

[ (m(s)) = um(s)|

<V, s)) + [ty — w4 (- )2+ /f (w)

S em+

i
WPy —ul e / F(w, YA (w)

tign
1s+1
H‘f w, Zs
t;m

< em v 4] + (L Dagl + 157

<2+ (L+ 0" + 18"+ sup p({r}).
TE]TO,T]

This inequality with (4.36) and (4.5) give

A9, (s)) (um (s)) < max{u(]s, On(s)]; ]S, Om(s)])} + [um(Bm(s)) = um(s)|
< max {u(]s, On(s)[, (s, Om(s)D} + lum(Bm(s)) — um(s)|

+ sup p({r})
TE]T(),T}

<max{en,em} +2em + (1 +1)og" + 18" +2 sup pu({7})
‘ ‘ T€]TH,T]

< max{en,em} +26m + (1 +Dn+2 sup u({7}).
TG]TO)T}

)|| dA(w) + 7"

Zs

Since the right-hand side of the latter inequality (which is independent of s) goes
to 2sup, ¢y ) #({7}) < r as n,m — +oo, there exists some integer n1 > ng such
that, for all integers k1,ke > nq, forall t € I

(4.37) dC’(Okl () (uny (1)) <.
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Fix now any integers m,n > nj and ¢t € I. Thanks to (4.37), (4.32) and (4.22), we
can apply Proposition 2.4 to obtain

<‘i;jn(t) + zn(t)j—i‘(t) + £t un(én(t)))%\(t), un (0 (1)) — “m(t)>

<o (B (1)) = (O 5,1 (i ()

[ Faa8(0) = 0]+ 1] oo, 0 )
< (In(®) — O+ (80 0)) — ()] )+ 53, )

(438)  + [iurunwn(t» — wn ()l + [un(t) =t (B)) + 1| dea, oy (n(2).

Set
(Jt, 0k (£)]) + u(]t, 0k(t)]) for all k € N with k > n;.

(4 9), we have
)) < (]t 00 ()]) 1], O ()]) +20 (1L, 0 ()]) < 7 (E)+279m (1)

Y (
By (4.36) and
(4.39) dc (o, (ey) (um(t
Note that by (4.30)

(4.40) [ (O (7)) — wr(7)|| < 2v(]7, 0k(7)]) < 2% (7)
for all 7 € I, all integers k > ni. Referring to (4.38), (4.39) and (4.40), we have

<i§f(t) + zn(t)%(t) + f(t, un(On(t )))Zj (£), un(0n(t)) — um(t)>
< o (i) = un ()] + 220 (1) + o (1) + 2 (1))’
+

(4.41) + [i(?%(t) + [Jun(t) — um ()] ] (W (t) + 27m(t)).

Put
Yr(t) == v(t) + || Zx(t) — Z(t)|| for all k € Nwith k > ny.
Using the definition of Z,,(-) and (4.27), we obtain

dA d\
/1Toﬂn(t)] nle) g, (B)dvts) = /]TMZ ()7 (s)dv(s)

d\
zn(s)—(8)dv(s
/MH <>dy<> (s)

1200 (1)) — Zn(t)]| =

/ zn(s)——(8)|| dv(s)
£.0n ()]
/9 )
= v(Jt, 0 (1)])
(4.42) < ().



PERTURBED BV SWEEPING PROCESS 1639
It follows
1Zn(0n(t)) = Zin(O)|| < ([ Zn(0n(t)) = Zn@)[| + (| Zn(t) = Z(@)]| + [|Z(t) — Zn (D)l
< W) + [ Za(t) = Z@O)| + 1Z(t) — Zn (D) ]
(4.43) < Un(t) + Ym(t).

Observe that, according to the definition of w,(-), the differential measure dw,, of
wp(+) has dd% € L>(1,H,v) as a density relative to v such that

dwy,
5, (="

According to (4.41), (4.44) and (4.23), we have

duy, d\
+ zn(t)a(t) v-a.e. t €.

(4.44)

% %(%(t) + 29m(t))
+ 2@+ (0 = wnO1) +1] (8 + 290 (0)
(4.45) + 1 Zn(0n(t)) — Zm(1)] -

for v-almost every ¢t € I. Keeping in mind the definition of w,(-) and wy,(-), it is
readily seen that for all t € I,

(4.46) [un(t) = um (D) < [lwn(t) — wm O] + 1 Zm(t) = Zu@)] -
Using (4.45) and (4.46), we obtain

<d§f (0 +£( Un<6n<t>>)§%<t>, wn (B (t)) — wm<t>>
S%( lwn(t) = win (O]l + | Zim () = Zn(®)]| + 270 (1))

[ @00+ ) = 01]) + 1] (206 + 2000)

1

(4.47) + 57 ((t) + 29m(1)” + 11 Z0(8n (1)) ~ Zn ()]

It is straightforward that for all t € I,

1Zn(t) = Zim (D) || + 270 (t) < 1 Zn(t) = Z@)I| + [[Zm () = Z(@)[| + 270 (1)
(4.48) < 20 () + Y (t).
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Combining (4.47), (4.48) and (4.43), we get

dwy, d\

(50 10 (0,(0) G (01, 1006,(0) = )

< (a(8) = s (O] o (0) + 2000 ())* + o (1 1) + 205 (0))°

[0+ ) = un 1) + 1] (0n(0) + 200)

(4.49) + (¥n(t) + (1))
for v-almost every ¢t € I. According to (4.40) and (4.42), we have
[[wn (0 (t)) — wn ()] < [lun(0n(t)) = un )] + [ Zn(0n(t)) — Zn ()]l
< 29 (t) + 1 (t)
(4.50) = 3n(t),
for all t € I. Using (4.50), (4.49), (4.23) and the inequality v, < 1, it follows

<dwn (t) + f(t, un(5n(t)))%(t), wp (t) — wm(t)>

(S04 £ taln0) o000 (8) = a6 )

- <du,]/n () + £(t, un(én(t)))%@’ wn(Bn()) = wm(t)>

dc%(t) + zn(t);%(t) + f(t, un(én(t)));li(t)H 37n(t)

o (0n(®) = wn (Ol + Ym0) + 260(0)) + - (n(0) + 2 (1))

2
+ [i (an(t) + [lun(t) — um(t)H) + 1] ("‘ﬁn(ﬂ + me(t)) + (¢n(t) + 1/Jm(t>)
o (ln(6) = wm(0)] + 200 (1) + 6 ()” + 2 (9 (t) + ¥in (1)’

+2 [i(%ﬁn(t) + [Jun(t) = um@®)]) + 1} (Vn(t) + Y () + 4 (¥ (t) + Y (1)),

for v-almost every ¢t € I. By interchanging m and n, we get

dX

dwp,
(%50 1t 1m0 (09) G 00 () = )

<or (ln(®) = w0 (O] + 2000(0) + ¥ (1)
_|_

2

2 [ @0n0) + ual®) = )] +1] (0008 + 00

+ %(@z;n(t) + 9m(0)” + 4(0n () + ¥ (1)),
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for v-almost every t € I. For v-almost every ¢ € I, for all integers k > ny, put

By(1) 1= T (1) 4 (L w0 0) 2 ),

Since the sequences (ug(+))k>n,, (Wk(-))k>n, and (Yg(-))k>n, are uniformly bounded
on I, adding the two latter inequalities, there exists some real A > 0 (depending on
r) such that, for v-almost every ¢ € I, for all integers ki, ko > ny,

<Bk1 (t> - Bkz (t)7 Wk, (t) — Wk, (t)> < A<(¢k1 (t) + wkz (t))2 + (wkl (t) + 1/%2 (t))>

(451) () — iy (0]

Fix any real ¢ > 0 such that, for all integers k > ny, for all t € 1
lur(@)|| < ¢ and  [lwp(t)]] < c.

Applying assumption (iii), we get for all ¢ € I,

”f(tvun(én(t))) - f(tvum(dm(t)))H
(4'52) SLc(t) ||un(6n(t)) - um@m(ﬂ)”
From (4.51) and (4.52), it results

(%0 - S0, ne) — wnlt))
SO (F (£ (6a(8)) = F (£ 1m0 (9))), wn(t) = wa (D))
0 (®) = wa @I + A ($a®) + ¥n(®)* + (@alt) + U (®) )
D117 (£ 1 (0 (0)) = J (&t G (D) | (1) = wa ()]
e (t) = win (81 + A (n(8) + ¥m()* + (Unt) + U (®)) )
O Le(t) [0 (60(t)) = tin G ()] 0 () = wa (8)]

e (®) = win ()1 + A( (n(t) + (1) + (n(t) + 0m(®)) ).

for v-almost every ¢t € I. According to the definition of (wg(-))i, we have for all
tel

(453)  +

[[un (6n(2)) = tm (8m (2))
<un(0n(8)) = un(®)]l + [[un(t) = um ()| + l[tm () = wm(Gm (8)]]
<un(0n(t)) = un(O + [[um (t) = tm (6m ()) ]
(4.54) + [[wn(t) = wn @O + [|Za(t) — m( |-

Note that, for all t € T

1Zn(t) = Zm )| < [|Zn(t) = Z(O)]] + 1 Z(t) — Zm ()]
(4.55) < n(t) + m(t).
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Keeping in mind that ||wy,(t) — wn(t)|| < 2c for all ¢ € I and using (4.53), (4.54),
(4.55) and (4.40), we get

<d;;" (t) — ‘Z”—Vm(t), wn(t) — wm(t)>
S(LWLE) + 1) nt) = w0 + A((nl0) + (1) + (D) + 6m(0))
+ 2652 () Le(t) (Jun (G (8)) — n (O] + i () — B (D] 11 Z0(6) —~ Zi (0}
<(BAOLD + 1) ) = w0 1 + A (800 + 00 (0)* + (6(0) + 00u(0))

4 20%(15)[,6(15) (2016, (t), 1]) + 20(18m (1), 1]) + Y (t) + V(1))

for v-almost every t € I. According to Proposition 2.7, we have

cxumo>—umx»>du

dwy, dwy,

dmwaa—wmmw><2<dy«>—¢i

v

Let us define, for all t €

P (t) = [lwn(t) — wm(t)H27

and
Apn(®) =A((Unt) +0m(0)” + () + Y (®)) )
+ zc%(t)Lc(t) (2v(6n (), 1]) + 20 (10 (£), t]) + Yn(t) + ¥m(t)).
Set,

O = / Apm(s)dv(s).
}TO»T}

Since wy, (Ty) = wm(To), we obtain, for all t €]|T, t]
dA\ 1
(I)nmt S 2( — Lc - q)nm d n,m:
w® = [ 2(GOLE) + L) Bun)ts) +
According to p({t}) = v({t}) for all t € I and supep, 77 u({s}) < 5, we have

sup v({s}) < r

s€]To,T] 2
Let us set
2
a:=— sup v({s}) <L
T s€|To,T)

Since L.(-) is A-integrable on [T T] and A is absolutely continuous with respect to

v, we know that Lc(~)§—i‘(-) is v-integrable on [Tp T'] and

/ Lo()dA(s) = / Lo() P (5)du(s) forallt e I.
|To,t] |To,t] dv
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Applying Lemma 2.8, it follows

Dy () < . m €Xp 2 / (Q(S)LC(S) + 1)dl/(s) for allt € 1.
7o) N

1—a T
So, we have

2

l1—a

D, (t) < Q. m exp ( (/]T ) L.(s)d\(s) + iV(]To,t]))> for all t € I.

As a consequence, we get

sup  Pp, y (t) < Qi m €XP ( : </ Le(s)dA(s) + 1V(]T07T]))> :
te[To,T] 1 —a\ )iy r

Observe that, limg, ;400 anm = 0 via Lebesgue dominated convergence theorem,
since the sequence (¢, (+))y is uniformly bounded and lim,_, 4 ¥, (t) = 0 for all
t €]Tp,T] and thanks to the fact that v(]0,(t),t]) < e, for all integers n > ny, all
t € I. This proves that (wy(t)), is a Cauchy sequence for each ¢t € [Ty, T]. Then,
we get some mapping w(-) : I — H such that, for all ¢t € [Ty T,

Un(t) = u(t) :=w(t) — Z(t).

On the other hand, according to (4.29), extracting a subsequence if necessary,

we may suppose that (%= (.)), converges weakly in L?(I,,v) to some mapping

g(-) € L*(I,H,v). So, for any t € T
/ %(S)dV(s) — g(s)dv(s) weaklyin H.
1To,t] dv 1T0,t]

As up(t) — u(t), it results that
u®) =w+ [ gls)dv(s)
}To,t]

hence wu(-) is right continuous on I and of bounded variation on I, and du has
du() = g(-) € L*(I,H,v) as a density relative to v. As a result,

dv

dun, du . 2

dT() N E() weakly in L“(I,H,v),
and this yields

duy, du

d—y() — E() weakly in L'(I,H,v).

Step 4: Let us prove that, u(-) is a solution of (P).

Fix for a moment any ¢ € I. Using (4.6), we get

(4.56) ngrfoo dn(t) =t and nggloo On(t) = t.

By the continuity of f(t,-) on ¢B and the inequality ||u,(t)|| < ¢ for all n > nq, we
have

lim (£, ua(6,(1))) = F(t,u(t)).

n—-+o0o
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From (4.30), we obtain
[t (O (£)) — w(®)|| < [un(n(t)) — un(B)]] + [lun(t) — u@)]
< 2v(Jt, On(8)]) + [lun(t) —u(®)]]-

By (4.56), we have
limoo U (0 (1)) = u(t).

n—+

Using the variation assumption on C(-) in (4.1) and (4.35), it follows

doy (un(0n(1))) = dey (un(0n(t))) — deo, 1)) (un(0n(t)))
< pu(Jt, 0, (1)])-

Combining the latter inequality, (4.56) and the fact that C(¢) is closed, we have

u(t) € C(t).
According to (4.25), we may suppose that, ( 1 (+))n converges weakly in L*(I, H, \)
to some mapping z(-) € L*(I,H,\). Since 2 ( ) € L>®(I,R4,v), it entails that

dX dX .1
zn()a() — z()—y() weakly in L* (I, H,v).
By Lebesgue dominated convergence, we have for v-almost every ¢ € 1
X dA
f(t,un(5n(t))) du( ) — f(t,u(t ))dy (t) strongly in LI(I,H,I/).

Now, we apply a classical technique due to C. Castaing ([7]). Thanks to Mazur’s
lemma there exists a sequence ((,(-)), which converges strongly in L!(I,H,v) to

)+ 2()R () + f(u(-) D with

Cn(')Eco{CZVk()—i- k()j)\()—i-f( ())an}

for each n > ny. Extracting a subsequence if necessary, we may suppose that

Gult) = B 1) 20 D () + FuO) (1) vnet el
Then, we have
%(t)Jr()dA()Jrf eﬂ {d“’“ ()C“()+f( ()):an},

n>n
for v-almost every t € I. This inclusit)n yields for v-almost every ¢ € I that
(& G+ 050 + f(eu) o))
< i s (& G50 + 20 200 + ).
for all £ € H. It follows that, for v-almost every t € I, for all £ € H,
(& G0)+ 20 (1) + 1(0.u(t) (1)) < linsup (€. ~pdoya, o (v 0a(0):

n—-+4o0o
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Hence, for v-almost every t € I, according to Proposition 2.6

<§7 %(t) + z(t)%(t) + f(t,u(t))j;\(t)> < 0(& —0cdory(u(t))),

for all £ € H. Thanks to (2.7), we have

{50+ 2050+ Fut) (0} € @ (~cdo () vaeter

Since the Clarke subdifferential is always closed and convex, this last inclusion gives
us

%(t) + z(t)%(t) + f(t,U(t))%(t) € —dcdog(u(t)) v-ae.tel.

Combining this inclusion, (2.6) and (4 23) we have
%(t) + Z(t)%(t) f(t, (t)) ( )€ —=N(C(t);u(t)) v-ae.tel.

Let us show that, z(t) € F(t,u(t)) for A-almost every t € I. Fix any t € I and
n > n; an integer. Note that, by (4.6)
[fn(0n(t)) =t < n.

It results
lim kg (0k(t)) = t.

k—4o00

Thanks to the fact that zi(-) converges to z(-) weakly in L'(I,H,v), via Mazur’s
lemma again, extracting a subsequence if necessary, we may write

z(t) € m co{z(t): k>n} wv-ae. tel.
n>ni

Thus, for v-almost every ¢ € I, we have
(&, 2(1)) < timsupo (&, F (sn(60(t)), un(3n(t)) ).
n—-+0o

for all £ € H. Applying assumption (i), we get for v-almost every ¢t € I

(6,2(8) < o(& F(t,u(t))).
for all £ € H. Since F(t,u(t)) is closed and convex for all ¢ € I, we have (thanks to

(2.7))
z(t) € F(t,u(t)) v-ae.tel.

As u(Tp) = limy,—y 400 un(Th) = up, u(+) is a solution of (P). On the other hand, by
passing to the limit in (4.30), we have
lu(1) — u(m2)|| < 2v(]r1,m2]) forall 7,9 € I with < 75.
It results
|lu(t) —u(t)|| <2v({t}) =2u({t}) forallt €]Tp,T].
This completes the first case.
Case 2: Now, we assume

T
/ (B(s) + 1)dA(s) >

To

or /T (5)dA(s) >

To

0| =
oo\>—~
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Consider a subdivision (Tp,...,T)) (with & > 2) such that,
Ty<-- <Tp=T,

and satisfying for each i € {1,...,k}

T; T;
/ (ﬂ<s)+1)dx(s)g% and / a(s)dA(s) <

Ti,1 Ti*l

ool =

For each i € {1,...,k}, denote by p; the Radon measure induced on [T;_1,T;] by u
and set v; := u; + A. Then, the case 1 provides a mapping u; : [T, Th] — H, a M-
integrable mapping z; : [Ty, 71] — H such that, u1(-) is right continuous on [Ty, 71 ]
and of bounded variation on [Ty, T1], u1(To) = wg, ui(t) € C(t) for all t € [Ty, T1],

duy has dﬂ as a density in L([Ty, T],H, 1) relative to vy,

H’U,l(t) — ul(t_)H < 2,[1,1({75}) for all ¢ G]To, T],
z1(t) € F(t,ui(t)) Ma.et € [Ty, T1].

and
UL (0) 21 (0) S (0) + (0w (1) (1) € ~N(C(@)m(D) Aaet € [To, 7).
141 141 Vi

By finite induction, we obtain a finite sequence of right continuous mappings of
bounded variations u;(-) : [T;—1,T;] — H (2 < i < k) and a finite sequence of
A-integrable mappings z;(-) : [T;—1,7;] — H such that, for each i € {2,...,k},
wi(Ti—1) = ui—1(Ti—1), wi(t) € C(t) for all ¢t € [T;_1,T;], du; has dlq“jz? as a den51ty in
LYN([T;_1, T;], H, v;) relative to v;,

|wi(t) — wi(t7)|| < 2m({t}) for allt €]T;_1, T,

4(t) € Ft,ui(t)) Maet € [Ty, T).

and
ZZ@y+a(ﬁﬁﬁ)+fauxnizmeaJWCme@» Na.e.t € [T;_1, Ty

Now, let us define u(-), z(+), g(+) : [To,T] — H by
u(t) =wu;(t) ift e [T;—1,T;] for somei e {1,...,k},
21 (t) ift € [To,Tl],
zi(t) ift €]T,—1,T;] for somei € {2,...,k},

and

du dul
9(t) = 1z, 7y () E:thﬂ U

It is clear that z(-) is A-integrable on [TO,T] and u(-) is right continuous and of
bounded variation on [Ty, T'] satisfying u(Ty) = ug and for o := u + A, one has

w(t) € C() and ult) = u(Ty) + / o(s)din(s).

}T07t]
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Note that, the differential measure du of u(-) has %(-) = g(-) € L'([Ty, T), H,7) as
a density relative to 7. Moreover,

|lu(t) —w(t?)|| < 2u({t}) forallt€]Ty, T,

z(t) € F(t,u(t)) AMae.tel.

and
du dA dA -
E(t) + z(t)ﬁ(t) + f(t,u(t))ﬁ(t) € —=N(C(t);u(t)) r-ae.tel.
This finishes the proof. O

Remark 4.2. It is straightforward that Theorem 4.1 encompasses [2, Theorem 4.1]
(with ' = {0}) and [14, Theorem 3.1] (with f = 0).

5. CONSEQUENCES

In this section, we deal with consequences of our existence theorem.

Profiting from an idea of [2], we have the following result.

Corollary 5.1. Under the assumption of Theorem 4.1, for each ug € C(Tp), the
perturbed sweeping process

{—du e N(C(t);u(t)) + F(t,u(t)) + f(t, u(t))
u(To) = wo
has a solution satisfying
u(t) = Powy(u(t™))  for allt €]Ty, T).

Proof. By Theorem 4.1, there exists a mapping u(-) : I — H satisfying

{—du e N(C(t);ult)) + F(t,ut)) + f(t,u(t))

u(Ty) = uo

and
(5.1) |lu(t) —w(t™)|| < 2u({t}) forallt€]Ty,T).

Fix any t €]Tp, T.
Case 1: u({t}) =0.
The inequality (5.1) gives us

u(t™) =u(t) € C(t).

So, it is readily seen that, u(t) = Pog(u(t™)).
Case 2: u({t}) > 0.
In this second case, we have

(52) lut) — ()| < 2u({}) <2 supu({s)) <.
s€]To,T)
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Set v := p+ A. The inequality p({t}) > 0 entails straightforwardly v({t}) > 0.
Combining the definition of a solution and the equality %(t) = 0 (thanks to (2.10)),
we get

L) € ~N(C(0);u(t)
This inclusion with (2.11) give us
dugy o dulsd) () —uls) () —u() o
o\ =i on sy e o) € TN u),
Since N(C(t);u(t)) is a cone, the latter inclusion is equivalent to
(5.3) u(t™) —u(t) € N(C(t);u(t)).
It follows,
(5.4) u(t) € C(t).

Using (5.2), (5.3), (5.4) and Proposition 2.5, we get

u(t) = Pogy(u(t™)).
O

Now, in the same way as [2], we deal with the case where the measure p is
absolutely continuous relative to A.

Proposition 5.2. Let C': I = H be a multimapping such that for some extended
real v €]0, +00], C(t) is r-proz-reqular for every t € I. Assume that there exists a
nondecreasing absolutely continuous function v(-) : I — R on I such that

|d(y,C(s)) —d(y,C(t))| < wv(t) —wv(s) forally € H, foralls,t el withs <t.

Let F: I xH = H (resp., [ : I xH — H) be a multimapping with nonempty convex
compact values satisfying (i) and (it) (resp., be a mapping satisfying (iii) and (iv))
in Theorem 4.1.

Then, with p the Radon measure on I satisfying u(]s,t]) = v(t) — v(s) for all
s,t € I with s < t, any solution of the measure differential sweeping process

P —du € N(C(t);u(t)) + F(t,u(t)) + f(t,u(t))
u(To) = uo € C(Tp)

18 a solution in the classical sense, that is,

(a) w is absolutely continuous on I;
(b) there is a A-integrable mapping z(-) : I — H with z(t) € F(t,u(t)) A-a.e.
t € I such that

——(t) € N(C(t);u(t)) + 2(t) + f(t,u(t)) A—aetel;

(¢) u(To) = up and u(t) € C(t) for allt € 1.

So, (P) admits at least one absolutely continuous solution u(-) on I.
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Proof. Let u(-) : I — H be a solution of (P) in the measure differential sense. Set
v = p+ A and observe that v is absolutely continuously equivalent to the Lebesgue
measure A. Then, there exists a mapping h : I — [0, +oo[ A-integrable on I such
that

v=n"h()\
Thanks to the equalities (M-a.e.) h(-) = Z(-) and Z(-)%(.) = 9(.), we have
u(t) = ug +/ h(s)d—u(s)d)\(s) forallt € I.
]To,t] dl/

As a consequence, the mapping u(-) is absolutely continuous on I and there exists
a Borel set By of I with A\(B;1) = 0 such that

du du

—(t) =h(t)—(t) forallte I\ B;.

Ut = b)) forallt€ T\ By
Since u(-) is a solution of (P) in the measure differential sense, there exist a A-
integrable mapping z : I — H with z(t) € F(t,u(t)) for A-almost every ¢ € I and a
Borel set By in I with v(Bg) = 0 such that

duy 4 f(t,u(t));%(t) + z(t)zl%(t) € “N(C(t);u(t)) forallte I\ By.

dv
Setting B = B; U By, we see that A(B) =0 and, for allt € I \ B,
du d\ d\
WP 0) + £ ()0 (1) + (k) T € ~N(C():u(r).

On the other hand, for all s,¢ € I with s < 1,
/}S ; h(&)j—i(&)dk(@) _ /] } %(H)h(ﬁ)d)\(e) _ / D Vv () = /] L)
It follows that
%(t) b A ul) + 2(8) € —N(C@)ult) Mae tel,
and this finishes the proof. O

Remark 5.3. As a direct consequence of Proposition 5.2, we get [3, Theorem 3.1].

6. CONCLUDING REMARKS

In this paper, we proved that the perturbed discontinuous Moreau’s sweeping
process with a prox-regular moving set

—du € N(C(t);u(t)) + f(t,u(t)) + F(t,u(t)) Maete [Ty,T]
u(To) € C(To),

has at least one solution satisfying u(t) = Py (u(t™)) for all t €T, T]. It is of
interest to deal with a discontinuous second order sweeping process with a perturba-
tion in the form f+ F as above. Such a study is out of the scope of this manuscript
and will be the subject of a future work.
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