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Abstract. This paper is devoted to a new family of measure differ-
ential inclusions in Hilbert spaces. We show that it encompasses the
first order BV prox-regular sweeping process and the second order one
with outward normal at the velocity. Through a new suitable mixed
catching-up algorithm coming from first and second order sweeping pro-
cess theory, we provide sufficient conditions ensuring the existence of a
trajectory solution for our evolution problem.

1. Introduction

R.A. Poliquin and R.T. Rockafellar ([46]) introduced prox-regular sets by
requiring that their indicator functions be prox-regular. Geometric prop-
erties of those sets and their links with other previous concepts (positively
reached, ϕ-convex, weakly convex, O(2)-convex, proximally smooth) were
established by R.A. Poliquin, R.T. Rockafellar and L. Thibault ([47]). The
present paper is a contribution to first and second order sweeping processes
governed by prox-regular sets.

Let C(t) be a time-dependent closed convex set of a Hilbert spaceH which
moves in an absolutely continuous way, that is,

(1.1) haus
(
C(s), C(t)

)
≤ %(t)− %(s) for all s, t ∈ I := [T0, T ],

for some nondecreasing absolutely continuous function %(·) : I → R+ :=
[0,+∞[. According to J.J. Moreau ([37]), for every initial condition u0 ∈
C(0), there is one and only one (absolutely continuous) trajectory solution
of the following generalized Cauchy problem with F ≡ 0

(1.2)

 −u̇(t) ∈ NC(t)(u(t)) + F (t, u(t)) a.e. t ∈ I,
u(t) ∈ C(t) for all t ∈ I,
u(T0) = u0 ∈ C(T0).

The differential inclusion in (1.2) associated to the (outward) normal cone in
the sense of convex analysis NC(t)(u(t)) has also an interesting mechanical
interpretation with F ≡ 0. Indeed, recalling that the latter set is reduced
to {0} if u(t) ∈ int C(t), (1.2) means that the velocity u̇(t) has to point
inward C(t) whenever u(t) is caught-up by the boundary of C(t). Such
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a kinematic point of view led J.J. Moreau to name sweeping process the
evolution problem (1.2) with F ≡ 0.

Roughly speaking, there are three major ways to handle the so-called
Moreau’s sweeping process with F ≡ 0:
- the catching-up algorithm ([38]) which is some kind of Euler’s explicit
scheme associated to the iterates uni defined through the metric projection
as

un0 := u0 and uni+1 := projC(tni )(u
n
i ),

where T0 =: tn0 < . . . < tnp(n) := T is a time discretization of I;

- the reduction to an unconstrained differential inclusion ([49, 6])

−u̇(t) ∈ %̇(t)∂CdC(t)(u(t))

with the absolutely continuous function %(·) involved in (1.1) (here ∂C de-
notes the Clarke subdifferential);
- the regularization of the normal cone ([37]) (see also the survey [41] and
the references therein) through the family of ordinary differential equations
(with a parameter ν > 0)

uν(T0) = u0 and − u̇ν(t) =
1

2ν
∇d2

C(t)(uν(t)) a.e. t ∈ I.

The important role in many concrete problems of Moreau’s sweeping process
(see, e.g., [1, 32, 36, 34]) lies at the heart of the following extensions of (1.2):
with bounded variation of the moving set ([38, 34, 27]), to the stochastic
setting ([13]), to Banach spaces ([10]) and manifolds ([9]), to nonconvex
moving sets ([52, 29, 30, 42]), with a perturbation F 6≡ 0 ([33, 34]), with
state-dependent moving sets ([17, 31, 28]), to the second-order case ([15,
2, 45]), to the delayed case ([43]), with outward normal at the velocity for
first order ([3]), with truncated excess and Hausdorff distance ([2, 42]), in
Wasserstein’s space ([25]), in optimal control ([12]), etc.

Introduced by J.J. Moreau himself in [38], the bounded variation (or dis-
continuous) sweeping process depicts a situation where the moving set C(t)
is allowed to jump. This amounts to saying that the function %(·) involved
in (1.1) may have some discontinuities with respect to the time. Assum-
ing that the function %(·) is only right-continuous with bounded variation
([38, 34, 42]) leads to the following measure differential inclusion (see Section
3 for a precise meaning)

−du ∈ NC(t)(u(t)) + F (t, u(t)) a.e. t ∈ I.

Another variant of a great interest is obtained by putting a state-dependence
in the moving set, say

(1.3) −u̇(t) ∈ NC(t,u(t))(u(t)) + F (t, u(t)) a.e. t ∈ I

or in its bounded variation form

(1.4) −du ∈ NC(t,u(t))(u(t)) + F (t, u(t)) a.e. t ∈ I.



ON FIRST AND SECOND ORDER SWEEPING PROCESSES 3

To the best of our knowledge, the dissertation thesis of K. Chraibi ([17]) con-
tains the first work devoted to the (absolutely continuous) evolution problem
(1.3) in the particular context of a closed convex C(t, x) ⊂ R3 and F ≡ 0.
The existence result in [17] (with F ≡ 0) has been extended to Hilbert spaces
by M. Kunze and M.D.P. Monteiro Marques ([31]). Their proof is strongly
based on a generalized Schauder’s fixed point theorem (see Section 4) which
ensures the well-posedness of the implicit scheme

un0 := u0 and uni+1 := projC(tni+1,u
n
i+1)(u

n
i ).

Let us point out here that (1.3) can also be handled without the use of any
fixed point type result thanks to a semi-implicit algorithm (see, [17, 28, 6,
29, 40])

un0 := u0 and uni+1 := projC(tni+1,u
n
i )(u

n
i ).

Unlike the original Moreau’s sweeping process (1.2), any existence result in
infinite dimensional setting for (1.3) makes a crucial use of a compactness
type assumption. It remains an open question to establish their necessity or
not.

One of the main area of research in sweeping process theory consists in
going beyond the convexity of the involved moving set. It probably starts
in 1988 with M. Valadier ([52]). With H = Rn, he established that (1.2)
has a solution (with N = NC the Clarke normal cone) for a nonconvex
set C(t) provided that the multimapping (t, x) 7→ NC

C(t)(x) has its graph

closed. We also mention the work by C. Castaing ([14]) from which we
can derive existence result for the case where C(t) is a translation of an
autonomous nonconvex set. Major developments have been done since the
pioneer works of Castaing and Valadier. In the dimensional setting, it is
known ([8, 21, 49]) that the closedness of C(t) along with (1.1) ensure the
existence of a solution for (1.2). What we know so far in a general Hilbert
space are existence results for various classes of moving sets coming from
variational analysis such as prox-regular ([21, 27, 42]), alpha-far ([30]) and
subsmooth ([29]). In the present paper, the sets involved in the sweeping
processes will be prox-regular.

Besides first order theory, C. Castaing introduced in [14] at the end of
80’s the following second order evolution problem with outward normal at
the velocity inside the set

(1.5) −ü(t) ∈ NC(u(t))(u̇(t)) with u(T0) = u0 and u̇(T0) = v0 ∈ C(u0).

For the other second order problem with outward normal at the state/position,
that is, the differential inclusion −ü(t) ∈ NC(t)(u(t)), we refer to [45] and
the references therein. As for the first order, in numerous ways and for
various purposes (see, e.g., the monograph [34] and the references therein),
many researchers studied (1.5) in the perturbed form with a possibly time
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dependence in the moving set{
−ü(t) ∈ NC(t,u(t))(u̇(t)) + F (t, u(t), u̇(t)),

u(T0) = u0, u̇(T0) = v0 ∈ C(T0, u0).

Taking into account the problem (1.4), it is quite natural to consider the
following measure differential inclusion

(1.6)

{
−du̇(t) ∈ NC(t,u(t))(u̇(t)) + F (t, u(t), u̇(t)),

u(T0) = u0, u̇(T0) = v0 ∈ C(T0, u0).

The existence of solution has been developed in [15] for the first time in the
absolutely continuous setting with a prox-regular moving set in a separa-
ble Hilbert space H. The problem has also been investigated by S. Adly
and B.K. Le ([2]) with a control on a convex set C(t, x) involving only the
truncated Hausdorff distance. The right-continuous bounded variation form
appeared in [4], with a convex-valued multimapping F satisfying only a
time-dependent growth condition

F (t, u, v) ⊂ α(t)(1 + ‖u‖+ ‖v‖)B,
for some fixed α(·) ∈ L1(I,R+), where B stands for the closed unit ball in
H. More recently, the evolution problem (1.6) has been examined in [5] with
a subsmooth set in the context where the moving set is controlled in time
by a continuous function with bounded variation. Using such a continuity
assumption, the authors succeeded in adapting to the second-order setting
the catching-up semi-implicit approach in [28, 29].

The papers [43, 53] brought to light a link beetween the above first and
second order sweeping processes. Indeed, in an absolutely continuous setting
with H = Rn, it is established in [43, 53] that the existence of solution for
(1.6) can be obtained through a suitable first-order state-dependent sweeping
process. The crucial assumption in those works seems to be the control of
the minimal norm coming from the convex perturbation term, in the sense
that

d
(
0, F (t, u, v)

)
≤ α

for some real α > 0. The aim of the present paper is twofold. On one hand,
we introduce a new mixed first order sweeping process (taking place in the
product space H2)

(FMSP)

{
−dΦ ∈ NC(t,Φ(t))×Q(Φ(t)) +G(t,Φ(t))× {f(t,Φ1(t))}
Φ1(T0) = v0,Φ2(T0) = u0,

for which we establish that it encompasses the BV evolution problems (1.4)
and (1.6). On the other hand, we provide sufficient conditions ensuring the
existence of solutions for (FMSP). Here, our single-valued perturbation f
is Lipschitz and G is convex-valued satisfying the following time-dependent
minimal norm control

d
(
0, G(t, u, v)

)
≤ α(t)(1 + ‖u‖),
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for some α(·) ∈ L1(I,R+). The work is achieved thanks to a suitable mixed
catching-up algorithmynp+1 = projQ

(
ynp −

∫ tnp+1

tnp
f(s, xnp )dλ(s)

)
,

xnp+1 = projC(tnp+1,x
n
p+1,y

n
p+1)

(
xnp −

∫ tnp+1

tnp
g(s, xnp , y

n
p )dλ(s)

)
,

where g(t, u, v) denotes the minimal norm element of G(t, u, v). Then, from
this existence result, we have been able to derive the existence of a trajec-
tory solution for both above state-dependent first order and second order
sweeping processes governed by a prox-regular moving set with bounded
variation.

The paper is organized as follows. Section 2 is devoted to the introduction
of notation and the necessary preliminaries. In Section 3, we develop the
concept of solution for the discontinuous perturbed first and second order
sweeping processes. In Sections 5 and 6, we focus on the existence of solution
for such evolution problems.

2. Notation and preliminaries

Throughout, H is a real Hilbert space endowed with the inner product
〈·, ·〉 and the associated norm ‖·‖. The open (resp. closed) ball of H centered
at x ∈ H with radius r > 0 is denoted by B(x, r) (resp. B[x, r]). The letter
B denotes the closed unit ball of H, that is B := B[0, 1]. In all the paper,
I := [T0, T ] is an interval of R for some reals T0 < T , λ stands for its
Lebesgue measure. As usual, N denotes the set of integers starting from 1
and R+ := [0,+∞[ the set of nonnegative reals.

Let S be nonempty subset of H. The distance function from S is defined
by

dS(x) :=: d(x, S) := inf
y∈S
‖x− y‖ for all x ∈ H.

For any x ∈ H, the (possibly empty) set of nearest points of x in S is defined
as

ProjS(x) := {y ∈ S : dS(x) = ‖x− y‖} .
If ProjS(x) = {y} for some y ∈ S, one says that projS(x) (or PS(x)) is
well-defined and in such a case one sets projS(x) := y (or PS(x) := y).

2.1. Normal cones and subdifferentials. Let S be a nonempty closed
set of the Hilbert space H. A vector v ∈ H is a proximal normal vector to the
set S ⊂ H at a point x ∈ S provided that (see, e.g., [35, 48, 51]) there exists
a real r > 0 such that x ∈ ProjS(x + rv). The set of all proximal normal
vectors at x, denoted by NP

S (x) or NP (S;x), is a convex cone containing
zero (not necessarily closed in H). As usual, we set

(2.1) NP
S (x) := ∅ for all x ∈ H \ S.
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For each v ∈ H with w ∈ ProjS(v) 6= ∅, we may obviously write w ∈
ProjS

(
w + (v − w)

)
and this ensures the crucial inclusion

(2.2) v − w ∈ NP
S (w).

The Clarke tangent cone TS(x) (denoted also by T (S;x)) of S at x ∈ S
is (see [19]) the set of h ∈ H such that for every sequence (xn)n∈N of S with
xn → x, for every sequence (tn)n∈N of positive reals with tn → 0, there is a
sequence (hn)n∈N of H with hn → h satisfying

xn + tnhn ∈ S for all n ∈ N.

It is an exercise to check that TS(x) is a closed convex cone containing 0.
The Clarke normal cone of S at x ∈ S is denoted by NS(x) or N(S;x) and
is defined as the polar cone of TS(x), i.e.,

NS(x) := {v ∈ H : 〈v, h〉 ≤ 0, ∀h ∈ TS(x)} .

As in (2.1), one puts TS(x) := NS(x) := ∅ for every x outside S. It is routine
to show that the proximal normal cone is always included in the Clarke one,
i.e.,

(2.3) NP
S (x) ⊂ NS(x) for all x ∈ H.

Let f : U → R ∪ {+∞} be a function defined on an open subset U of
H. Through the above concepts of normal cones, one defines the proximal
subdifferential ∂P f(x) and the Clarke subdifferential ∂f(x) of f at x ∈ U by

(2.4) ∂P f(x) :=
{
v ∈ H : (v,−1) ∈ NP

Ef

(
x, f(x)

)}
and

(2.5) ∂f(x) :=
{
v ∈ H : (v,−1) ∈ NEf

(
x, f(x)

)}
,

where H× R is endowed with the usual product structure and

Ef := epi f := {(u, r) ∈ U × R : f(u) ≤ r}.

It follows from the very definition of the latter subdifferentials that ∂P f(x) =
∅ and ∂f(x) = ∅ whenever f is not finite at x ∈ U . From (2.4), (2.5) and
(2.3), it is readily seen that

(2.6) ∂P f(x) ⊂ ∂f(x) for all x ∈ U.

Of course, when U is convex and the function f is convex on U , the two
latter subdifferentials coincide with the one in the sense of convex analysis,
that is,

(2.7) ∂P f(x) = ∂f(x) =
{
v ∈ H :

〈
v, x′ − x

〉
≤ f(x′)− f(x), ∀x′ ∈ U

}
.

If f = dS (here S is closed but possibly nonconvex) we have the following
description of its proximal and Clarke subdifferential (see, e.g., [20, 11, 51])

(2.8) ∂PdS(x) = NP
S (x) ∩ B and ∂dS(x) ⊂ NS(x) ∩ B for all x ∈ S.
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For a function f which is Lipschitz near x ∈ U , it is known that (see [19, 51])
the Clarke subdifferential is nonempty, weakly compact and satisfies

∂f(x) = {v ∈ H : 〈v, h〉 ≤ fo(x;h) ∀h ∈ H} ,

where fo(x;h) is the Clarke directional derivative of f at x in the direction
h defined by

fo(x;h) := lim sup
t↓0,x′→x

t−1
(
f(x′ + th)− f(x′)

)
.

Under such a Lipschitz assumption, the Clarke directional derivative fo(x;h)
is nothing but the support function of the closed convex set ∂f(x). Recall
that for any subset S of the Hilbert space H, its support function σ(·, S) is
defined by

σ(ξ, S) := sup
x∈S
〈ξ, x〉 for all ξ ∈ H.

As a direct consequence of the Hahn-Banach theorem, we see that the sup-
port function characterizes the closed convex sets ofH since for every subsets
S1, S2 of H,

(2.9) co S1 ⊂ co S2 ⇔ σ(·, S1) ≤ σ(·, S2).

Here and below, co (resp. co) stands for the convex (resp. closed convex) hull
of S. Through the support function, we define the concept of scalar upper
semicontinuity as follows: a multimapping F : T ⇒ H from a Hausdorff
topological space T to the Hilbert space H is said to be scalarly upper
semicontinuous whenever, for any ξ ∈ H, the extended real-valued function
σ(ξ, F (·)) : T → R := R ∪ {−∞,+∞} is upper semicontinuous.

2.2. Prox-regularity in Hilbert spaces. As mentionned above, we focus
on evolution problems described through a prox-regular moving set, that is,
a multimapping C : I ×H⇒ H with prox-regular values. Let us first recall
the definition.

Definition 2.1. ([47]) Let S be a nonempty closed subset of H, r ∈]0,+∞].
One says that S is r-prox-regular (or uniformly prox-regular with constant
r) whenever, for all x ∈ S, for all v ∈ NP

S (x) ∩ B and for all t ∈]0, r[, one
has x ∈ ProjS(x+ tv).

Now, let us provide some useful characterizations and properties of uni-
form prox-regular sets ([47]). The proofs as well as additional results, ap-
plications and historical comments can be found in the survey [22] and the
book [51]. Before stating the next result, we need to recall that for any
extended real r > 0, the r-open enlargement of a subset S of H is defined as
the set

Ur(S) := {x ∈ H : dS(x) < r}.

Theorem 2.2. Let S be a nonempty closed subset of H, r ∈]0,+∞]. Con-
sider the following assertions.



8 FLORENT NACRY, JIMMY NOEL, AND LIONEL THIBAULT

(a) The set S is r-prox-regular.
(b) For all x1, x2 ∈ S, for all v ∈ NP

S (x1), one has

〈v, x2 − x1〉 ≤
1

2r
‖v‖ ‖x1 − x2‖2 .

(c) The mapping projS : Ur(S)→ S is well-defined and locally Lipschitz on
Ur(S).
(d) For all u ∈ Ur(S) \ S, one has

PS(u) = PS

(
PS(u) + t

u− PS(u)

‖u− PS(u)‖

)
for all t ∈ [0, r[.

(e) One has

NP
S (x) = NS(x) for all x ∈ S

and

∂PdS(x) = ∂dS(x) for all x ∈ Ur(S).

Then, the assertions (a), (b) and (c) are pairwise equivalent and each one
implies both (d) and (e).

Let us end this paragraph with a crucial result established by M.V. Bal-
ashov and G.E. Ivanov [7] for projection onto prox-regular sets. We present
it in a suitable form for the development of our analysis in the next section
(see also [44]), and we sketch the proof for completeness.

Here and in the rest of the paper, haus(·, ·) stands for the Hausdorff-
Pompeiu distance on H which is defined for two nonempty subsets S and S′

of H by

haus(S, S′) := sup
x∈S∪S′

|dS(x)− dS′(x)| = sup
x∈H
|dS(x)− dS′(x)| .

Theorem 2.3 ([7]). Let S1, S2 be two r-prox-regular sets of H for some
r ∈]0,+∞], s ∈]0, r[. If haus(S1, S2) < r, then for every x ∈ Us(S1)∩Us(S2),
one has ∥∥projS1

(x)− projS2
(x)
∥∥ ≤√2s

(
1− s

r

)−1
haus(S1, S2).

Proof. Set h := haus(S1, S2) and assume that h < r. Fix any x ∈ Us(S1) ∩
Us(S2). For each i ∈ {1, 2}, set xi := projSi(x). Pick any t ∈ [h, r[. We
claim that

2 〈x− x1, x2 − x1〉 ≤ s
(‖x1 − x2‖2

t
+ 2h

)
.

Without loss of generality, assume that x 6= x1, in particular x ∈ Ur(S1)\S1.
By virtue of Theorem 2.2(d), we have

x1 = projS1

(
x1 +

t(x− x1)

‖x− x1‖

)
.
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For all z ∈ S1, we have∥∥∥∥x1 +
t(x− x1)

‖x− x1‖
− x2

∥∥∥∥ ≥ ∥∥∥∥x1 +
t(x− x1)

‖x− x1‖
− z
∥∥∥∥− ‖x2 − z‖ ≥ t− ‖x2 − z‖ .

Taking the supremum on both sides of the latter inequality ensures that∥∥∥∥x1 +
t(x− x1)

‖x− x1‖
− x2

∥∥∥∥ ≥ sup
z∈S1

(t− ‖x2 − z‖) = t− dS1(x2) ≥ t− h.

We deduce from this (keeping in mind that t ≥ h)

‖x1 − x2‖2 +
2t

‖x− x1‖
〈x− x1, x1 − x2〉+ t2 ≥ t2 − 2th,

or equivalently

2t 〈x− x1, x2 − x1〉 ≤ ‖x− x1‖ (‖x1 − x2‖2 + 2th).

Using dS1(x) = ‖x− x1‖ < s, we obtain

2 〈x− x1, x2 − x1〉 ≤ s
(‖x1 − x2‖2

t
+ 2h

)
,

which is the inequality claimed. In a similar way, we see that

2 〈x− x2, x1 − x2〉 ≤ s
(‖x1 − x2‖2

t
+ 2h

)
.

Adding the two latter inequalities yields

‖x1 − x2‖2 ≤ s
(‖x1 − x2‖2

t
+ 2h

)
.

It remains to let t ↑ r to complete the proof. �

2.3. BV multimappings and vector measure theory. The present pa-
per is devoted to the study of the following Moreau’s sweeping process (see
Section 3 for the detailed concept of solutions)

(2.10)

{
−dΦ ∈ NC(t,Φ(t))×Q(Φ(t)) +G(t,Φ(t))× {f(t,Φ1(t))},
Φ(T0) = (u0, q0).

Our existence result will require that there is a positive Radon measure µ
on I such that for every x, y ∈ H

(2.11) haus
(
C(s, x, y), C(t, x, y)

)
≤ µ(]s, t]) for all s, t ∈ I with s ≤ t.

Our first aim here is to show how the latter inequality (2.11) is strongly
related to the notion of bounded variation for multimappings. Doing so,
consider any multimapping M : I = [T0, T ] ⇒ H and any real τ ∈ [T0, T ].
Let σ be a subdivision of [T0, τ ], that is σ = (t0, . . . , tk) for some reals
T0 = t0 < · · · < tk = τ with k ∈ N. One associates to such a subdivision
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σ, the real hσ :=
k−1∑
i=0

haus
(
M(ti),M(ti+1)

)
. The variation of M on [T0, τ ] is

defined as the extended real

var(M ; [T0, τ ]) := sup
ζ∈S[T0,τ ]

hζ ,

where S[T0,τ ] is the set of all subdivisions of [T0, τ ]. The multimapping M(·)
is said to be of bounded variation (BV for short) on [T0, τ ] if var(M ; [T0, τ ]) <
+∞. Then, it is straightforward to check that the existence of a positive
Radon measure µ on I satisfying

(2.12) haus
(
M(s),M(t)

)
≤ µ(]s, t]) for all s, t ∈ I with s < t

entails (keeping in mind that haus(·, ·) satifies the triangle inequality) that

0 ≤ var(M ; [T0, t])− var(M ; [T0, t]) ≤ µ(]t, t]) for all t ∈]t, T ];

in particular M(·) has a bounded variation on I along with a variation
function var(M ; [T0, ·]) right-continuous on I (see below).

In order to develop the converse implication, we need to introduce the
concept of differential measure. Let u(·) : I → H be a mapping. Assume for
a moment that M(t) = {u(t)} for every t ∈ I. From the equality

hσ =
k−1∑
i=0

haus
(
M(ti),M(ti+1)

)
=

k−1∑
i=0

‖u(ti+1)− u(ti)‖ ,

it is clear that M(·) is of bounded variation if and only if u(·) is of bounded
variation in the usual sense for mappings. In such a case, it is known (see,
e.g., [24]) that u(·) has one-sided limits at each point of I denoted

u(τ−) := lim
t↑τ

u(t) for all τ ∈]T0, T ],

and

u(τ+) := lim
t↓τ

u(t) for all τ ∈ [T0, T [,

where in the whole paper, t ↑ τ (resp. t ↓ τ) means t→ τ with t < τ (resp.
with t > τ). If in addition u(·) is right-continuous on I (i.e., u(τ) = u(τ+)
for all τ ∈ [T0, T [) there exists a vector measure du on I called differential
measure satisfying

du(]s, t]) =

∫
]s,t]

du = u(t)− u(s).

Now, let us come back to our problem with a general multimapping M
by assuming that M(·) has a bounded variation on I along with a right-
continuous variation function var(M ; [T0, ·]) on I. Since the latter function
is nondecreasing on I, it is of bounded variation on I, so if we denote by
µM the differential measure associated with it, we have

var(M ; [T0, t])− var(M ; [T0, s]) = µM (]s, t]) for all s, t ∈ I with s ≤ t.
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It follows that

haus
(
M(s),M(t)

)
≤ µ(]s, t]) for all s, t ∈ I with s < t,

that is, M(·) satisfies (2.12) with µ = µM .

Besides BV multimappings and differential mesures, some additional pre-
liminaries on vector measure theory are also needed. Let us end this section
by developing it.

Take any positive Radon measure ν on I and any real p ≥ 1. We denote
by Lp(I,H, ν) the real space of (classes of) mappings from I to H which
are ν-Bochner integrable on I. Recall that a (class of) mapping f : I → H
belongs to Lp(I,H, ν) whenever if it is ν-Bochner (or strongly) measurable
on I (see, e.g., [26, Chapter 2, Definition 1]) and

∫
I ‖f‖

p dν <∞. For more
details on Bochner integral, we refer the reader to [26] and the references
therein.

Let ν, ν̂ be two positive Radon measures on I. We recall (see, e.g., [24])
that, with I(t, r) := I ∩ [t− r, t+ r] (r > 0 and t ∈ I) the limit

(2.13)
dν̂

dν
(t) := lim

r↓0

ν̂(I(t, r))

ν(I(t, r))

(with the convention 0
0 = 0) exists and is finite for ν-almost every t ∈ I. The

(nonnegative Borel) function dν̂
dν (·) is called the derivative of the measure ν̂

with respect to ν. Moreover, the measure ν̂ is absolutely continuous with
respect to ν if and only if ν̂ = dν̂

dν (·)ν (i.e., dν̂
dν (·) is a density of ν̂ relative to

ν). If the latter equality holds, a mapping u(·) : I → H is ν̂-integrable on I
if and only if u(·)dν̂dν (·) is ν-integrable on I. In such a case, one has∫

I
u(t)dν̂(t) =

∫
I
u(t)

dν̂

dν
(t)dν(t).

If the two Radon measures ν and ν̂ are each one absolutely continuous
with respect to the other one, one says that ν and ν̂ are absolutely continu-
ously equivalent.

It is worth pointing out that, taking ν̂ equal to the Lebesgue measure λ,
the relation (2.13) gives

dλ

dν
(t) =

λ({t})
ν({t})

= 0 for all t ∈ I with ν({t}) > 0,

hence
dλ

dν
(t)ν({t}) = 0 ν-a.e. t ∈ I.

Now, consider ν a positive Radon measure on I, u(·) : I → H a mapping
and ũ(·) ∈ L1(I,H, ν). If, for any t ∈ I,

u(t) = u(T0) +

∫
]T0,t]

ũ dν,



12 FLORENT NACRY, JIMMY NOEL, AND LIONEL THIBAULT

then u(·) is of bounded variation, right-continuous on I and

du = ũ dν.

In such a case, the mapping ũ(·) is said to be a density of the measure du
relative to ν. According to J.J. Moreau and M.Valadier ([39]), for ν-almost
every t ∈ I,

ũ(t) =
du

dν
(t) := lim

r↓0

du(I(t, r))

ν(I(t, r))
= lim

r↓0

du(I+(t, r))

ν(I+(t, r))
= lim

r↓0

du(I−(t, r))

ν(I−(t, r))
,

where I−(t, r) = [t− r, t] ∩ I and I+(t, r) = [t, t+ r] ∩ I for each t ∈ I and
each real r > 0.

Given a positive Radon measure ν on I we will also use the property that

(2.14) the set {t ∈ I : ν({t}) > 0} is countable.

This known property can be seen from the fact that the latter set coincides
with

⋃
k∈NAk, where Ak := {t ∈ I : ν({t}) > 1/k} is a finite set for each

k ∈ N since ν(I) < +∞.

3. Concept of solutions

This section is devoted to the concept of solutions for first and second
order discontinuous sweeping processes. For more details on bounded vari-
ation solution of sweeping process, we refer the reader to [34, 50] and the
references therein.

We start with the following definition which is a slight extension of [27,
Definition 2.1] to the context of bounded variation state-dependent sweeping
processes. Before giving it, we need to associate to a multimapping M :
I × X ⇒ Y with closed values, where X and Y are two normed vector
spaces, the real %M defined by

(3.1)

{
%M = 0 if 0 ∈M(t, x) for all (t, x) ∈ I ×X,
%M = 1 otherwise.

Definition 3.1. Let G : I×H⇒ H be a multimapping and let C : I×H⇒
H be a multimapping such that there exists some positive Radon measure
µ on I satisfying for every x ∈ H,

haus
(
C(s, x), C(t, x)

)
≤ µ(]s, t]) for all s, t ∈ I with s ≤ t.

One says that a mapping u : I → H is a solution of the F irst order bounded
variation state-dependent Moreau Sweeping Process associated to µ for the
initial condition u0 ∈ H with u0 ∈ C(T0, u0)

(FSP)

{
−du ∈ NC(t,u(t))(u(t)) +G(t, u(t))

u(T0) = u0,

provided:
(a) the mapping u(·) is of bounded variation on I, right-continuous on I and
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satisfies u(T0) = u0 and u(t) ∈ C(t, u(t)) for all t ∈ I;
(b) there exist a λ-Bochner integrable mapping z(·) : I → H with z(t) ∈
G(t, u(t)) for λ-almost every t ∈ I and a positive Radon measure ν on I,
absolutely continuously equivalent to µ + %Gλ and with respect to which
the differential measure du of u is absolutely continuous with du

dν (·) as an

L1(I,H, ν)-density and such that

du

dν
(t) + z(t)

dλ

dν
(t) ∈ −NC(t,u(t))(u(t)) ν-a.e. t ∈ I.

Let us mention that such a concept does not depend on the involved Radon
measure ν, that is, a mapping u(·) : I → H satisfying (a) above is a solution
of (FSP) if and only if (b) holds for any positive Radon measure ν which is
absolutely continuously equivalent to µ+ %Gλ.

Now, let us focus on second order evolution problems. The following
definition has been introduced in [4] as a careful adaptation of Definition
3.1 to the context of second order sweeping processes with outward normal
at the velocity.

Definition 3.2. Let G : I×H2 ⇒ H be a multimapping and let C : I×H⇒
H be a multimapping such that there exists a positive Radon measure µ on
I satisfying for every x ∈ H,

haus
(
C(s, x), C(t, x)

)
≤ µ(]s, t]) for all s, t ∈ I with s ≤ t.

One says that a mapping u : I → H satisfies the Second order bounded
variation Sweeping Process associated to µ for the initial conditions u0, v0 ∈
H with v0 ∈ C(T0, u0)

(SSP)

{
−du̇ ∈ NC(t,u(t))(u̇(t)) +G(t, u(t), u̇(t))

u(T0) = u0, u̇(T0) = v0,

whenever:
(a) the mapping u(·) is absolutely continuous on I and u(T0) = u0;
(b) there exists a mapping v : I → H (called derivative for u(·) relative
to (SSP)) right-continuous with bounded variation such that v(T0) = v0,
v(t) ∈ C(t, u(t)) for all t ∈ I and v(t) = u̇(t) for λ-almost every t ∈ I;
(c) there exist a λ-Bochner integrable mapping z : I → H with z(t) ∈
G(t, u(t), v(t)) for λ-almost every t ∈ I and a positive Radon measure ν on
I absolutely continuously equivalent to µ + %Gλ with respect to which dv
admits a density in L1(I,H, ν) such that

dv

dν
(t) + z(t)

dλ

dν
(t) ∈ −NC(t,u(t))(v(t)) ν-a.e. t ∈ I.

It is worth pointing out (as above) that such a concept of solution is in-
dependent of the involved Radon measure ν.
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An important link between problems (FSP) and (SSP) is given through
the following result. It asserts that the derivative of a solution of second
order sweeping process is nothing but a solution of a first order Moreau
sweeping process (independent of state). More precisely:

Proposition 3.3 ([4]). Let C : I ⇒ H and G : I × H ⇒ H be two mul-
timappings. Let µ be a positive Radon measure on I such that

haus
(
C(s), C(t)

)
≤ µ(]s, t]) for all s, t ∈ I with s ≤ t.

If u(·) : I → H is a solution of the second order sweeping process associated
to µ for the initial conditions u0, v0 ∈ H with v0 ∈ C(T0){

−du̇ ∈ NC(t)(u̇(t)) +G(t, u̇(t))

u(T0) = u0, u̇(T0) = v0,

then there exists a solution v : I → H of the first order sweeping process
associated to µ for the initial condition v0 ∈ C(T0){

−dv ∈ NC(t)(v(t)) +G(t, v(t))

v(T0) = v0

such that

u(t) = u0 +

∫ t

T0

v(s)dλ(s) for all t ∈ I.

The next definition gives the exact meaning of (2.10). Here and below,
for a prescribed mapping Φ : I → H2, it is convenient to set Φi := πi ◦Φ for
each i ∈ {1, 2}, where πi : H2 → H is defined by

πi(x1, x2) := xi for all (x1, x2) ∈ H2.

Definition 3.4. Let f : I×H → H be a mapping and letG : I×H2 ⇒ H and
D : I ⇒ H be two multimappings. Let C : I ×H2 ⇒ H be a multimapping
such that there exists a positive Radon measure µ on I satisfying for every
(x, y) ∈ H2,

haus
(
C(s, x, y), C(t, x, y)

)
≤ µ(]s, t]) for all s, t ∈ I with s ≤ t.

One says that a mapping Φ = (Φ1,Φ2) : I → H2 is a solution of the F irst
order Mixed partially BV Sweeping Process associated to µ for the initial
conditions u0, v0 ∈ H with (u0, v0) ∈ D(T0)× C(T0, v0, u0)

(FMSP)

{
−dΦ ∈ NC(t,Φ(t))×D(t)(Φ(t)) +G(t,Φ(t))× {f(t,Φ1(t))}
Φ1(T0) = v0,Φ2(T0) = u0,

whenever:
(a) the mapping Φ1(·) (resp. Φ2(·)) is right-continuous with bounded vari-
ation (resp. absolutely continuous) on I, Φ(T0) = (v0, u0), and Φ(t) ∈
C(t,Φ(t))×D(t) for all t ∈ I;
(b) for λ-almost every t ∈ I,

Φ̇2(t) + f(t,Φ1(t)) ∈ −ND(t)(Φ2(t));
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(c) there exist a λ-Bochner integrable mapping z1(·) : I → H with z1(t) ∈
G(t,Φ(t)) for λ-almost all t ∈ I and a positive Radon measure ν absolutely
continuously equivalent to µ+%Pλ where P : I×H2 ⇒ H2 is the multimap-
ping defined by

P (t, x, y) := G(t, x, y)× {f(t, x)} for all (t, x, y) ∈ I ×H2

such that

dΦ1

dν
(t) + z1(t)

dλ

dν
(t) ∈ −NC(t,Φ(t))(Φ1(t)) ν-a.e. t ∈ I.

Assume that the positive Radon measure µ on I involved above is ab-
solutely continuously equivalent to the Lebesgue measure λ on I. Then, a
mapping Φ = (Φ1,Φ2) : I → H2 satisfies (FSMP) if and only if{

−Φ̇(t) ∈ NC(t,Φ(t))×D(t)(Φ(t)) +G(t,Φ(t))× {f(t,Φ1(t))} ,
Φ1(T0) = v0,Φ2(T0) = u0

i.e., the following conditions hold:
(a′) the mappings Φ1,Φ2 are absolutely continuous on I;
(b′) for λ-almost every t ∈ I,

Φ̇2(t) + f(t,Φ1(t)) ∈ −ND(t)(Φ2(t)).

(c′) there exist a λ-Bochner integrable mapping z1 : I → H with z1(t) ∈
G(t,Φ(t)) for λ-almost every t ∈ I such that

Φ̇1(t) + z1(t) ∈ −NC(t,Φ(t))(Φ1(t)) λ-a.e. t ∈ I.

4. Preparatory results

In the present section, we list for sake of completeness the technical results
which will be necessary in order to establish our main existence theorem.

Let us start with the following classical Gronwall lemma and its discrete
version.

Lemma 4.1 (Gronwall’s inequality). Let ϕ : [T0, T ] → R be an absolutely
continuous function on [T0, T ], a : [T0, T ] → R and b : [T0, T ] → R be
Lebesgue integrable functions on [T0, T ]. If for λ-almost every t ∈ [T0, T ],

ϕ̇(t) ≤ b(t) + a(t)ϕ(t),

then for all t ∈ [T0, T ],

ϕ(t) ≤ ϕ(T0) exp

(∫ t

T0

a(s)dλ(s)

)
+

∫ t

T0

b(τ) exp

(∫ t

τ
a(s)dλ(s)

)
dλ(τ).
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Lemma 4.2 (Discrete version of Gronwall’s inequality). Let A ≥ 0 be a real
and let (vn)n≥0 and (Bn)n≥0 be two sequences of nonnegative reals such that

vn ≤ A+
n−1∑
k=0

Bkvk for all n ∈ N ∪ {0}.

Then, one has

vn ≤ A exp

(
n−1∑
k=0

Bk

)
for all n ∈ N ∪ {0}.

The celebrated Schauder’s fixed point theorem (see, e.g., [23, Theorem
8.8]) will also be used in the proof of our main result (Theorem 5.1).

Theorem 4.3 (Schauder’s fixed point). Let C be a nonempty closed bounded
convex subset of H and f : C → C be a continuous mapping. If f(C) is
relatively compact, then f has a fixed point.

The scalar upper semicontinuity provided by the next proposition will be
fundamental. It can be seen as an adaptation of [4, Proposition 2.2]. Before
giving it, the following lemma is needed.

Lemma 4.4 ([27]). Let S a subset of the real Hilbert space H which is r-
prox-regular, with r ∈]0,+∞]. Let x ∈ S and ζ ∈ ∂PdS(x). Then, for all
z ∈ H such that dS(z) < r, one has

〈ζ, z − x〉 ≤ 1

2r
‖z − x‖2 +

1

2r
d2
S(z) +

(
1

r
‖z − x‖+ 1

)
dS(z),

and

〈ζ, z − x〉 ≤ 2

r
‖z − x‖2 + dS(z).

Now, we can state and prove:

Proposition 4.5. Let C : I ×H2 ⇒ H be a multimapping satisfying:
(i) there exists an extended real r ∈]0,+∞] such that for all (t, x) ∈ I ×H,
C(t, x, y) is r-prox-regular;
(ii) there exist a positive measure µ on I, a norm ‖ · ‖H2 on H2 and a
function ϕ : H2 ×H2 → [0,+∞[ with lim

‖X−Y ‖H2→0
ϕ(X,Y ) = 0 such that for

all s, t ∈ I with s ≤ t, all u ∈ H and all X,Y ∈ H2,

d
(
u,C(t,X)

)
− d
(
u,C(s, Y )

)
≤ µ(]s, t]) + ϕ(X,Y ).

Let (tn)n∈N be a sequence of I converging to some t ∈ I with tn ≥ t for all
n ∈ N and (xn, yn)n∈N be a sequence of H2 converging to some x ∈ C(t, x, y)
and such that xn ∈ C(tn, xn, yn) for all n ∈ N.

If there exists N ∈ N with µ(]t, tN ]) < +∞, then for any z ∈ H, one has

lim sup
n→∞

σ
(
z, ∂PdC(tn,xn,yn)(xn)

)
≤ σ

(
z, ∂PdC(t,x,y)(x)

)
.
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Proof. Assume there exists N ∈ N with µ(]t, tN ]) < +∞. Fix any z ∈ H.
We may assume that the sequence

(
σ(z, ∂PdC(tn,xn,yn)(xn)

)
n∈N converges.

Doing so, we have

lim sup
n→∞

σ(z, ∂PdC(tn,xn,yn)(xn)) = lim
n→∞

σ(z, ∂PdC(tn,xn,yn)(xn)).

From assumption (i) and Theorem 2.2(e), we get

∂PdC(tn,xn,yn)(xn) = ∂dC(tn,xn,yn)(xn) for all n ∈ N.

In particular, for every n ∈ N, the set ∂PdC(tn,xn,yn)(xn) is weakly compact,
hence there is ξn ∈ ∂PdC(tn,xn,yn)(xn) such that σ(z, ∂PdC(tn,xn,yn)(xn)) =
〈ξn, z〉. Thanks to the inequality ‖ξn‖ ≤ 1 for all n ∈ N (see (2.8)), we may
assume that (ξn)n∈N converges weakly to some ξ ∈ H. Let us establish that
ξ ∈ ∂dC(t,x,y)(x). Fix any u ∈ H. As xn ∈ C(tn, xn, yn) for all n ∈ N, there
exists a real α0 > 0 such that for all α ∈ ]0, α0[ and all n ∈ N,

dC(tn,xn,yn)(xn + αu) ≤ ‖αu‖ < r.

This allows us to apply Lemma 4.4 to obtain for all α ∈ ]0, α0[ and for all
n ∈ N,

(4.1) 〈ξn, αu〉 ≤
2

r
α2 ‖u‖2 + dC(tn,xn,yn)(xn + αu).

On the other hand, the assumption (ii) gives for all α ∈]0, α0[ and all n ∈ N,

dC(tn,xn,yn)(xn + αu) ≤ dC(t,x,y)(xn + αu) + µ(]t, tn]) + ϕ(xn, yn, x, y).

Extracting a subsequence if necessary, we may suppose that (tn)n∈N is non-
increasing, so

lim
n→∞

µ(]t, tn]) = µ
( ⋂
k∈N

]t, tk]
)

= 0.

It follows that for all α ∈ ]0, α0[, lim sup
n→∞

dC(tn,xn,yn)(xn+αu) ≤ dC(t,x,y)(x+

αu). Using (4.1), we obtain for all α ∈]0, α0[

〈ξ, αu〉 ≤ 2

r
α2 ‖u‖2 + dC(t,x,y)(x+ αu).

Combining the latter inequality with dC(t,x,y)(x) = 0, we arrive to

〈ξ, u〉 ≤ lim inf
α↓0

1

α

(
dC(t,x,y)(x+ αu)− dC(t,x,y)(x)

)
≤ d◦C(t,x,y)(x;u).

This being true for any u ∈ H, it results that

ξ ∈ ∂dC(t,x,y)(x) = ∂PdC(t,x,y)(x),

hence

lim
n→∞

σ(z, ∂PdC(tn,xn,yn)(xn)) = lim
n→∞

〈ξn, z〉 = 〈ξ, z〉 ≤ σ
(
z, ∂PdC(t,x,y)(x)

)
.

The proof is then complete. �
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The following proposition is a slight variant of a previous result stated
and proved in [41, Remark 7.4]. The closed unit ball of a real normed space
(Z, ‖ · ‖Z) is denoted BZ .

Proposition 4.6. Let X,Y be two real normed spaces and C : I ×X ⇒ Y
be a multimapping. Assume that there exists a positive measure µ on I such
that

haus
(
C(s, x), C(t, x)

)
≤ µ(]s, t]),

for all s, t ∈ I with s ≤ t and x ∈ X. Consider the following assertions.
(a) For every real τ > 0, every bounded set A ⊂ X and every t ∈ I,
C(t, A) ∩ τBY is relatively compact.
(b) For every real τ > 0 and every bounded set A ⊂ X, C(I × A) ∩ τBY is
relatively compact.
(c) Given any real τ > 0, any sequence (tn)n∈N in I tending to t with tn ≥ t
for some t ∈ I and any bounded sequence (xn)n∈N of X, then every sequence
(yn)n∈N of Y with yn ∈ C(tn, xn) ∩ τBY for all n ∈ N has a convergent
subsequence in Y .

Then, the implications (b) ⇒ (a) ⇔ (c) hold. Further, if µ({t}) = 0 for
every t ∈ I, then the first implication is an equivalence.

Proof. The implication (b) ⇒ (a) is obvious. Assume (c) and fix any real
τ > 0, any t ∈ I and any nonempty bounded set A ⊂ X. Let any sequence
(yn)n∈N with yn ∈ C(t, A) ∩ τBY for all n ∈ N. For each n ∈ N choosing
xn ∈ A with yn ∈ C(t, xn)∩τBY , the sequence (xn)n∈N is bounded, so by (c)
the sequence (yn)n∈N admits a convergent subsequence. Then, C(t, A)∩τBY
is relatively compact, so the implication (c) ⇒ (a) is proved. To prove the
converse implication, assume that (a) holds and take any real τ > 0, any
sequence (tn)n∈N in I tending to t with tn ≥ t for some t ∈ I, any bounded
sequence (xn)n∈N in X and any sequence (yn)n∈N with yn ∈ C(tn, xn) for
all n ∈ N. For each n ∈ N the inequality

haus
(
C(t, xn), C(tn, xn)

)
≤ µ(]t, tn])

furnishes some zn ∈ C(t, xn) such that

‖yn − zn‖Y ≤ µ(]t, tn]) + 2−n =: εn

and such an inequality entails that the sequence (zn)n∈N is bounded. Here
and below, ‖ · ‖Y stands for the norm on Y . Consequently, there is a real
κ > 0 such that for all n ∈ N,

yn ∈ C(t, xn) ∩ κBY + εnBY .

Using this and the bounded set A := {xn : n ∈ N} we obtain some sequence
(bn)n∈N in BY such that

yn + εnbn ∈ C(t, A) ∩ κBY for all n ∈ N.
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Then the relative compactness of C(t, A) ∩ κBY by (a) combined with the
(strong) convergence εnbn → 0 (due to µ(]t, tn] → 0) ensures that (yn)n∈N
admits a convergent subsequence. This justifies the implication (a)⇒ (c).

Finally, assume that the µ-measures of singletons of I are null and let us
prove in this case that (a) ⇒ (b). Fix any real τ > 0 and any nonempty
bounded set A ⊂ X. Take any sequence (yn)n∈N in C(I × A) ∩ τBY , so for
each n ∈ N there is some tn ∈ I and xn ∈ A with yn ∈ C(tn, xn)∩ τBY . Let
t ∈ I be a cluster point of (tn)n∈N. There exists a subsequence (ts(n))n∈N
tending to t with either ts(n) ≥ t for all n ∈ N or ts(n) < t for all n ∈ N. In
the first situation where ts(n) ≥ t for all n ∈ N, (keeping in mind (a)⇔ (c))
the assertion (c) says that (ys(n))n∈N has a convergent subsequence. Suppose
that ts(n) < t for all n ∈ N. As above, for each n ∈ N by the inequality

haus
(
C(ts(n), xs(n)), C(t, xs(n))

)
≤ µ(]ts(n), t])

we can choose some zn ∈ C(t, xs(n)) such that∥∥ys(n) − zn
∥∥
Y
≤ µ(]ts(n), t]) + 2−n =: εn,

and clearly εn → 0 since µ({t}) = 0. The latter inequality tells us that the
sequence (zn)n∈N is bounded, hence there is a real κ > 0 such that for all
n ∈ N,

ys(n) ∈ C(t, xs(n)) ∩ κBY + εnBY .
Using this we obtain some sequence (bn)n∈N in BY such that

ys(n) + εnbn ∈ C(t, A) ∩ κBY for all n ∈ N.

Since εnbn → 0, the relative compactness of C(t, A) ∩ κBY entails that
(ys(n))n∈N has a convergent subsequence. Consequently, in any case the
sequence (yn)n∈N admits a convergent subquence, so C(I × A) ∩ τBY is
relatively compact. This confirms the implication (a)⇒ (b) and finishes the
proof. �

5. Existence of solution for mixed partially BV
state-dependent sweeping process

This section is devoted to the development of sufficient conditions ensur-
ing existence of solutions for the first order mixed partially BV sweeping
process

−dΦ ∈ NC(t,Φ(t))×Q(Φ(t)) +G(t,Φ(t))× {f(t,Φ1(t))}.

Before giving the main result in that direction, let us introduce for a
multimapping P : I × H2 ⇒ H its associated mapping of minimal norm
mP : I ×H2 ⇒ H defined by

mP (t, x, y) := projP (t,x,y)(0) for all (t, x, y) ∈ I ×H2.

Now, we are in position to prove the following existence result.
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Theorem 5.1. Let C : I ×H2 ⇒ H and G : I ×H2 ⇒ H be two multimap-
pings and f : I ×H → H be a mapping. Let Q be a closed convex subset of
H, (u0, q0) ∈ H ×Q with u0 ∈ C(T0, u0, q0).

Assume that:
(i) there exists r ∈]0,+∞] such that for every t ∈ I and every x, y ∈ H, the
set C(t, x, y) is r-prox-regular;
(ii) there exist two reals L ∈]0, 1[, L′ ≥ 0 and a positive Radon measure µ
on I with sup

s∈]T0,T ]
µ({s}) < (1− L)r such that

haus
(
C(t1, x1, y1), C(t2, x2, y2)

)
≤ µ(]t1, t2]) + L ‖x1 − x2‖+ L′ ‖y1 − y2‖ ,

for all t1, t2 ∈ I with t1 < t2 and x1, x2, y1, y2 ∈ H;
(iii) the mapping f(·, x) is λ-Bochner measurable on I for each x ∈ H, there
exists a real β ≥ 0 such that

‖f(t, x)‖ ≤ β(1 + ‖x‖) for all t ∈ I, x ∈ H,
and for each bounded subset B of H there exists a real lB ≥ 0 satisfying∥∥f(t, x)− f(t, x′)

∥∥ ≤ lB ∥∥x− x′∥∥ for all t ∈ I, x, x′ ∈ B;

(iv) the multimapping G is nonempty closed convex valued, G(t, ·, ·) is scalarly
upper semicontinuous for each t ∈ I, and for each (x, y) ∈ H2, the map-
ping mG(·, x, y) : I → H is λ-Bochner measurable on I and there exists a
nonnegative function α(·) ∈ L1(I, λ,R+) such that

‖mG(t, x, y)‖ = d(0, G(t, x, y)) ≤ α(t)(1 + ‖x‖),
for all t ∈ I, x, y ∈ H with (x, y) ∈ C(t, x, y) ∩ κB×Q ∩ κ′B, where

κ′ := ‖q0‖+ 2β(1 + κ)(T − T0)

and

κ :=
(
‖u0‖+

µ(]T0, T ])

1− L
+ s
)
es with s :=

2

1− L

∫ T

T0

(
α(s) + L′β

)
dλ(s);

(v) for every bounded subset B of H, the set C(I,B × κ′B) ∩B is relatively
compact.

Then, there exists a solution Φ(·) : I → H2 of the mixed partially BV
differential inclusion

(P)

{
−dΦ ∈ NC(t,Φ(t))×Q(Φ(t)) +G(t,Φ(t))× {f(t,Φ1(t))},
Φ(T0) = (u0, q0).

Further, Φ2 is 2β(1 + κ)-Lipschitz continuous on I.

Proof. Let us first define the multimapping P : I ×H2 ⇒ H2 by

P (t, x, y) := G(t, x, y)× {f(t, x)} for all (t, x, y) ∈ I ×H2.

For each (t, x, y) ∈ I ×H2 denote by g(t, x, y) the element of minimal norm
of the nonempty closed convex set G(t, x, y) of H, that is,

g(t, x, y) := mG(t, x, y) = projG(t,x,y)(0).
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Observe that the inequality in assumption (ii) can be rewritten as∣∣d(z1, C(t1, x1, y1)
)
− d
(
z2, C(t2, x2, y2)

)∣∣
≤ ‖z1 − z2‖+ µ (]t1, t2]) + L‖x1 − x2‖+ L′‖y1 − y2‖,(5.1)

for all t1, t2 ∈ I with t1 < t2 and x1, x2, y1, y2, z1, z2 ∈ H. On one hand, the
assumption (iii) gives (see (3.1))

(5.2) ‖f(t, x)‖ ≤ β%P (1 + ‖x‖) for all (t, x) ∈ I ×H.
On the other hand, the assumption (iv) ensures for any t ∈ I and any
x, y ∈ H with x ∈ C(t, x, y) ∩ κB and y ∈ Q× κ′B that

(5.3) ‖g(t, x, y)‖ = d(0, G(t, x, y)) ≤ %Pα(t)(1 + ‖x‖).
Hence in particular g(·, x, y) is λ-Bochner integrable according to the λ-
Bochner measurability of mG(·, x, y) = g(·, x, y) on I. Let ν be the positive
Radon measure on I absolutely continuously equivalent to the measure µ+
%Pλ defined by

(5.4) ν :=
µ+ 2%P (1 + κ)

(
α(·) + (L′ + 1)(β + 1)

)
λ

1− L
.

Now, consider the function v(·) : I → R defined by

v(t) := ν(]T0, t]) for all t ∈ I
and set

V := v(T ) = ν(]T0, T ]).

Let (εn)n∈N be a sequence of positive reals with εn ↓ 0 and a real 0 < r′ < r
such that

(5.5) εn + (1− L)−1 sup
s∈]T0,T ]

µ({s}) < r′ for all n ∈ N.

Step 1. Time discretization.
As in J.J. Moreau [38], choose for each n ∈ N, 0 = V n

0 < V n
1 < . . . <

V n
qn = V (with qn ∈ N) such that

(a) for all j ∈ {0, . . . , qn − 1}, V n
j+1 − V n

j ≤ εn;

(b) for all k ∈ N,
{
V k

0 , . . . , V
k
qk

}
⊂
{
V k+1

0 , . . . , V k+1
qk+1

}
.

For each n ∈ N, set V n
1+qn := V+εn and consider the partition (Jnj )j∈{0,...,qn−1}

of I where for each j ∈ {0, . . . , qn}
Jnj := v−1(

[
V n
j , V

n
j+1

[
) = {t ∈ I : V n

j ≤ ν(]T0, t]) < V n
j+1}.

Observe that (Jmj )0≤j≤qm is a refinement of (Jnj )0≤j≤qn for all m,n ∈ N with

m ≥ n. Using the fact that v(·) is nondecreasing and right-continuous on
I, it is not difficult to see that, for each n ∈ N, j ∈ {0, . . . , qn − 1}, the set
Jnj is either empty or an interval of the form [a, b[ with a < b. Furthermore,

for each n ∈ N we have Jnqn of the form Jnqn = [a, b[∩I. This gives for each
n ∈ N an integer kn ∈ N and a finite sequence

T0 = tn0 < . . . < tnkn = T
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such that for each i ∈ {0, . . . , kn − 2}, there is some j ∈ {0, . . . , qn − 1}
satisfying Jnj =

[
tni , t

n
i+1

[
and such that for i = kn−1 the interval [tnkn−1, t

n
kn

[

is either Jnqn \ {T} (if Jnqn 6= {T}) or Jnk for some k ∈ {0, . . . , qn − 1}. For
each integer n, put

(5.6) ηni :=

∫ tni+1

tni

(α(s) + L′β)dλ(s).

Without loss of generality (including new points if necessary) we may and
do suppose that for every n ∈ N,

max
i∈{0,··· ,kn−1}

(tni+1 − tni ) ≤ 1

n
and {tn+1

0 , · · · , tn+1
kn+1
} ⊃ {tn0 , · · · , tnkn}.

Note that (kn)n∈N is a nondecreasing sequence and that for each n ∈ N, for
all i ∈ {0, . . . , kn − 1} and all t ∈

[
tni , t

n
i+1

[
, we have

ν(]tni , t]) = v(t)− v(tni ) ≤ εn,
hence

(5.7) ν(
]
tni , t

n
i+1

[
) ≤ εn for all i ∈ {0, . . . , kn − 1}.

Step 2. Construction of sequences (xnp )0≤p≤kn and (ynp )0≤p≤kn.
Fix for a moment any integer n ∈ N. Put xn0 := u0 ∈ C (T0, u0, q0) ∩ κB

and yn0 := q0 ∈ Q ∩ κ′B. We are going to construct by (finite) induction
xn0 , x

n
1 , . . . , x

n
kn
, yn0 , . . . , y

n
kn
∈ H satisfying for each p ∈ {0, . . . , kn − 1} the

following relations with σnp :=
∫ tnp+1

tnp
g(s, xnp , y

n
p )dλ(s)

(5.8)


ynp+1 = projQ

(
ynp −

∫ tnp+1

tnp
f(s, xnp )dλ(s)

)
,

xnp+1 = projC(tnp+1,x
n
p+1,y

n
p+1)

(
xnp − σnp

)∥∥ynp+1 − ynp
∥∥ ≤ 2β%P (1 + κ)(tnp+1 − tnp ),

(xnp+1, y
n
p+1) ∈ κB× κ′B,

along with

(5.9)
∥∥xnp+1

∥∥ ≤ ∥∥xnp∥∥+
µ(]tnp , t

n
p+1]) + 2%P η

n
p

1− L
+

2

1− L
ηnp
∥∥xnp∥∥ .

Set yn1 := projQ
(
yn0 −

∫ tn1
tn0
f(s, xn0 )dλ(s)

)
and observe that

‖yn1 − yn0 ‖ ≤

∥∥∥∥∥yn1 − (yn0 −
∫ tn1

tn0

f(s, xn0 )dλ(s)
)∥∥∥∥∥+

∥∥∥∥∥
∫ tn1

tn0

f(s, xn0 )dλ(s)

∥∥∥∥∥
≤ dQ

(
yn0 −

∫ tn1

tn0

f(s, xn0 )dλ(s)
)

+

∫ tn1

tn0

‖f(s, xn0 )‖ dλ(s)

≤ 2

∫ tn1

tn0

‖f(s, xn0 )‖ dλ(s)

≤ 2β%P (1 + ‖xn0‖)(tn1 − tn0 ) ≤ 2β%P (1 + κ)(tn1 − tn0 ),(5.10)



ON FIRST AND SECOND ORDER SWEEPING PROCESSES 23

where the third inequality is due to yn0 ∈ Q, the fourth to (5.2) and the last
one to the inclusion xn0 ∈ κB. Then, we see that

(5.11) ‖yn1 ‖ ≤ ‖yn0 ‖+ 2β%P (1 + κ)(tn1 − tn0 ) ≤ κ′.
Now, for the construction of xn1 we will use a method inspired by the ones
used in [15] and [44]. Putting together (5.1), the inclusion (xn0 , y

n
0 ) ∈

C(tn0 , x
n
0 , y

n
0 ) ∩ κB × Q ∩ κ′B, (5.10), (5.3), (5.4), (5.7) and (5.5), we see

that for every vector v ∈ B [u0, ν (]tn0 , t
n
1 ])],

d
(
xn0 − σn0 , C(tn1 , v, y

n
1 )
)

≤d
(
xn0 − σn0 , C(tn0 , x

n
0 , y

n
0 )
)

+ µ(]tn0 , t
n
1 ]) + L‖v − xn0‖+ L′‖yn1 − yn0 ‖

≤
∫ tn1

tn0

‖g (s, xn0 , y
n
0 )‖ dλ(s) + µ (]tn0 , t

n
1 ]) + Lν (]tn0 , t

n
1 ])

+ 2L′β%P (1 + κ)(tn1 − tn0 )

≤%P (1 + κ)

∫ tn1

tn0

(α(s) + 2L′β) dλ(s) + µ (]tn0 , t
n
1 [)

+ Lν (]tn0 , t
n
1 [) + µ({tn1}) + Lν({tn1})

≤(1− L)
%P (1 + κ)

∫ tn1
tn0

(α(s) + 2L′β)dλ(s) + µ (]tn0 , t
n
1 [)

1− L

+ Lν (]tn0 , t
n
1 [) + (1 +

L

1− L
)µ({tn1})

≤(1− L+ L)ν (]tn0 , t
n
1 [) + (1− L)−1µ({tn1})

≤εn + (1− L)−1 sup
s∈]T0,T ]

µ({s}) < r′ < r.(5.12)

Then, the uniform prox-regularity of constant r of the set C
(
tn1 , v, y

n
1

)
for

each v ∈ B[u0, ν (]tn0 , t
n
1 ])] and Theorem 2.2 allow us to define the mapping

ϕn1 : B[u0, ν (]tn0 , t
n
1 ])]→ H by

ϕn1 (v) := projC(tn1 ,v,y
n
1 )

(
xn0 − σn0

)
for all v ∈ B [u0, ν (]tn0 , t

n
1 ])] .

Now, we show that ϕn1 (·) is continuous on B[u0, ν(]tn0 , t
n
1 ])]. Fix any x ∈

B[u0, ν(]tn0 , t
n
1 ])]. According to (ii) we have for all x ∈ B[u0, ν(]tn0 , t

n
1 ])] with

‖x− x‖ < L−1r

haus
(
C(tn1 , x, y

n
1 ), C(tn1 , x, y

n
1 )
)
≤ L ‖x− x‖ < r.

Thanks to (5.12), we also have the inclusion

xn0 −
∫ tn1

tn0

g(s, xn0 , y
n
0 )dλ(s) ∈ Ur′

(
C(tn1 , x, y

n
1 )
)
∩ Ur′

(
C(tn1 , x, y

n
1 )
)
,

for all x ∈ B[u0, ν(]tn0 , t
n
1 ])]. Then, we can apply Theorem 2.3 to get for all

x ∈ B[u0, ν(]tn0 , t
n
1 ])] with ‖x− x‖ < L−1r

‖ϕn1 (x)− ϕn1 (x)‖ ≤
√

2Lr′(1− r′

r
)−1 ‖x− x‖1/2 .
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Consequently, the mapping ϕn1 (·) is continuous as claimed above. From the
definition of ϕn1 (·), (5.1), (5.3), the inclusion xn0 ∈ C(tn0 , x

n
0 , y

n
0 ) ∩ κB, (5.10)

and the definition of ν, observe that for all v ∈ B[u0, ν(]tn0 , t
n
1 ])],

‖ϕn1 (v)− u0‖
≤
∥∥ϕn1 (v)−

(
u0 − σn0

)∥∥+ ‖σn0 ‖

≤d
(
xn0 − σn0 , C(tn1 , v, y

n
1 )
)

+

∫ tn1

tn0

‖g (s, xn0 , y
n
0 )‖ dλ(s)

≤d
(
xn0 − σn0 , C(tn0 , x

n
0 , y

n
0 )
)

+ µ (]tn0 , t
n
1 ]) + L ‖v − xn0‖

+ L′‖yn1 − yn0 ‖+ %P (1 + ‖xn0‖)
∫ tn1

tn0

α(s) dλ(s)

≤2%P (1 + ‖xn0‖)
∫ tn1

tn0

(α(s) + L′β) dλ(s) + µ (]tn0 , t
n
1 ]) + L ‖v − xn0‖(5.13)

≤2%P (1 + κ)

∫ tn1

tn0

(α(s) + L′β) dλ(s) + µ (]tn0 , t
n
1 ]) + Lν (]tn0 , t

n
1 ])

≤(1− L)ν (]tn0 , t
n
1 ]) + Lν (]tn0 , t

n
1 ]) = ν (]tn0 , t

n
1 ]) ,

hence for all v ∈ B[u0, ν(]tn0 , t
n
1 ])],

ϕn1 (v) ∈ C
(
tn1 , B[u0, ν(]tn0 , t

n
1 ])], yn1

)
∩B[u0, ν(]tn0 , t

n
1 ])].

We derive from the latter inclusion, (5.11) and the assumption (v) that the

set ϕn1

(
B[u0, ν(]tn0 , t

n
1 ])]
)

is relatively compact. By virtue of Schauder’s fixed

point theorem recalled above (see Section 4), we know that ϕn1 (·) has a fixed
point xn1 in B[u0, ν(]tn0 , t

n
1 ])], i.e.,{

xn1 = projC(tn1 ,x
n
1 ,y

n
1 )

(
xn0 −

∫ tn1
tn0
g(s, xn0 , y

n
0 )dλ(s)

)
= ϕn1 (xn1 ),

‖xn1 − xn0‖ ≤ ν (]tn0 , t
n
1 ]) .

Applying (5.13) with v = xn1 yields

(1− L) ‖xn1 − xn0‖ ≤ µ(]tn0 , t
n
1 ]) + 2%P (1 + ‖xn0‖)

∫ tn1

tn0

(α(s) + L′β) dλ(s).

Thus, we have (keeping in mind the definition of ηn0 in (5.6))

‖xn1‖ ≤ ‖xn0‖+
µ(]tn0 , t

n
1 ]) + 2%P η

n
0

1− L
+

2

1− L
ηn0 ‖xn0‖

≤
(
‖xn0‖+

µ(]tn0 , t
n
1 ]) + 2ηn0

1− L

)(
1 +

2

1− L
ηn0

)
≤
(
‖xn0‖+

µ(]tn0 , t
n
1 ]) + 2ηn0

1− L

)
exp

(
2

1− L
ηn0

)
≤ κ.

Now, let p ∈ {1, . . . , kn − 1}. Assume that xn0 , . . . , x
n
p and yn0 , . . . , y

n
p have

been constructed, so that properties in (5.8) and (5.9) hold true. Set ynp+1 :=
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projQ
(
ynp −

∫ tnp+1

tnp
f(s, xnp )dλ(s)

)
and note that

∥∥ynp+1 − ynp
∥∥ ≤ ∥∥∥∥∥ynp+1 −

(
ynp −

∫ tnp+1

tnp

f(s, xnp )dλ(s)
)∥∥∥∥∥+

∥∥∥∥∥
∫ tnp+1

tnp

f(s, xnp )dλ(s)

∥∥∥∥∥
≤ dQ

(
ynp −

∫ tnp+1

tnp

f(s, xnp )dλ(s)
)

+

∫ tnp+1

tnp

∥∥f(s, xnp )
∥∥ dλ(s)

≤ 2

∫ tnp+1

tnp

∥∥f(s, xnp )
∥∥ dλ(s) ≤ 2β%P (1 + κ)(tnp+1 − tnp ).

The latter inequality with the second inequality of (5.8) ensure that∥∥ynp+1

∥∥ ≤ ∥∥ynp∥∥+ 2β%P (1 + κ)(tnp+1 − tnp )

≤
∥∥ynp−1

∥∥+ 2β%P (1 + κ)(tnp+1 − tnp−1)

...

≤ ‖yn0 ‖+ 2β%P (1 + κ)(tnp+1 − tn0 ) ≤ κ′.
Let us focus on xnp+1. Taking into account the inclusion xnp ∈ C(tnp , x

n
p , y

n
p )∩

κB, we may proceed as above to get for any v ∈ B
[
xnp , ν

(]
tnp , t

n
p+1

])]
,

d
(
xnp − σnp , C

(
tnp+1, v, y

n
p+1

))
≤d
(
xnp − σnp , C

(
tnp , x

n
p , y

n
p

))
+ µ

(]
tnp , t

n
p+1

])
+ L

∥∥v − xnp∥∥+ L′‖ynp+1 − ynp ‖

≤
∫ tnp+1

tnp

∥∥g (s, xnp , ynp )∥∥ dλ(s) + µ
(]
tnp , t

n
p+1

])
+ Lν

(]
tnp , t

n
p+1

])
+ 2L′β%P (1 + κ)(tnp+1 − tnp )

≤%P (1 + κ)

∫ tnp+1

tnp

α(s) dλ(s) + µ({tnp+1}) + µ
(]
tnp , t

n
p+1

[)
+ Lν({tnp+1}) + Lν

(]
tnp , t

n
p+1

[)
+ 2L′%P (1 + κ)

∫ tnp+1

tnp

β dλ(s)

≤(1− L)
2%P (1 + κ)

∫ tnp+1

tnp

(
α(s) + L′β

)
dλ(s) + µ

(]
tnp , t

n
p+1

[)
1− L

+ Lν
(]
tnp , t

n
p+1

[)
+ (1− L)−1µ({tnp+1})

≤ν
(]
tnp , t

n
p+1

[)
+ (1− L)−1µ({tnp+1})

≤εn + (1− L)−1 sup
s∈]T0,T ]

µ({s}) < r′ < r.

Using the prox-regularity of C
(
tnp+1, v, y

n
p+1

)
for each v ∈ H and Theorem

2.2, we may define the mapping ϕnp+1 : B[xnp , ν(]tnp , t
n
p+1])]→ H

ϕnp+1(v) := projC(tnp+1,v,y
n
p+1)

(
xnp − σnp

)
,
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for all v ∈ B[xnp , ν(]tnp , t
n
p+1])]. In the same way as above for ϕn1 , we establish

that the mapping ϕnp+1 is continuous on B[xnp , ν(]tnp , t
n
p+1])]. Further, for all

v ∈ B[xnp , ν(]tnp , t
n
p+1])], we have

∥∥ϕnp+1(v)− xnp
∥∥

≤
∥∥ϕnp+1(v)−

(
xnp − σnp

)∥∥+
∥∥σnp∥∥

≤d
(
xnp − σnp , C

(
tnp+1, v, y

n
p+1

))
+

∫ tnp+1

tnp

∥∥g(s, xnp , ynp )∥∥ dλ(s)

≤d
(
xnp − σnp , C

(
tnp , x

n
p , y

n
p

))
+ µ

(]
tnp , t

n
p+1

])
+ L

∥∥v − xnp∥∥
+ L′‖ynp+1 − ynp ‖+ %P (1 + ‖xnp‖)

∫ tnp+1

tnp

α(s) dλ(s)

≤2%P (1 + ‖xnp‖)
∫ tnp+1

tnp

(α(s) + L′β)dλ(s)

+ µ(]tnp , t
n
p+1]) + L

∥∥v − xnp∥∥(5.14)

≤2%P (1 + κ)

∫ tnp+1

tnp

(
α(s) + L′β

)
dλ(s)

+ µ
(]
tnp , t

n
p+1

])
+ Lν

(]
tnp , t

n
p+1

])
≤(1− L)ν

(]
tnp , t

n
p+1

])
+ Lν

(]
tnp , t

n
p+1

])
= ν

(]
tnp , t

n
p+1

])
,

hence

ϕnp+1(v) ∈ C
(
tnp+1, B[xnp , ν

(]
tnp , t

n
p+1

])]
, ynp+1

)
∩B[xnp , ν

(]
tnp , t

n
p+1

])
].

Keeping in mind that the set in the right-hand side of the latter inclusion is
relatively compact, we can apply Schauder’s fixed point theorem to obtain
a fixed point xnp+1 ∈ B[xnp , ν

(]
tnp , t

n
p+1

])
] of ϕnp+1(·), otherwise stated

{
xnp+1 = projC(tnp+1,x

n
p+1,y

n
p+1)

(
xnp −

∫ tnp+1

tnp
g
(
s, xnp , y

n
p

)
dλ(s)

)
= ϕnp+1(xnp+1),∥∥xnp+1 − xnp

∥∥ ≤ ν (]tnp , tnp+1

])
.

Further, it follows from (5.14), taking v = xnp+1, that

(1−L)‖xnp+1−xnp‖ ≤ 2%P (1+‖xnp‖)
∫ tnp+1

tnp

(α(s)+L′β) dλ(s)+µ
(]
tnp , t

n
p+1

])
.
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Thus, we have

∥∥xnp+1

∥∥ ≤ ∥∥xnp∥∥+
µ(]tnp , t

n
p+1]) + 2ηnp
1− L

+
2

1− L
ηnp ‖xnp‖

≤
∥∥xnp−1

∥∥+
µ(]tnp , t

n
p+1]) + µ(]tnp−1, t

n
p ]) + 2(ηnp + ηnp−1)

1− L

+
2

1− L
(ηnp ‖xnp‖+ ηnp−1‖xnp−1‖)

...

≤ ‖xn0‖+
µ(]tn0 , t

n
p+1]) + 2

∑p
i=0 η

n
i

1− L
+

2

1− L

p∑
i=0

‖xni ‖ηni

≤ A+
2

1− L

p∑
i=0

‖xni ‖ηni ,

where

A := ‖u0‖+
µ(]T0, T ]) + 2

∫ T
T0

(
α(s) + L′β

)
dλ(s)

1− L
.

It remains to apply Lemma 4.2 (see also [18]) to get that

‖xnp+1‖ ≤ A exp

(
2

1− L

p∑
i=0

ηni

)
≤ κ,

to complete the induction.
Now, let n ∈ N. Coming back to (5.8), we get (thanks to the inclusion

(2.2)) for all p ∈ {0, . . . , kn − 1},

−xnp+1 + xnp −
∫ tnp+1

tnp

g
(
s, xnp , y

n
p

)
dλ(s) ∈ NC(tnp+1,x

n
p+1,y

n
p+1)

(
xnp+1

)
.

On the other hand, using the second equality in (5.8), assumption (ii), the
inclusion xnp ∈ C(tnp , x

n
p , y

n
p ) ∩ κB, (5.3), the inequalities in (5.8) and the
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definition of ν, it results that for all p ∈ {0, . . . , kn − 1},∥∥xnp+1 − xnp + σnp
∥∥

=d
(
xnp − σnp , C

(
tnp+1, x

n
p+1, y

n
p+1

))
≤d
(
xnp − σnp , C

(
tnp , x

n
p , y

n
p

))
+ µ

(]
tnp , t

n
p+1

])
+ L

∥∥xnp+1 − xnp
∥∥+ L′‖ynp+1 − ynp ‖

≤%P (1 + κ)

∫ tnp+1

tnp

α(s) dλ(s) + µ
(]
tnp , t

n
p+1

])
+ Lν

(]
tnp , t

n
p+1

])
+ 2%PL

′(1 + κ)

∫ tnp+1

tnp

β dλ(s)

≤2%P (1 + κ)

∫ tnp+1

tnp

(
α(s) + L′β

)
dλ(s)

+ µ
(]
tnp , t

n
p+1

])
+ Lν

(]
tnp , t

n
p+1

])
≤(1− L)ν

(]
tnp , t

n
p+1

])
+ Lν

(]
tnp , t

n
p+1

])
= ν

(]
tnp , t

n
p+1

])
.(5.15)

Step 3. Construction of sequences (un(·))n∈N and (qn(·))n∈N.
Fix any integer n ∈ N. Let us define the mapping un(·) : I → H by

un(T ) := xnkn and for each t ∈ [tnp , t
n
p+1[ with p ∈ {0, . . . , kn − 1},

un(t) := xnp +
ν(]tnp , t])

ν(]tnp , t
n
p+1])

(
xnp+1 − xnp + σnp

)
−
∫ t

tnp

g
(
s, xnp , y

n
p

)
dλ(s)

if ν(]tnp , t
n
p+1]) > 0 and

un(t) := xnp if ν(]tnp , t
n
p+1]) = 0.

Fix for a moment any p ∈ {0, . . . , kn − 1}. Assume first that ν(]tnp , t
n
p+1]) =

0. In view of the definitions of ν and %P (see (5.4) and (3.1)), we must have
f ≡ 0 and g ≡ 0. Combining (2.3) and the equalities in (5.8), we see that
ynp = ynp+1 and since µ(]tnp , t

n
p+1]) = 0 (by definition of ν)∥∥xnp+1 − xnp

∥∥ = dC(tnp+1,x
n
p+1,y

n
p+1)(x

n
p )

≤ haus(C(tnp , x
n
p , y

n
p ), C(tnp+1, x

n
p+1, y

n
p+1)) ≤ L

∥∥xnp − xnp+1

∥∥ .
Since L < 1, the latter inequality ‖xnp+1 − xnp‖ ≤ L‖xnp − xnp+1‖ entails that

xnp = xnp+1. Hence, if ν(]tnp , t
n
p+1]) = 0, we have g ≡ 0, σnp = 0 and

un(t) = xnp = xnp+1 for all t ∈ [tnp , t
n
p+1].

If ν(]tnp , t
n
p+1]) > 0, it is not difficult to see, for all t ∈ [tnp , t

n
p+1],

un(t) = xnp +
ν(]tnp , t])

ν(]tnp , t
n
p+1])

(
xnp+1 − xnp + σnp

)
−
∫ t

tnp

g
(
s, xnp , y

n
p

)
dλ(s).
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Now, let us consider the mapping zn : I → H defined for all t ∈ I by

(5.16) zn(t) =

{
g(t, xnp , y

n
p ) if t ∈ [tnp , t

n
p+1[,

g(T, xnkn , y
n
kn

) if t = T.

Let us also consider the mapping Λn : I → H with Λn(T0) := 0, defined
on ]tnp , t

n
p+1] with ν(]tnp , t

n
p+1]) = 0 by Λn(t) := 0 for all t ∈]tnp , t

n
p+1], and on

]tnp , t
n
p+1] with ν(]tnp , t

n
p+1]) > 0 by

Λn(t) :=
xnp+1 − xnp + σnp

ν
(
]tnp , t

n
p+1]

) for all t ∈]tnp , t
n
p+1].

It can be checked that Λn(·) (resp. zn(·)) is ν-Bochner measurable on I
and such a property combined with (5.15) (resp. assumption (iv)) gives the
ν-Bochner integrability of Λn(·) (resp. zn(·)) on I. Consequently, we may
write for all t ∈ I,

(5.17) un(t) = u0 +

∫
]T0,t]

Λn(s)dν(s)−
∫

]T0,t]
zn(s)dλ(s),

and this says in particular (see Section 2) that the mapping un(·) is right-
continuous with bounded variation on I. Assume for a moment that %P 6= 0.
From (5.4), we see that λ is absolutely continuous relative to ν, which ensures
(see again Section 2) that dλ

dν ∈ L
∞(I,R+, ν) is a density of λ relative to ν,

hence the equality (5.17) yields

un(t) = u0 +

∫
]T0,t]

(
Λn(s)− zn(s)

dλ

dν
(s)

)
dν(s) for all t ∈ I.

Note that such an equality still holds if %P = 0 (thanks to the equality
zn(t) = 0 for each t ∈ I and to (5.17)). Then, dun has Λn(·)− zn(·)dλdν (·) as

a density in L1(I,H, ν) relative to ν, which allows us to write

(5.18)
dun
dν

(t) = Λn(t)− zn(t)
dλ

dν
(t) ν-a.e. t ∈ I.

On the other hand, from the definition of Λn(·), (5.8), (2.2) and the fact that
the proximal normal cone always contains zero, we have for every t ∈]tnp , t

n
p+1]

with p ∈ {0, . . . , kn − 1},

(5.19) Λn(t) ∈ −NP
C(tnp+1,x

n
p+1,y

n
p+1)(x

n
p+1)

and by (5.15), (5.18) and the definition of Λn(·) again

(5.20) ‖Λn(t)‖ =

∥∥∥∥dundν (t) + zn(t)
dλ

dν
(t)

∥∥∥∥ ≤ 1 ν-a.e. t ∈ I.

Now, let us define the mapping qn : I → H by setting

qn(t) := ynp +
t− tnp

tnp+1 − tnp

(
ynp+1− ynp +

∫ tnp+1

tnp

f(s, xnp )dλ(s)
)
−
∫ t

tnp

f(s, xnp )dλ(s)
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for all t ∈ [tnp , t
n
p+1] with p ∈ {0, . . . , kn − 1}. Fix for a moment any p ∈

{0, . . . , kn−1}. It is clear that qn(tnp ) = ynp and that qn(·) is absolutely
continuous on I and that for each p ∈ {0, . . . , kn − 1} we have

(5.21) q̇n(t) =
1

tnp+1 − tnp

(
ynp+1 − ynp +

∫ tnp+1

tnp

f(s, xnp )dλ(s)
)
− f(t, xnp )

for λ-almost every t ∈]tnp , t
n
p+1[. On the other hand, for λ-almost every

t ∈]tnp , t
n
p+1[ we have the estimate (see (5.8) and (5.2))

‖q̇n(t)‖ ≤ 1

tnp+1 − tnp

∥∥∥∥∥ynp+1 −
(
ynp −

∫ tnp+1

tnp

f(s, xnp )dλ(s)
)∥∥∥∥∥+

∥∥f(t, xnp )
∥∥

≤ 1

tnp+1 − tnp
dQ
(
ynp −

∫ tnp+1

tnp

f(s, xnp )dλ(s)
)

+ β(1 +
∥∥xnp∥∥)

≤ 1

tnp+1 − tnp

∫ tnp+1

tnp

∥∥f(s, xnp )
∥∥ dλ(s) + β(1 + κ)

≤ 2β(1 + κ),(5.22)

and this guarantees the 2β(1 + κ)-Lipschitz property of the mapping qn(·)
on I. In particular, we must have

‖qn(t)‖ ≤ ‖qn(T0)‖+ 2β(1 + κ)(t− T0) ≤ κ′ for all t ∈ I.

It follows from (5.22), (5.2) and the inclusion xnp ∈ κB that, for λ-almost
every t ∈ I

(5.23)
∥∥q̇n(t) + f(t, xnp )

∥∥ ≤ ‖q̇n(t)‖+
∥∥f(t, xnp )

∥∥ ≤ 2β(1+κ)+β(1+κ) =: c.

Using (5.8) and (5.21), we observe that

(5.24) q̇n(t) + f(t, xnp ) ∈ −NQ(ynp+1) λ-a.e. t ∈ [tnp , t
n
p+1].

Now, let us consider the mappings θn, δn : I → I defined by δn(T ) :=
tnkn−1, θn(T ) := T and for all t ∈

[
tnp , t

n
p+1

[
with p ∈ {0, . . . , kn − 1},

δn(t) := tnp and θn(t) := tnp+1.

It is routine to check that

δn(t) ↑ t and θn(t) ↓ t for all t ∈ I.

By the definition of un(·) and (5.8), we see that for all p ∈ {0, . . . , kn − 1}

un(tnp+1) = xnp+1 ∈ C(tnp+1, x
n
p+1, y

n
p+1) = C

(
tnp+1, un(tnp+1), qn(tnp+1)

)
,

and this can be rewritten as

(5.25) un(θn(t)) ∈ C
(
θn(t), un(θn(t)), qn(θn(t))

)
for all t ∈ I.

According to (5.18), the inclusion (5.19) can also be rewritten as

Λn(t) =
dun
dν

(t)+zn(t)
dλ

dν
(t) ∈ −N

C
(
θn(t),un(θn(t)),qn(θn(t))

)(un(θn(t))
)

ν-a.e.t ∈ I.
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Putting together the latter inclusion with (5.20) and (2.8), we arrive to

(5.26) Λn(t) ∈ −∂PdC
(
θn(t),un(θn(t)),qn(θn(t))

)(un(θn(t))
)

ν-a.e. t ∈ I.

On the other hand, the inclusion (5.24) yields

(5.27) q̇n(t) + f
(
t, un(δn(t))

)
∈ −NQ

(
qn(θn(t))

)
λ-a.e.t ∈ I.

Concerning the set Q, from (5.23) and (5.27), it is easily seen that

c−1
(
q̇n(t) + f

(
t, un(δn(t))

))
∈ −NQ

(
qn(θn(t))

)
∩ B λ-a.e. t ∈ I,

hence (see (2.8))

(5.28) c−1
(
q̇n(t) + f

(
t, un(δn(t))

))
∈ −∂PdQ

(
qn
(
θn(t)

))
λ-a.e. t ∈ I.

Assume for a moment that %P 6= 0. From the definition of ν (see (5.4)), it
is straightforward to check that the measure %Pα(·)(1 + κ)λ = α(·)(1 + κ)λ

is absolutely continuous with respect to ν, then d(α(·)(1+κ)λ)
dν (·) exists as a

density and

0 ≤ α(t)(1 + κ)
dλ

dν
(t) =

d (α(·)(1 + κ)λ)

dν
(t) ≤ 1 ν-a.e. t ∈ I.

By (5.16) and (5.3), it is not difficult to check that

(5.29) ‖zn(t)‖ ≤ α(t)(1 + κ) for all t ∈ I.

The two latter inequalities guarantee that∥∥∥∥dλdν (t)zn(t)

∥∥∥∥ ≤ α(t)(1 + κ)
dλ

dν
(t) ≤ 1 ν-a.e. t ∈ I.

Clearly, such an inequality is still valid if %P = 0. Then, we derive (see
(5.20)) in both cases %P = 0 and %P 6= 0 that

(5.30)

∥∥∥∥dundν (t)

∥∥∥∥ ≤ ∥∥∥∥dλdν (t)zn(t)

∥∥∥∥+ 1 ≤ 2 ν-a.e. t ∈ I.

Step 4. Convergence of (un(·))n∈N up to a subsequence.

By the inequality (5.30) there is a subsequence of
(
dun
dν (·)

)
n∈N (that we do

not relabel) which weakly converges in L2(I,H, ν) to a (class of) mapping
v(·) ∈ L2(I,H, ν). Defining the mapping u : [T0, T ]→ H by

u(t) := u0 +

∫
]T0,t]

v(s)dν(s) for all t ∈ I,

the latter weak convergence yields that for each t ∈ I

un(t) = u0 +

∫
]T0,t]

dun
dν

(s) dν(s)
w−→ u0 +

∫
]T0,t]

v(s)dν(s) = u(t).
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Then, the mapping u(·) is right-continuous with bounded variation on I (see
Section 2) and du has du

dν (·) = v(·) ∈ L2(I,H, ν) as a density relative to ν.
Further, note that

dun
dν
→ du

dν
weakly in L2(I,H, ν),

which entails in particular that

(5.31)
dun
dν
→ du

dν
weakly in L1(I,H, ν).

On the other hand, by (5.30) we have for every n ∈ N and every t ∈ I,

(5.32) ‖un (θn(t))− un(t)‖ ≤
∫

]t, θn(t)]

∥∥∥∥dundν (s)

∥∥∥∥ dν(s) ≤ 2ν (]t, θn(t)]) .

Then for each t ∈ I since θn(t) ↓ t and (un(t))n∈N weakly converges to u(t),
we deduce that (un(θn(t))n∈N weakly converges also to u(t). Further, for
every t ∈ I and every n ∈ N, the very definition of un and θn along with
(5.8) furnish

‖un(θn(t))‖ ≤ sup
p∈{0,...,kn}

∥∥xnp∥∥ ≤ κ,
hence by (5.25)

(5.33) un (θn(t)) ∈ C(I × κB× κ′B) ∩ κB for all n ∈ N.

Since the set C(I×κB×κ′B)∩κB is compact according to assumption (v), the
inclusion (5.33) assures us that for each t ∈ I, the sequence (un(θn(t)))n∈N
strongly converges to u(t), hence (un(t))n∈N also converges to u(t), i.e.,

un(θn(t))→ u(t) and un(t)→ u(t) for all t ∈ I.

Step 5. Cauchy property of (qn(·))n∈N.
Fix any integers m,n ≥ 1. Thanks to the convexity of Q, (2.7), (5.28)

and the inclusion qn(θn(t)) ∈ Q, we get〈
c−1
(
q̇n(t) + f

(
t, un(δn(t))

))
, qn(θn(t))− qm(t)

〉
≤ dQ(qm(t))− dQ

(
qn(θn(t))

)
= dQ(qm(t)),

for λ-almost every t ∈ I. From the latter inequality, the inequality ‖q̇n(t)‖ ≤
c valid for λ-almost every t ∈ I (see (5.23)) and from qm(θm(t)) ∈ Q we
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deduce that 〈
c−1
(
q̇n(t) + f

(
t, un(δn(t))

))
, qn(t)− qm(t)

〉
=
〈
c−1
(
q̇n(t) + f

(
t, un(δn(t))

))
, qn(t)− qn(θn(t))

〉
+
〈
c−1
(
q̇n(t) + f

(
t, un(δn(t))

))
, qn(θn(t))− qm(t)

〉
≤‖qn(t)− qn(θn(t))‖+ dQ(qm(t))

≤‖qn(t)− qn(θn(t))‖+ ‖qm(θm(t))− qm(t)‖
≤c(θn(t)− t) + c(θm(t)− t)
=c(θm(t) + θn(t)− 2t),(5.34)

for λ-almost every t ∈ I. Since m,n have been arbitrarily choosen, we also
have the following inequality〈

c−1
(
q̇m(t) + f

(
t, um(δm(t))

))
, qm(t)− qn(t)

〉
≤c(θm(t) + θn(t)− 2t),(5.35)

for λ-almost every t ∈ I. Adding the inequalities (5.34) and (5.35) yield〈
c−1
(
q̇n(t)− q̇m(t)

)
, qn(t)− qm(t)

〉
≤
〈
−c−1f

(
t, un(δn(t))

)
, qn(t)− qm(t)

〉
+
〈
−c−1f

(
t, um(δm(t))

)
, qm(t)− qn(t)

〉
+ 2c

(
θm(t) + θn(t)− 2t

)
≤c−1 ‖qn(t)− qm(t)‖

∥∥f(t, un(δn(t))
)
− f

(
t, um(δm(t))

)∥∥
+ 2c

(
θm(t) + θn(t)− 2t

)
,(5.36)

for λ-almost every t ∈ I. From the Lipschitz assumption in (iii) and the
inclusion {uk(δk(t)) : t ∈ I, k ∈ N} ⊂ κB, there is a real l > 0 such that for
all t ∈ I, all k, k′ ∈ N,

(5.37)
∥∥f(t, uk(δk(t)))− f(t, uk′(δk′(t)))∥∥ ≤ l ‖uk(δk(t))− uk′(δk′(t))‖ .

Putting together (5.36) and (5.37) and applying the elementary inequality
ab ≤ 2−1(a2 + b2) valid for every (a, b) ∈ R2 yield〈

c−1
(
q̇n(t)− q̇m(t)

)
, qn(t)− qm(t)

〉
≤(2c)−1

(
‖qm(t)− qn(t)‖2 + l2 ‖un(δn(t))− um(δm(t))‖2

)
+ 2c

(
θm(t) + θn(t)− 2t

)
.(5.38)

Now, define ψm,n : I → R by

ψm,n(t) :=
1

2c
‖qm(t)− qn(t)‖2 for all t ∈ I

and observe that (5.38) ensures

ψ̇m,n(t) ≤ ψm,n(t) +Am,n(t) λ-a.e. t ∈ I,
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where

Am,n(t) :=
l2

2c
‖un(δn(t))− um(δm(t))‖2+2c(θm(t)+θn(t)−2t) for allt ∈ I.

A direct application of Gronwall lemma (see Lemma 4.1) gives

ψm,n(t) ≤ eT−T0
∫ T

T0

Am,n(s)dλ(s) = eT−T0
∫ T

T0

Am,n(s)
dλ

dν
(s)dν(s).

Fix for a moment any t ∈ I for which dλ
dν (t) is well-defined. If ν({t}) > 0,

we have (see Section 2) Am,n(t)dλdν (t) = 0. If ν({t}) = 0, we observe through

‖un(t)− un(δn(t))‖ = ‖
∫

]δn(t),t]

dun
dν

(s)dν(s)‖

≤
∫

]δn(t),t]

∥∥∥∥dundν (s)

∥∥∥∥ dν(s) ≤ 2ν(]δn(t), t])

that Am,n(t)dλdν (t)→ 0 as m,n→∞ as well as

|Am,n(t)| ≤ l2

2c
(2κ)2 + 2c

(
2(T − T0)

)
for allm,n ∈ N.

In such a case, we may apply the Lebesgue dominated convergence theorem
to obtain for every t ∈ I,

ψm,n(t)→ 0 asm,n→∞.
We derive that for each t ∈ I, (qk(t))k∈N is a Cauchy sequence in the Hilbert
space H and then there is q(t) ∈ H such that

qk(t)→ q(t).

Further, from (5.22), we see that q(·) is a 2β(1 + κ)-Lipschitz mapping.

Step 6. The mapping Φ(·) := (u(·), q(·)) is a solution of (P).
First, observe (thanks to (5.29)) that we can extract a subsequence (that

we do not relabel) (zn(·))n∈N which weakly converges in L1(I,H, λ) to a
mapping z(·) ∈ L1(I,H, ν). Since dλ

dν ∈ L
∞(I,R+, ν), we get

(5.39) zn(·)dλ
dν

(·)→ z(·)dλ
dν

(·) weakly in L1(I,H, ν).

Now, we claim that u(t) ∈ C(t, u(t), q(t)) for every t ∈ I. Indeed, for
any t ∈ I noting first that ‖qn(θn(t))− qn(t)‖ ≤ c(θn(t)− t), we see through
(ii), (5.32), (5.25) and the 2β(1+κ)-Lipschitz property of q(·) that for every
n ∈ N,

d
(
un(t), C

(
t, u(t), q(t)

))
≤d
(
un(θn(t)), C

(
θn(t), u(θn(t), qn(θn(t)

))
+ ‖un(t)− un (θn(t))‖

+ µ (]t, θn(t)]) + L ‖u(t)− un (θn(t))‖+ L′‖q(t)− qn(θn(t))‖
≤3ν(]t, θn(t)]) + L ‖u(t)− un (θn(t))‖+ 2β(1 + κ)L′(θn(t)− t).
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Hence, we have the convergence property d
(
un(t), C(t, u(t), q(t))

)
→ 0 as

n→∞, which ensures (thanks to the closedness of C(·)) that

u(t) ∈ C
(
t, u(t), q(t)

)
for all t ∈ I.

From the inequality valid for every t ∈ I
dQ(q(t)) ≤ dQ

(
qn(δn(t))

)
+ ‖q(t)− qn(δn(t))‖ = ‖q(t)− qn(δn(t))‖

it follows that
q(t) ∈ Q for all t ∈ I.

Now, coming back to (5.31) and (5.39), the sequence
(
dun
dν (·)+zn(·)dλdν (·)

)
n∈N

weakly converges in L1(I,H, ν) to du
dν (·) + z(·)dλdν (·). Then, by Mazur’s

lemma, we can find for each n ∈ N

ξn(·) ∈ co

{
duk
dν

(·) + zk(·)
dλ

dν
(·) : k ≥ n

}
such that the sequence (ξn(·))n∈N strongly converges in L1(I,H, ν) to du

dν (·)+

z(·)dλdν (·). Extracting a subsequence if necessary, we may assume that (ξn(·))n∈N
converges ν-almost everywhere to du

dν (·) + z(·)dλdν (·). Consequently, for ν-
almost every t ∈ I,

du

dν
(t) + z(t)

dλ

dν
(t) ∈

⋂
n∈N

co

{
duk
dν

(·) + zk(·)
dλ

dν
(·) : k ≥ n

}
.

Thus, for ν-almost every t ∈ I we have〈
h,
du

dν
(t) + z(t)

dλ

dν
(t)

〉
≤ inf

n∈N
sup
k≥n

〈
h,
duk
dν

(t) + zk(t)
dλ

dν
(t)

〉
,

for all h ∈ H. It results from (5.26) and the latter inequality that for
ν-almost every t ∈ I〈

h,
du

dν
(t) + z(t)

dλ

dν
(t)

〉
≤ lim sup

n→∞
σ
(
− h, ∂PdC

(
θn(t),un(θn(t),qn(θn(t)))

)(un(θn(t))
))
,

for all h ∈ H. Now, invoking Proposition 4.5, we have for ν-almost every
t ∈ I and for all h ∈ H,〈

h,
du

dν
(t) + z(t)

dλ

dν
(t)

〉
≤ σ

(
− h, ∂PdC(t,u(t),q(t))(u(t))

)
= σ

(
h,−∂PdC(t,u(t),q(t))(u(t))

)
.

By virtue of Theorem 2.2, the latter inequality holds with the Clarke subd-
ifferential which is always closed and convex. Then, the equivalence in (2.9)
and the inclusion in (2.8) guarantee that

(5.40)
du

dν
(t) + z(t)

dλ

dν
(t) ∈ −∂dC(t,u(t),q(t))(u(t))) ⊂ −NC(t,u(t),q(t))(u(t))
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for ν-almost every t ∈ I. In the same way, from (5.28) we establish that

(5.41) q̇(t) + f(t, u(t)) ∈ −NQ(q(t)) λ-a.e. t ∈ I.
Defining Φ : I → H2 by

Φ(t) := (u(t), q(t)) for all t ∈ I
and taking into account (5.40) and (5.41), we obtain that Φ1 is a right-
continuous mapping with bounded variation on I satisfying

dΦ1

dν
(t) + z(t)

dλ

dν
(t) ∈ −NC(t,Φ1(t))(Φ(t)) ν-a.e. t ∈ I

and Φ2 is absolutely continuous (in fact, Lipschitz continuous on I) with

Φ̇2(t) + f(t, Φ1(t))) ∈ −NQ(Φ2(t)) ν-a.e. t ∈ I.
We claim that z(t) ∈ G(t, u(t), q(t)) for λ-almost every t ∈ I. We may
assume that %P 6= 0. Since (zk(·))k∈N weakly converges to z(·) in L1(I,H, λ),
the Mazur’s lemma (up to a subsequence) allows us to write

z(t) ∈
⋂
n∈N

co {zk(t) : k ≥ n} λ-a.e. t ∈ I.

This inclusion along with the fact that

zn(t) ∈ G(t, un(δn(t)), qn(δn(t))) for all t ∈ I, n ∈ N
furnish a Borel subset Ω ⊂ I with λ(I \ Ω) = 0 such that for all t ∈ Ω and
all h ∈ H,

〈h, z(t)〉 ≤ lim sup
n→+∞

σ
(
h,G

(
t, un(δn(t)), qn(δn(t)

))
.

Put Σ := {t ∈ I : ν({t}) > 0} and note that Σ is countable (see (2.14)). For
each t ∈ I \ Σ, we have by (5.32)

‖un(t)− un(δn(t))‖ ≤ 2ν(]δn(t), t]) for all n ∈ N,
thus ‖un(t)− un(δn(t))‖ → 0 as n→ +∞ (since ν({t}) = 0), which implies
that un(δn(t)) → u(t) as n → +∞ since un(t) → u(t). Then, for each
t ∈ Ω \ Σ using the fact that G(t, ·, ·) is scalarly upper-semicontinuous we
get

〈h, z(t)〉 ≤ σ(h,G(t, u(t), q(t))) for all h ∈ H,
which entails z(t) ∈ G(t, u(t), q(t)) by the closedness and convexity of the
set G(t, u(t), q(t)) and by (2.9). Since the countable set Σ is λ-negligible, it
follows that

z(t) ∈ G(t, u(t), q(t)) λ-a.e. t ∈ I.
The proof is then complete. �

Remark 5.2. It is worth pointing out the following feature concerning
the measurability of the mapping of minimal norm mG(·, x, y) involved in
the assumption (iv) of Theorem 5.1. By Theorem III-41(2) in [16] this
mapping mG(·, x, y) is λ-Bochner measurable whenever the Hilbert space H
is separable and the multimapping t 7→ G(t, x, y) is Lebesgue measurable in
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the usual sense that its graph belongs to L(I)⊗B(H), where L(I) and B(H)
denote respectively the Lebesgue σ-field of I and the Borel σ-field of H. �

We derive from Theorem 5.1 the case when the measure µ is absolutely
equivalent to the Lebesgue measure, say µ(]s, t]) = v(t) − v(s) for some
nondecreasing absolutely continuous function v : I → R+.

Corollary 5.3. Let C : I×H2 ⇒ H and G : I×H2 ⇒ H be two multimap-
pings and f : I ×H → H be a mapping. Let Q be a closed convex subset of
H, (u0, q0) ∈ H ×Q with u0 ∈ C(T0, u0, q0).

Assume that:
(i) there exists r ∈]0,+∞] such that for every t ∈ I and every x, y ∈ H, the
set C(t, x, y) is r-prox-regular;
(ii) there exist two reals L ∈]0, 1[, L′ ≥ 0 and a nondecreasing absolutely
continuous function v : I → R on I such that

haus
(
C(t1, x1, y1), C(t2, x2, y2)

)
≤ v(t2)−v(t1)+L ‖x1 − x2‖+L′ ‖y1 − y2‖ ,

for all t1, t2 ∈ I with t1 < t2 and x1, x2, y1, y2 ∈ H;
(iii) the mapping f(·, x) is λ-Bochner measurable on I for each x ∈ H, there
exists a real β ≥ 0 such that

‖f(t, x)‖ ≤ β(1 + ‖x‖) for all t ∈ I, x ∈ H,

and for each bounded subset B of H there exists a real lB ≥ 0 satisfying∥∥f(t, x)− f(t, x′)
∥∥ ≤ lB ∥∥x− x′∥∥ for all t ∈ I, x, x′ ∈ B;

(iv) the multimapping G is nonempty closed convex valued, G(t, ·, ·) is scalarly
upper semicontinuous for each t ∈ I, and for each (x, y) ∈ H2, the map-
ping mG(·, x, y) : I → H is λ-Bochner measurable on I and there exists a
nonnegative function α(·) ∈ L1(I, λ,R+) such that

‖mG(t, x, y)‖ = d(0, G(t, x, y)) ≤ α(t)(1 + ‖x‖),

for all t ∈ I, x, y ∈ H with (x, y) ∈ C(t, x, y) ∩ κB×Q ∩ κ′B, where

κ′ := ‖q0‖+ 2β(1 + κ)(T − T0)

and

κ :=
(
‖u0‖+

v(T )− v(T0)

1− L
+s
)
es with s :=

2

1− L

∫ T

T0

(
α(s)+L′β

)
dλ(s);

(v) for every bounded subset B of H and every t ∈ I, the set C(t, B×κ′B)∩B
is relatively compact.

Then, there exists a solution Φ(·) : I → H2 of the mixed partially differ-
ential inclusion{

−Φ̇(t) ∈ NC(t,Φ(t))×Q(Φ(t)) +G(t,Φ(t))× {f(t,Φ1(t))},
Φ(T0) = (u0, q0).

Further, Φ2 is 2β(1 + κ)-Lipschitz continuous on I.



38 FLORENT NACRY, JIMMY NOEL, AND LIONEL THIBAULT

Proof. Consider the (unique) positive Radon measure µ on I satisfying

µ(]s, t]) = v(t)− v(s) for all s, t ∈ I with s < t.

Since the measure µ is non-atomic, Proposition 4.6 says that the assumption
(v) is equivalent to the relative compactness of C(I,B × κ′B) ∩B for every
bounded subset B of H. It remains to apply Theorem 5.1 to complete the
proof. �

We deduce from the latter theorem the case where f ≡ 0 and Q = {0},
that is, the existence of solutions for (FSP).

Corollary 5.4. Let C : I ×H ⇒ H and G : I ×H ⇒ H be two multimap-
pings, u0 ∈ H with u0 ∈ C(T0, u0).

Assume that:
(i) there exists r ∈]0,+∞] such that for every t ∈ I and every x ∈ H, the
set C(t, x) is r-prox-regular;
(ii) there exist a real L ∈]0, 1[, and a positive Radon measure µ on I with

sup
s∈]T0,T ]

µ({s}) < (1− L)r such that

haus
(
C(t1, x1), C(t2, x2)

)
≤ µ(]t1, t2]) + L ‖x1 − x2‖

for all t1, t2 ∈ I with t1 < t2 and x1, x2 ∈ H;
(iii) the multimapping G is nonempty closed convex valued, G(t, ·) is scalarly
upper semicontinuous for each t ∈ I, and for each x ∈ H, the mapping
mG(·, x) : I → H is Lebesgue measurable on I and there exists a nonnegative
function α(·) ∈ L1(I, λ,R+) such that

‖mG(t, x)‖ = d(0, G(t, x)) ≤ α(t)(1 + ‖x‖),

for all t ∈ I, x ∈ H with x ∈ C(t, x) ∩ κB, where

κ :=

(
‖u0‖+

µ(]T0, T ]) + 2
∫ T
T0
α(s) dλ(s)

1− L

)
;

(iv) for every bounded subset B of H, the set C(I,B)∩B is relatively com-
pact.

Then, there exists a mapping u(·) : I → H such that{
−du ∈ NC(t,u(t))(u(t)) +G(t, u(t)),
u(T0) = u0.

Proof. It suffices to apply the latter theorem with Q := {0} and f ≡ 0 (as

said above) along with the multimappings Ĉ : I×H2 ⇒ H and Ĝ : I×H2 ⇒
H defined by

Ĉ(t, x, y) := C(t, x) and Ĝ(t, x, y) := G(t, x) for all (t, x, y) ∈ I ×H2.

�
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6. Reduction of second order sweeping process (SSP) to the
first order one (FSP)

Our aim here is to derive existence of solution for the problem (SSP) with
bounded variation via a reduction to a first order state-dependent sweeping
process. As mentionned in the very introduction of the present paper, such
a reduction have been only observed ([43, 53]) in the absolutely continuous
and finite dimensional setting.

Let us start this section with the following result which can be seen as a
counterpart of Proposition 3.3.

Proposition 6.1. Let C : I × H ⇒ H and F : I × H2 ⇒ H be two
multimappings. Let also (u0, v0) ∈ H2 with v0 ∈ C(T0, u0). Assume that
there exist a real L′ ≥ 0 and a positive Radon measure µ on I such that

haus
(
C(s, x), C(t, y)

)
≤ µ (]s, t]) + L′‖x− y‖,

for all s, t ∈ I with s < t and x, y ∈ H. If Φ(·) is a solution of the first
order mixed state-dependent Moreau sweeping process (associated to µ) with
outward normal at the velocity inside the set

(P)

{
−dΦ ∈ NC(t,Φ2(t))×H(Φ(t)) + F (t,Φ(t))× {−Φ1(t)}
Φ(T0) = (v0, u0),

then the mapping Φ2(·) is a solution of the second order sweeping process
(associated to µ)

(Q)

{
−dΦ̇2(t) ∈ NC(t,Φ2(t))(Φ̇2(t)) + F (t, Φ̇2(t),Φ2(t))

Φ2(T0) = u0, Φ̇2(T0) = v0,

and Φ̇2 = Φ1 λ-almost everywhere on I.

Proof. Assume that Φ(·) : I → H2 is a solution of (P). Let us define the
multimappings SC , GF : I×H2 ⇒ H2 by setting for every (t, x, y) ∈ I×H2,

SC(t, x, y) := C(t, y)×H and GF (t, x, y) := F (t, x, y)× {−x}.
Observe that (v0, u0) ∈ SC(T0,Φ(T0)) = C(T0,Φ2(T0)) × H. Coming back
to Definition 3.4 and according to the definition of SC and GF , there is a
λ-Bochner integrable mapping z(·) : I → H2 with

(6.1) z(t) ∈ GF (t,Φ(t)) = F (t,Φ1(t),Φ2(t))× {−Φ1(t))} λ-a.e. t ∈ I
and such that Φ2 is absolutely continuous on I with

(6.2) Φ̇2(t)− Φ1(t) = 0 a.e. t ∈ I,
and there exists also a positive Radon measure ν on I, absolutely contin-
uously equivalent to µ + %GF λ and with respect to which the differential

measure dΦ1 of Φ1 is absolutely continuous with dΦ1
dν (·) as an L1(I,H, ν)-

density along with for ν-almost every t ∈ I
dΦ1

dν
(t) + z1(t)

dλ

dν
(t) ∈ −NC(t,Φ2(t))(Φ1(t)).
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All together means that Φ2(·) satisfies the second order sweeping process
(Q) associated to µ and with outward normal at the velocity inside the set.
The proof is then complete. �

Now, we are able to reduce the second order sweeping process with out-
ward normal at the velocity to the Moreau’s one.

Theorem 6.2. Let C : I ×H⇒ H and F : I ×H2 ⇒ H be two multimap-
pings, (u0, v0) ∈ H2 with v0 ∈ C(T0, u0).

Assume that:
(i) there exists r ∈]0,+∞] such that for every t ∈ I and every y ∈ H, the
set C(t, y) is r-prox-regular;
(ii) there exist a real L′ ≥ 0 and a positive Radon measure µ on I such that

haus
(
C(t1, y1), C(t2, y2)

)
≤ µ(]t1, t2]) + L′ ‖y1 − y2‖ ,

for all t1, t2 ∈ I with t1 < t2 and y1, y2 ∈ H;
(iii) the multimapping F is nonempty closed convex valued, F (t, ·, ·) is scalarly
upper semicontinuous for each t ∈ I, and for each (x, y) ∈ H2, the map-
ping mF (·, x, y) : I → H is λ-Bochner measurable on I and there exists a
nonnegative function α(·) ∈ L1(I, λ,R+) such that

‖mF (t, x, y)‖ = d(0, F (t, x, y)) ≤ α(t)(1 + ‖x‖),
for all t ∈ I, x, y ∈ H with (x, y) ∈ C(t, y) ∩ κB×Q ∩ κ′B, where

κ′ := ‖q0‖+ 2(1 + κ)(T − T0)

and

κ :=
(
‖u0‖+ µ(]T0, T ]) + s

)
es with s := 2

∫ T

T0

(
α(s) + L′β

)
dλ(s);

(iv) for every bounded subset B of H, the set C(I,B×κ′B)∩B is relatively
compact.

Then, there exists a solution u(·) : I → H of the second order sweeping
process (with outward normal at the velocity inside the set){

−du̇ ∈ NC(t,u(t))(u̇(t)) + F (t, u̇(t), u(t))

u(T0) = u0, u̇(T0) = v0.

Proof. As above, we define the multimappings SC , GF : I × H2 ⇒ H2 by
setting

SC(t, x, y) := C(t, y)×H and GF (t, x, y) := F (t, x, y)× {−x},
for every (t, x, y) ∈ I ×H2. Obviously, GF (·, ·, ·) is nonempty closed convex
valued and SC(t, ·, ·) is scalarly upper semicontinuous for every t ∈ I. Then,
all conditions of Theorem 5.1 are satisfied and this guarantees the existence
of a mapping Φ(·) satisfying{

−dΦ ∈ NSC(t,Φ(t))(Φ(t)) +GF (t,Φ(t))

Φ(T0) = (v0, u0).
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It remains to apply Proposition 6.1 to complete the proof. �

Acknowledgment. The first author has received funding from the Eu-
ropean Union’s Horizon 2020 Research and Innovation Programme under
the Marie Sklodowska-Curie Grant Agreement No 823731 CONMECH.

References

[1] S. Adly, A Variational Approach to Nonsmooth Dynamics, Applications in Unilateral
Mechanics and Electronics, SpringerBriefs in Mathematics. Springer, Cham, 2017.

[2] S. Adly, B.K. Le, Unbounded second-order state-dependent Moreau’s sweeping pro-
cesses in Hilbert spaces, J. Optim. Theory Appl. 169 (2016), 407-423.

[3] S. Adly, T. Haddad, An implicit sweeping process approach to quasistatic evolution
variational inequalities, SIAM J. Math. Anal. 50 , 761-778.

[4] S. Adly, F. Nacry, An existence result for discontinuous second-order nonconvex state-
dependent sweeping processes, Appl. Math. Optim. 79 (2019), 515-546.

[5] F. Aliouane, D. Azzam-Laouir, C. Castaing, M.D.P. Monteiro Marques, Second order
time and state dependent sweeping process in Hilbert space, J. Optim. Theory Appl.
182 (2019), 153188.

[6] D. Azzam-Laouir, S. Izza, L. Thibault, Mixed semicontinuous perturbation of non-
convex state-dependent sweeping process, Set-Valued Var. Anal. 22 (2014), 271-283.

[7] M.V. Balashov, G.E. Ivanov, Properties of the metric projection on weakly vial-convex
sets and parametrization of set-valued mappings with weakly convex images, Math.
Notes 80, 461467 (2006).

[8] H. Benabdellah, Existence of solutions to the nonconvex sweeping process, J. Differ-
ential Equations 164 (2000), 286-295.

[9] F. Bernicot, J. Venel, Sweeping process by prox-regular sets in Riemannian Hilbert
manifolds, J. Differential Equations 259 (2015), 4086-4121.

[10] M. Bounkhel, A.-Y. Rabab, First and second order convex sweeping processes in
reflexive smooth Banach spaces, Set-Valued Var. Anal. 18 (2010), 151-182.

[11] M. Bounkhel, L. Thibault, On various notions of regularity of sets in nonsmooth
analysis, Nonlinear Anal. Ser. A: Theory Methods 48 (2002), 223-246.

[12] T.H. Cao and B.S. Mordukhovich. Optimal control of a nonconvex perturbed sweeping
process, to appear in J. Differential Equations.
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