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Abstract
In this paper, we present diverse new metric properties that prox-regular sets shared
with convex ones. At the heart of our work lie the Legendre-Fenchel transform and
complements of balls. First, we show that a connected prox-regular set is completely
determined by the Legendre-Fenchel transform of a suitable perturbation of its indica-
tor function. Then, we prove that such a function is also the right tool to extend, to the
context of prox-regular sets, the famous connection between the distance function and
the support function of a convex set. On the other hand, given a prox-regular set, we
examine the intersection of complements of open balls containing the set.We establish
that the distance of a point to a prox-regular set is the maximum of the distances of the
point from boundaries of all such complements separating the set and the point. This
is in the line of the known result expressing the distance from a convex set in terms
of separating hyperplanes. To the best of our knowledge, these results are new in the
literature and show that the class of prox-regular sets have good properties known in
convex analysis.

Mathematics Subject Classification 49J52 · 49J53

B F. Nacry
florent.nacry@univ-perp.fr

S. Adly
samir.adly@unilim.fr

L. Thibault
lionel.thibault@umontpellier.fr

1 Laboratoire XLIM, Université de Limoges, 123, Avenue Albert Thomas, 87060 Limoges
CEDEX, France

2 Laboratoire de Mathématiques et Physique, Université de Perpignan Via Domitia, 52 Avenue
Paul Alduy, 66860 Perpignan, France

3 Université de Montpellier, Institut Montpelliérain Alexander Grothendieck, 34095 Montpellier
CEDEX 5, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-020-01525-x&domain=pdf
http://orcid.org/0000-0001-5369-5246


S. Adly et al.

1 Introduction

Context and motivations of the paper The concept of prox-regularity finds its roots
in the fundamental work [17] by H. Federer under the name positively reached sets.
Federer by introducing the notion of curvature measure unified the studies of volumes
of enlargements of sets in differential and convex geometry. This was a remarkable
extension of Steiner polynomial formula, known for convex sets orC2 submanifolds, to
positively reached sets. The notion of prox-regular sets was introduced in the literature
under different names over the years and through different but equivalentmathematical
definitions. For example A. Canino ( [12]) called it p-convexity, the nameO(2)-convex
sets is due to A. Shapiro ( [32]), J.-P. Vial ([35]) in 1983 introduced and studied
the concept of weak convexity. Recently, F.H. Clarke, R.J. Stern and P.R. Wolenski
([15]) introduced the notion of proximally smooth sets, defined as closed sets S in
a Hilbert space X such that the distance function dS is continuously differentiable
on the open tube Tuber (S) := {x ∈ X : 0 < dS(x) < r}, for some r > 0.
The name prox-regularity was coined by R.A. Poliquin and R.T. Rockafellar ([29])
for functions, and prox-regular sets were studied by R.A. Poliquin, R.T. Rockafellar
and L. Thibault ([30]) as sets whose indicator functions are prox-regular. It emerges
from these various articles that the prox-regular and convex sets share many important
properties such as themetric properties of Lipschitz continuity of the projection and the
differentiability of the distance function on an appropriate tube. If the prox-regularity
and the convexity enjoy for example these two fundamental properties, unfortunately
there exist others, like intersection and inverse image by a linear mapping, which are
not preserved for prox-regular sets. We refer the reader to [2] for counterexamples
and sufficient conditions for such properties and others. Despite the absence of a
good behavior of the prox-regularity with respect to set operations, we will see in the
present paper that prox-regular sets share diverse newmetric propertieswith convexity.
This gives quite remarkable writings of the distance function from a prox-regular
set.

Contributions of the paper Let S be a subset of a Hilbert space X endowed with an
inner product 〈·, ·〉 and its associated norm ‖·‖. The usual support function σ(·, S) of S
is defined by σ(x∗, S) := supx∈S〈x∗, x〉. In Convex Analysis, the concept of support
functions for closed convex sets is known to be one of the most fundamental notions. It
is often used to translate geometricHahn-Banach separation theorems and in particular
it characterizes a closed convex set C through the following equivalence property:
x ∈ C if and only if 〈x�, x〉 ≤ σ(x�,C) for all x� ∈ X . Recalling that the Legendre-
Fenchel conjugate f ∗ : X → R∪{−∞,+∞} of a function f : X → R∪{−∞,+∞}
is given by f ∗(x�) := supx∈X

(〈x�, x〉 − f (x)
)
, it is clear and well-known that the

support function σ(·, S) of the set S is the Legendre-Fenchel conjugate of the indicator
function ψS of S defined by ψS(x) = 0 if x ∈ S and ψS(x) = +∞ if x ∈ X\S.
So, in Convex Analysis support functions are at the heart of many results related to
duality theory, normal cones, barrier cones etc. (see, e.g., [4]). For a closed set S of
the Hilbert space X , E. Asplund ([5]) used in an original way the Legendre-Fenchel
transform of the function ψS + 1

2‖ · ‖2 to characterize the convexity of S via the
single-valuedness and the continuity of the metric projection onto S. As we already
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mentioned in [1], Asplund’s paper [5] seems to be the first one revealing the great
interest of this function

x� �→
(

ψS + 1

2
‖ · ‖2

)∗
(x�) = sup

x∈S

(
〈x�, x〉 − 1

2
‖x‖2

)

in the study of the behavior of closed sets of Hilbert spaces. This function is strongly
involved in approximation theory as highlighted by J.-B. Hiriart-Urruty ( [22,23])
who called it the Asplund function of S and employed the notation ϕS . For other works
using the function ϕS we refer, for example, to [8,33] and the references therein.

When the closed set S of the Hilbert space X is r -prox-regular for some r > 0 (see
Definition 1), it will be shown that the variant function ϕS,r on X , defined by

ϕS,r (x
�) :=

(
ψS + 1

2r
‖ · ‖2

)∗
(x�) = sup

x∈S

(
〈x�, x〉 − 1

2r
‖x‖2

)
, (1)

is the right tool to extend the following fundamental results known for convex sets in
convex analysis to the variational analysis of prox-regular sets:

(π1) A closed convex set is completely determined by its support function, in the sense
that for two closed convex sets C1,C2

C1 = C2 ⇔ σ(·,C1) = σ(·,C2);

(π2) The analytic formulation of the distance from a convex setC in terms of its support
function (see, e.g., [20, Theorem 6.23])

dC (x) = 〈
x�, x

〉 − σ(x�,C) for some x∗ ∈ S := {u ∈ X : ‖u‖ = 1};

(π3) The duality property for a closed convex set C

dC (x) = max
x�∈S inf

y∈C
〈
x�, x − y

〉 = inf
y∈C max

x�∈S
〈
x�, x − y

〉 ;

(π4) The formula for the distance from a closed convex set C in terms of supporting
hyperplanes: the distance dC (x) coincides with the maximum of distances dH (x)
taken over all hyperplanes H separating C and x /∈ C , and this maximum is
attained for one and only one hyperplane.

The extensions of the above properties (π1) − (π4) to the prox-regular setting are
respectively developed in Theorem 4-Corollary 1, Theorem 6, Proposition 5 and The-
orem 7.

Organization of the paper After some preliminaries in Sect. 2, we investigate in
Sect. 3 the great role played by the function ϕS,r , defined in (1), in the context of
r -prox-regular sets. The last section of the present work is devoted to the distance
function associated to a prox-regular set.
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2 Notation and preliminaries

As usual, N denotes the set of integers starting from 1 and R := R ∪ {−∞,+∞} is
the extended real-line. Given an extended real r ∈ R, we will denote by r+ its positive
part, that is, r+ := max{r , 0}.

Throughout the paper, X stands for a (real) Hilbert space not reduced to the trivial
space {0} endowed with the inner product 〈·, ·〉 and its associated norm ‖·‖ := √〈·, ·〉.
The open (resp. closed) ball and the sphere of X centered at x ∈ X with radius ρ > 0
are denoted by B(x, ρ) (resp. B[x, ρ]) and S(x, ρ). In the particular case of the closed
unit ball and the unit sphere of X , we use the following notation

B := B[0X , 1] and S := S(0X , 1).

2.1 Distance function and associated sets

Now, consider any nonempty closed subset S of X . The distance function dS from S
is defined as

dS(x) := d(x, S) = inf
y∈S ‖x − y‖ for all x ∈ X .

Given any nonzero vector x� in the Hilbert space X and any α ∈ R, it is known
(see, e.g., [20]) that the distance function of x ∈ X from the affine hyperplane
H=(x�, α) := {x ∈ X : 〈x�, x〉 = α} =: {x� = α} (resp. from the closed affine half-
space H≤(x�, α) := {x ∈ X : 〈x�, x〉 ≤ α} =: {x� ≤ α}) is given by

d
(
x,H=(x�, α)

) = ∥∥x�
∥∥−1 ∣∣〈x�, x

〉 − α
∣∣ (2)

(resp.

d
(
x,H≤(x�, α)

) = ∥
∥x�

∥
∥−1

(
〈
x�, x

〉 − α)+). (3)

The multimapping ProjS : X ⇒ X of nearest points in S is defined by

ProjS(x) := Proj(S, x) := {y ∈ S : ‖x − y‖ = dS(x)} for all x ∈ X .

Whenever the latter set is reduced to a singleton for some x ∈ X , that is, ProjS(x) =
{y}, the vector y ∈ S will be denoted by projS(x) or PS(x). We say that S is proximinal
provided that ProjS(x) �= ∅ for every x ∈ X . It is known and not difficult to check
that every nonempty weakly closed subset of X is proximinal.

Given an extended real r ∈]0,+∞], we define the (open) r -tube of S as the set
Tuber (S) := Ur (S)\S where Ur (S) is the (open) r -enlargement of S

Ur (S) := {x ∈ X : dS(x) < r}
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and we also introduce the (closed) r -exterior of S and the set of points at exact r -
distance to S

Exter (S) := {x ∈ X : dS(x) ≥ r} and Dr (S) := {x ∈ X : dS(x) = r} .

If r = +∞, such sets become U∞(S) := X and Exte∞(S) = ∅ = D∞(S).

2.2 Proximal normals

The proximal normal cone of a closed subset S ⊂ X at x ∈ S, denoted by NP (S; x),
is defined as

NP (S; x) := {
v ∈ X : ∃r > 0, x ∈ ProjS(x + rv)

}
.

It is not difficult to see that for every v ∈ X , the inclusion v ∈ NP (S; x) holds if and
only if there is a real r > 0 satisfying

〈v, x ′ − x〉 ≤ 1

2r
‖x ′ − x‖2 for all x ′ ∈ S;

in such a case we will say that v is a proximal normal to S at x with constant r > 0.
If x /∈ S, we set by convention NP (S; x) := ∅. According to the definition, we notice
that, for any v ∈ X such that ProjS(v) �= ∅, we have

v − w ∈ NP (S;w) for all w ∈ ProjS(v). (4)

It is worth pointing out that the above concept of normal cone is local, in the sense
that for any neighborhood V in X of x ∈ S

NP (S ∩ V ; x) = NP (S; x). (5)

If S is convex, it is known (and easily seen) that the proximal normal cone NP (S; x)
coincides with the normal cone in the sense of convex analysis, i.e.,

NP (S; x) = {v ∈ X : 〈v, y − x〉 ≤ 0,∀y ∈ S} .

Given a function f : U → R defined on a nonempty open subsetU ⊂ X , one says
that a vector ζ ∈ X is a proximal subgradient of f at a point x ∈ U with f (x) finite,
provided that (ζ,−1) ∈ NP

(
epi f ; (x, f (x))

)
, where epi f is the epigraph of f , that

is the subset of H × R (endowed with its usual Hilbert product structure) defined by
epi f := {(u, r) ∈ X × R : u ∈ U , f (u) ≤ r}. It is well-known (and not difficult to
check) that the latter inclusion holds if and only if there are a real σ ≥ 0 and a real
η > 0 with B(x, η) ⊂ U such that

〈ζ, y − x〉 ≤ f (y) − f (x) + σ ‖y − x‖2 for all y ∈ B(x, η).
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The set ∂P f (x) of all proximal subgradients of f at x is the proximal subdifferential of
f at x . In the same spirit as (5), whenever the setU and the fonction f are convex, the
proximal subdifferential ∂P f (x) coincide with the subdifferential of convex analysis
∂ f (x), that is,

∂P f (x) = {ζ ∈ X : 〈ζ, y − x〉 ≤ f (y) − f (x),∀y ∈ U } =: ∂ f (x). (6)

2.3 Prox-regularity

This succinct paragraph is devoted to the needed basic facts on prox-regularity which
is at the heart of the present paper. For more details on that topic, in both theoretical
and concrete approaches, we refer for instance to [30], the survey [16] and the book
[34] along with the references therein.

Definition 1 Let S be a nonempty closed subset of X and r ∈]0,+∞]. One says that
S is r -prox-regular whenever, for all x ∈ S, for all v ∈ NP (S; x) ∩ B and for every
real t ∈]0, r ], one has x ∈ ProjS(x + tv).

Given a closed subset S ⊂ X , x ∈ S and v ∈ NP (S; x) with ‖v‖ = 1, it is routine
to check that for every real t > 0 one has

x ∈ ProjS(x + tv) ⇔ S ∩ B(x + tv, t) = ∅.

In such a case, one says that the unit normal proximal vector v to S at x is realized by
the t-ball B(x + tv, t).

The following theorem provides some useful characterizations and properties of
uniform prox-regular sets for which we refer to [16,30,34].

Theorem 1 Let S be a nonempty closed subset of X and let r ∈]0,+∞]. The following
assertions are equivalent.

(a) The set S is r-prox-regular.
(b) For all x, x ′ ∈ S, for all v ∈ NP (S; x), one has

〈
v, x ′ − x

〉 ≤ 1

2r
‖v‖ ∥∥x − x ′∥∥2 .

(c) On Ur (S) the mapping PS(·) is well-defined, and for every real s ∈]0, r [, for all
x, x ′ ∈ Us(S),

∥∥PS(x) − PS(x
′)
∥∥ ≤ 1

1 − (s/r)

∥∥x − x ′∥∥ .

(d) For all x ∈ Tuber (S), the vector PS(x) is well defined and one has

PS(x) = PS
(
PS(x) + t

x − PS(x)

‖x − PS(x)‖
)

for all t ∈ [0, r [.
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(e) The function d2S(·) is differentiable on Ur (S) with a locally Lipschitz derivative
and

∇d2S(x) = 2(x − PS(x)) for all x ∈ Ur (S).

Remark 1 It should be noted that for an r -prox-regular subset of X with r ∈]0,+∞[,
we have

PS(x) ∈ ProjS
(
PS(x) + r

x − PS(x)

dS(x)

)
for all x ∈ Tuber (S).

��

3 Legendre-Fenchel transform

As mentioned in the introduction, E. Asplund seems to be the first to depict, for a (non
necessarily convex) set S in a Hilbert space, the importance of the Legendre-Fenchel
conjugate of the function ψS + 1

2‖ · ‖2, that is, the function

x� �→ sup
y∈X

(
〈x�, y〉 − (ψS(y) + 1

2
‖y‖2)

)
= sup

y∈S

(
〈x�, y〉 − 1

2
‖y‖2

)
. (7)

This function is denoted by ϕS in [8], and Asplund called it the indefinite integral of
the metric projection of S, a term due to the inclusion

p ∈ ∂ϕS(x) whenever p ∈ ProjS(x) �= ∅. (8)

Computing the biconjugate of ψS + 1
2‖ · ‖2, that is, the (Legendre-Fenchel) conjugate

of ϕS and applying the theory of convex analysis, Asplund established in [5] with a
very elegant and short way the result in Theorem 2 on Chebyshev set. Recall that a
nonempty closed set S in X is a Chebyshev set if any point in X admits one and only
one nearest point in S.

Theorem 2 If the metric projection onto a Chebyshev set in a Hilbert space is norm-
to-weak continuous, then the set is convex.

A decade later, H. Berens ([8]) gave a full description of subgradients of the convex
function ϕS thanks to the theory of maximal monotone operators. For any nonempty
closed set S ⊂ X , Berens established that

∂ϕS(x) =
⋂

ε>0

co(ProjS,ε(x)) for all x ∈ X , (9)

where as usual ProjS,ε(x) := {s ∈ S : ‖x − s‖ < dS(x) + ε} �= ∅. Taking into
account (8) or equivalently the inclusion

co(ProjS(x)) ⊂ ∂ϕS(x) for all x ∈ X
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(keep in mind that ∂ϕS(·) has closed convex values), H. Berens asked the following
question: if dimX = +∞, is it possible to find a proximinal set S ⊂ X and x ∈ X
such that

co(ProjS(x)) �= ∂ϕS(x)?

The answer is positive for any infinite dimensional Hilbert space and it was given by
G. Godini in [19].

The function ϕS(·) also appears under the nameAsplund function in the two surveys
devoted to challenging open problems in approximation theory, namely convexity of
Chebyshev sets ([22]) and farthest points conjecture ([23]). In [22], the function ϕS

allows to show that d2S is differentiable on R
n if and only if S is convex. We also

mention that in [23], Hiriart-Urruty developed among other things a new technique to
establish (9) only with tools coming from convex analysis (see also the survey [33]).

Given any set S ⊂ X and any extended real r > 0, it will be relevant to introduce the
following variant (which could be calledAsplund function of constant r )ϕS,r : X → R

of the function ϕS defined by

ϕS,r (x
�) := sup

y∈S

(
〈
x�, y

〉 − ‖y‖2
2r

)

for all x� ∈ X .

We immediately observe that ϕS,r ≡ −∞ when S = ∅, hence there will be no loss of
generality to assume that S �= ∅. Whenever r = +∞ (resp. r = 1), it is of interest to
note that the function ϕS,∞ (resp. ϕS,1) is nothing but the usual support (resp. Asplund)
function of S, that is,

ϕS,∞(x�) := sup
y∈S

〈
x�, y

〉 =: σ(x�, S) for all x� ∈ X

(resp.

ϕS,1(x
�) := sup

y∈S

(
〈
x�, y

〉 − ‖y‖2
2

)

=: ϕS(x
�) for all x� ∈ X).

It is worth pointing out that ϕS,r is, as ϕS , the (classical) Legendre-Fenchel conjugate
of a function, namely

(ψS + 1

2r
‖·‖2)� = ϕS,r . (10)

The equality (10) (for which the important particular case r = 1 has been stated in
(7)) leaded us in [1] to set for a prescribed function f : X → R

f �,r (x�) := (
f + 1

2r
‖·‖2 )�

(x�) for all x� ∈ X .
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Accordingly, we can rewrite (10) as

(ψS)
�,r = ϕS,r ,

so (7) becomes (ψS)
�,1 = ϕS,1. From the very definition of ϕS,r we also see that the

inequality ϕS,r (x�) ≤ α is equivalent to the inclusion S ⊂ Qx�,r ,α , where the set in
the right-hand side is defined (see [1]) as

Qx�,r ,α :=
{

x ∈ X : 〈
x�, x

〉 − ‖x‖2
2r

≤ α

}

. (11)

It is worth pointing out that for every x� ∈ X\{0} and every real α, the set Qx�,∞,α is
nothing but the (closed) half-space H≤(x�, α). Both above properties among others
are stated in the following proposition.

Proposition 1 Let S be a nonempty subset of X, r ∈]0,+∞] be an extended real. The
following hold.

(a) If r < +∞, one has

ϕcl S,r (x
�) = ϕS,r (x

�) = r

2

∥
∥x�

∥
∥2 − 1

2r
d2S(r x

�) for all x� ∈ X .

In particular ϕS,r is real-valued whenever r < +∞.
(b) One has ϕS,r (0) = − 1

2r d
2
S(0).

(c) For every real λ ≥ 0, one has

ϕS,r (λx
�) = λϕS,rλ(x

�) for all x� ∈ X .

In particular, if r < +∞, then one has

rϕS,r (x
�) = ϕS,1(r x

�) for all x� ∈ X . (12)

(d) The function ϕS,r (·) is the r-conjugate of ψS, i.e.,

ϕS,r (x
�) = (ψS)

�,r (x�) = (ψS + 1

2r
‖·‖)�(x�) for all x� ∈ X .

(e) The function ϕS,r (·) is convex and locally Lipschitz continuous on X.
(f) For every x� ∈ X and every α ∈ R, one has

S ⊂ Qx�,r ,α ⇔ ϕS,r (x
�) ≤ α.

Proof The assertion (a) follows from the computation valid for every x� ∈ X ,

ϕS,r (x
�) = r

2

(∥
∥x�

∥
∥2 + sup

x∈S
−

∥∥
∥x� − x

r

∥∥
∥
2
)

= r

2

∥
∥x�

∥
∥2 − 1

2r
d2S(r x

�).
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The assertions (b), (c) and (f) are direct consequences of the definition of ϕS,r . Further,
(d) has already been established above. To prove (e), it suffices to observe on one hand
that the local Lipschitz property directly derives from (a) and on the other hand the
convexity of ϕS,r follows from the convexity of each fy : X → R with y ∈ S defined
by

fy(x) := 〈
x�, y

〉 − ‖y‖2
2r

for all x ∈ X .

The proof is complete. ��
Assertion (f) in Proposition 1 can be seen as an extension of the classical fact that

the inequality σ(·, S) ≤ α characterizes the closed half-spaces which contain S, that
is, for every x� ∈ X with x� �= 0 and every α ∈ R,

S ⊂ {〈
x�, ·〉 ≤ α

} = H≤(x�, α) =: Qx�,∞,α ⇔ ϕS,∞(x�) := σ(x�, S) ≤ α.

On the other hand, assertion (a) in Proposition 1 makes clear that we cannot expect in
general explicit formulas for the function ϕS,r for any type of subset S ⊂ X since this
requires to be able to compute the distance function dS(·).
Example 1 Let x ∈ X and r > 0 be a real.

(i) For each real ρ > 0, we have

ϕρB,r (x) =
{

r‖x‖2
2 if x ∈ ρ

r B,

ρ ‖x‖ − ρ2

2r otherwise.

(ii) For each real ρ > 0 we have with S := X\B(0, ρ)

ϕS,r (x) =
{

ρ ‖x‖ − ρ2

2r if ‖x‖ ≤ ρ,
r
2‖x‖2 otherwise.

(iii) Let u� ∈ X\ {0} and α ∈ R. According to (2) and (3) we have with H :=
H≤(u�, α) and H := H=(u�, α)

ϕH,r (x) = r

2
‖x‖2 − 1

2r ‖u�‖2 [(r 〈
u�, x

〉 − α)+]2

and

ϕH,r (x) = r

2
‖x‖2 − 1

2r ‖u�‖2 [(r 〈
u�, x

〉 − α)]2.

��
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Now, we develop certain properties of the (sub)differential of the function ϕS,r

with S ⊂ X and r ∈]0,+∞]. Let us say that the set S is strongly ball-compact
provided that the intersection of S with every closed ball of X is strongly compact.
If S ⊂ X is nonempty, closed and strongly ball-compact, it is known (see, e.g., [27,
Proposition 2.2]) that

∂C

(
1

2
d2S

)
(x) = x − co(ProjS(x)) for all x ∈ X\S, (13)

where ∂C denotes the Clarke subdifferential (see [14,26,28,31,34] and the references
therein). The next proposition provides various descriptions of the subdifferential
∂ϕS,r (x∗) for x∗ ∈ X . The description in the first assertion is in terms of the following
particular function associated to a vector x� ∈ X qx�,r : X → R defined by

qx�,r (x) := 〈
x�, x

〉 − ‖x‖2
2r

for all x ∈ X . (14)

This function already played a fundamental role in our previous paper [1]. The function
ϕS,r (·) can be rewritten as

ϕS,r (x
�) = sup

x∈S
qx�,r (x) for all x� ∈ X . (15)

Notice also that the set Qx�,r ,α in (11) is just theα-sublevel of this functionqx�,r (·), that
is, Qx�,r ,α := {qx�,r ≤ α}, and clearly qx�,∞(·) coincides with the linear functional
〈x�, ·〉.
Proposition 2 Let S be a nonempty closed subset of X and r ∈]0,+∞[, and let U be
an open subset of X. The following hold:

(a) One always has

S ∩ ∂ϕS,r (x
�) = {

x ∈ S : ϕS,r (x
�) = qx�,r (x)

}
for all x� ∈ X , (16)

and the latter equality still holds for r = +∞.
(b) The function ϕS,r (·) is Fréchet differentiable on U if and only if d2S is Fréchet

differentiable on U.
(c) Let ρ ∈]0,+∞] be an extended real number. The set S is ρ-prox-regular if and

only if ϕS,r (·) is Fréchet differentiable on Uρ(S). In such a case, one has

∇ϕS,r (x) = ∇ϕS(r x) = {projS(r x)} for all x ∈ Uρ(S).

(d) One has

∂ϕS,r (x) =
⋂

ε>0

co
(
ProjS,ε(r x)

)
for all x ∈ X .
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(e) If S is strongly ball-compact, then

∂ϕS,r (x) = co(ProjS(r x)) for all x ∈ X\r−1S.

(f) If dimX = +∞, there exist a proximinal set S ⊂ X and x ∈ X such that

∂ϕS,r (x) �= co(ProjS(r x)).

Proof (a) Fix any x� ∈ X . Let x ∈ S. Assume first that ϕS,r (x�) = qx�,r (x). Pick any
x ′ ∈ X . Thanks to the inclusion x ∈ S, we have

〈
x ′, x

〉 ≤ sup
u∈S

(
〈
x ′, u

〉 − ‖u‖2
2r

)

+ ‖x‖2
2r

which is obviously equivalent to

〈
x, x ′ − x�

〉 ≤ sup
u∈S

(
〈
x ′, u

〉 − ‖u‖2
2r

)

− 〈
x�, x

〉 + ‖x‖2
2r

.

The latter inequality can be rewritten as

〈
x, x ′ − x�

〉 ≤ ϕS,r (x
′) − qx�,r (x) = ϕS,r (x

′) − ϕS,r (x
�)

and this justifies the inclusion x ∈ S ∩ ∂ϕS,r (x�). Conversely, assume that x ∈
S ∩ ∂ϕS,r (x�). From the definition of subdifferential of convex analysis (see (6)) it is
not difficult to observe that

ϕS,r (x
�) ≤ 〈

x�, x
〉 − 〈

x, x ′〉 + ϕS,r (x
′) for all x ′ ∈ X .

According to Proposition 1, we then deduce

ϕS,r (x
�) ≤ 〈

x�, x
〉 − 〈

x, x ′〉 + r

2

∥∥x ′∥∥2 − 1

2r
d2S(r x

′) for all x ′ ∈ X .

Applying the latter inequality with the vector x
r yields

ϕS,r (x
�) ≤ 〈

x�, x
〉 −

〈
x,

x

r

〉
+ r

2

∥∥∥∥
x

r

∥∥∥∥

2

,

otherwise stated ϕS,r (x�) ≤ 〈x�, x〉 − ‖x‖2
2r = qx�,r (x) ≤ ϕS,r (x�). The proof of

(a) is then complete.
(b) It is a direct consequence of Proposition 1(a).
(c) It suffices to put together (b) above, Theorem 1(e) and the equality (12)

ϕS,r = r−1(ϕS ◦ r IdX ). (17)
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(d) Combining Berens’ equality (9) with (17) gives the desired result.
(e) It follows from the two equalities (13) and (17) mentioned above.
(f) This can be obtained through the Godini’s construction ( [19]) which provides a
proximinal subset S ⊂ X and x ∈ X such that

∂ϕS(x) �= co(ProjS(x)).

��
The right hand-side of (16) is strongly connected to the following concept of support

points.

Definition 2 ([1]) Let S be a closed subset of X and r ∈]0,+∞] be an extended real.
One says that u� ∈ X is an r -quadratic support functional of S whenever there exists
x ∈ S such that

qu�,r (x) := 〈
u�, x

〉 − 1

2r
‖x‖2 = sup

x∈S
(
〈
u�, x

〉 − 1

2r
‖x‖2) =: ϕS,r (u

�).

In such a case, u� is said to quadratically support S at x . One says that x ∈ S is an
r -quadratic support point of S whenever there exists u� ∈ X with u� �= x

r such that
u� supports S at x .

Before going further, let us introduce a notation. To a nonempty closed subset S of
X , we associate the multimapping �S,r (·) : X\S ⇒ X defined by

�S,r (x) :=
(
1

r
− 1

dS(x)

)
ProjS(x) + 1

dS(x)
x for all x ∈ X\S.

When ProjS(x) is reduced to a singleton for some x ∈ X\S (i.e., projS(x) is well
defined), the set �S,r (x) is obviously a singleton. In such a case, the set �S,r (x) will
be identified to its unique element ( 1r − 1

dS(x)
)projS(x) + 1

dS(x)
x . If in addition the set

S is r -prox-regular for some real r > 0, we derive from Remark 1 the inclusions

PS(x) ∈ ProjS
(
rΓS,r (x)

)
for all x ∈ Tuber (S) (18)

and

Λr (S) := rΓS,r (Tuber (S)) ⊂ Dr (S). (19)

Now, we are in position to recall the following theorem from [1].

Theorem 3 Let S be an r-prox-regular subset of X with r ∈]0,+∞], x ∈ Tuber (S).
Then, one has with x� := �S,r (x) = ( 1r − 1

dS(x)
)projS(x) + 1

dS(x)
x the following

separation property for some α ∈ R

S ⊂
{

〈
x�, ·〉 − ‖·‖2

2r
< α

}

⊂ Qx�,r ,α
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and

qx�,r (x) := 〈
x�, x

〉 − ‖x‖2
2r

> α ≥ sup qx�,r (S) =: ϕS,r (x
�).

Concerning the α-sublevel set Qx�,r ,α of qx�,r (see (11) and (14)), we also recall
the following features from [1]. They show in particular that such sublevel sets are in
general nothing but complements of suitable open balls.

Proposition 3 Let x� ∈ X, α ∈ R and r ∈]0,+∞[. One has

Qx�,r ,α =
{
X\B(r x�,

√
r2 ‖x�‖2 − 2rα) if r2 ‖x�‖2 − 2rα > 0,

X otherwise.

In particular, if ϕS,r (x�) = α ∈ R for some closed subset S of X, one has

r2
∥∥x�

∥∥2 − 2rα = d2S(r x
�)

and

Qx�,r ,α =
{
X\B(r x�, dS(r x�)) if r x� /∈ S,

X otherwise.

With ρ := r2‖x�‖2 − 2rα, one has

bdry Qx�,r ,α =
{

x ∈ X : 〈
x�, x

〉 − ‖x‖2
2r

= α

}

= S(r x�,
√

ρ).

Further, for every x ∈ X\Qx�,r ,α , one has

ProjQx�,r ,α
(x) =

{
S(r x�,

√
ρ) if x = r x�,{ √

ρ

‖x−r x�‖ (x − r x�) + r x�
}

otherwise.

In particular, the set Qx�,r ,α is proximinal and for every x ∈ X,

d(x, Qx�,r ,α) = (
√

ρ − ∥
∥x − r x�

∥
∥)+.

Coming back to the usual support function, it is worth recalling that a classical
application of Hahn-Banach theorem says that for two closed convex setsC1,C2 ⊂ X ,
one has

σ(·,C1) ≤ σ(·,C2) ⇔ C1 ⊂ C2.
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Our goal is now to show that ϕS,r (·) is a suitable function to extend such an equiva-
lence to the r -prox-regular framework. First, it should be noted that for two nonempty
closed subsets S1, S2 of X and any real r > 0,

ϕS1,r (·) ≤ ϕS2,r (·) ⇔ dS2(·) ≤ dS1(·) ⇔ S1 ⊂ S2. (20)

Then, it turns out that the desired generalization reduces to the following question:
under prox-regularity assumptions on S1 and S2, is it possible to weaken the inequality
of the left hand-side of (20) in shrinking the set on which it is required? The answer
is essentially positive and is contained in the next theorem. The following proposition
which complements [10, Lemma 3.3] and [9, Theorem 6.10] is needed. Given an
r -prox-regular subset of X for some real r > 0, recall that (see (19))

Λr (S) := r�S,r (Tuber (S)) =
{(

1 − r

dS(x)

)
projS(x) + r

dS(x)
x : x ∈ Tuber (S)

}
.

Proposition 4 Let S be a nonempty subset of a real normed space (E, ‖ · ‖E ) and let
r ∈]0,+∞].
(a) One always has

clE (Ur (S)) = Enlr (S),

or equivalently

intE (Exter S) = {u ∈ E : dS(u) > r} .

If (E, ‖ · ‖E ) is the Hilbert space (X , ‖ · ‖) and if S is r-prox-regular, then the
following assertions (b) and (c) hold.

(b) For every s ∈]0, r [, one has

clX (X\Enls S) = {u ∈ X : dS(u) ≥ s} = Extes(S) (21)

or equivalently

intX (Enls S) = {u ∈ X : dS(u) < s} = Us(S).

(c) One always has

Λr (S) = {
x ∈ Dr (S) : ProjS(x) �= ∅}

(22)

along with

Dr (S) = clX (Λr (S)) and clw(Dr (S)) = clw(Λr (S)).

123



S. Adly et al.

Proof (a) We keep the notation dS (or d(·, S)) for the distance function relative to the
normed space (E, ‖·‖E ). Fix any r ∈]0,+∞]. Assume that r < +∞, otherwise there
is nothing to prove. The inclusion clEUr (S) ⊂ Enlr (S) follows from the continuity
of dS(·). Let us establish the converse inclusion. Let u ∈ Enlr (S). We may suppose
that dS(u) = r . Let an arbitrary real ε > 0. Pick any sequence (zn)n∈N of S such that
rn := ‖u − zn‖E → r . Choose any N ∈ N such that rN − r < ε and fix any t ∈ [0, 1]
such that 1 − r

rN
< t < ε

rN
. Observe that ‖(1 − t)u + t zN − u‖E = trN < ε and

d((1 − t)u + t zN , S) ≤ ‖(1 − t)u + t zN − zN‖E ≤ (1 − t)rN < r .

Consequently, we have (1 − t)u + t zN ∈ B(u, ε) ∩ Ur (S) �= ∅. This means that
u ∈ clEUr (S). The desired equality in (a) follows.
Assume now that (E, ‖ ·‖E ) is the Hilbert space (X , ‖ ·‖) and that S is r -prox-regular.
(b) First, note that we always have Us(S) ⊂ intX (Enls(S)), or equivalently

clX (X\Enls S) ⊂ X\Us(S) = Extes(S).

Let us establish the converse inclusion. Fix any u ∈ X\Us(S). We may suppose that
dS(u) = s. Let (sn)n∈N be a sequence of ]s, r [with sn → s. Since S is r -prox-regular,
the set ProjS(u) is reduced to a singleton (see Theorem 1(c)). Let p ∈ X be such that
ProjS(u) = {p}. Set for each n ∈ N,

un = p + sn
u − p

‖u − p‖ .

According to the r -prox-regularity of S, to the inclusion u ∈ Ur (S)\S and to the
definition of p, we have by Theorem 1

{p} = ProjS(u) = ProjS(un) for all n ∈ N.

We also see that dS(un) = sn > s, so un ∈ X\Enls S for each n ∈ N. Further, (un)n∈N
converges to p + s u−p

‖u−p‖ . Since s = dS(u) = ‖u − p‖, we have

p + s
u − p

‖u − p‖ = u.

Consequently, we get u ∈ clX (X\Enls S).
(c) Set x� := �S,r (x) with x ∈ Tuber (S). First, observe that (18) and (19) entail

projS(x) ∈ ProjS(r x
�) and r x� ∈ Dr (S). (23)

From this we then note that the inclusion

Λr (S) ⊂ {
u ∈ Dr (S) : ProjS(u) �= ∅}

123



Newmetric properties for prox-regular sets…

holds true. Let us establish the converse inclusion. Fix any u ∈ Dr (S)with ProjS(u) �=
∅. Choose any p ∈ ProjS(u) �= ∅ and x ∈]p, u[. Let us start by observing that

p = projS(x) and dS(u) = r = dS(x) + ‖x − u‖,

so in particular x ∈ Tuber (S). With d := dS(x), it follows

∥∥∥(1 − r

d
)p + r

d
x − u

∥∥∥
2 =

∥∥∥
(
1 − r

d

)
(p − u) + r

d
(x − u)

∥∥∥
2

= (
r

d
− 1)2 ‖p − u‖2 + r2

d2
‖x − u‖2

+ 2
(
1 − r

d

) r

d
〈p − u, x − u〉 .

On the other hand (keep in mind the inclusion x ∈]p, u[)

〈p − u, x − u〉 = ‖p − u‖ ‖x − u‖ = r(r − d).

Combining the two latter equalities together gives

∥∥
∥(1 − r

d
)p + r

d
x − u

∥∥
∥
2 = 2r2

d2
(r − d)2 − 2r2

d2
(r − d)2 = 0.

This entails that u = (1 − r
d )p + r

d x , hence u ∈ Λr (S) according to the inclusion
x ∈ Tuber (S) and to the equality p = projS(x). The first equality of (c) is then
established.

Let us show the second equality claimed by (c). Let x ∈ Dr (S). According to (a)
above, we can choose a sequence (xn)n≥1 in Tuber (S) such that xn → x . For every
integer n ≥ 1, set x�

n := �S,r (xn). From the boundedness of (projS(xn))n≥1 and the
convergence 1

r − 1
dS(xn)

→ 0, we observe that x�
n → x

r , or equivalently r x
�
n → x . On

the other hand, from (23) we also see that (r x�
n)n≥1 is a sequence of Λr (S). It follows

that Dr (S) ⊂ cl‖·‖(Λr (S)). The converse inclusion follows from (22) proved above.
It remains to show the third equality in (c). Since cl‖·‖(Λr (S)) ⊂ clw(Λr (S)),

from the previous equality we deduce that Dr (S) ⊂ clw(Λr (S)). It results that
clw(Dr (S)) ⊂ clw(Λr (S)), which is in fact an equality thanks to (22). The proof
is complete. ��
Remark 2 If s ∈ {0, r}, then (21) does not hold in general. Indeed, in the case s = 0,
(21) means intX (S) = ∅. Now, let us focus on the case s = r . Consider the set
S = {t ∈ R : |t | ≥ 1} which is r -prox-regular with r := 1. It is readily seen that
Enlr (S) = R and Ur (S) = R\ {0}, hence

∅ = clR(R\Enlr (S)) �= Exter (S) = {0} .

��
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Now, we can state and prove the result on the consequence of the inequality
ϕS1,r (·) ≤ ϕS2,r (·) on suitable subsets of X . Recall first that for a nonempty sub-
set A of a topological space (T , τ ), A is τ -connected if and only if for each τ -closed
subsets F,G of X satisfying A ⊂ F ∪ G and A ∩ F ∩ G = ∅, one has

A ∩ F = ∅ or A ∩ G = ∅. (24)

Theorem 4 Let S1, S2 be two r-prox-regular subsets of X with r ∈]0,+∞]. Then, one
has

S1 ⊂ S2 ∪ Exter (S2)

under anyone of the following conditions:

(a) ϕS1,r (x
�) ≤ ϕS2,r (x

�) for every x� ∈ �S2,r (Tuber (S2));
(b) r < +∞ and ϕS1(x

�) ≤ ϕS2(x
�) for every x� ∈ Λr (S2);

(c) r < +∞ and ϕS1(x
�) ≤ ϕS2(x

�) for every x� ∈ Dr (S2).

If in addition S1 is connected (which is always the case if diam S1 < 2r), then one
has

{
S1 ⊂ S2 if S1 ∩ S2 �= ∅,

S1 ⊂ Exter (S2) otherwise

whenever one of the conditions (a) − (c) holds.

Proof We may assume that r < +∞. We observe through the equality valid for any
subset S ⊂ X

rϕS,r (x
�) = ϕS(r x

�) for all x� ∈ X

that (a) ⇔ (b). On the other hand, through the equality Dr (S2) = cl‖·‖(Λr (S2))
due to Proposition 4(c) and through the continuity of ϕS2(·), we also see that the
assertion (b) is equivalent to (c). As a consequence, it suffices to establish the desired
result under the assumption (a). Assume that ϕS1,r (·) ≤ ϕS2,r (·) on �S2,r (Tuber (S2)).
By contradiction, suppose that there is a ∈ S1 with a /∈ S2 ∪ Exter (S2), i.e., a ∈
Ur (S2)\S2 = Tuber (S2). According to Theorem 3, there are x� ∈ �S2,r (Tuber (S2))
and a real α such that

S2 ⊂
{

〈
x�, ·〉 − ‖·‖2

2r
≤ α

}

and
〈
x�, a

〉 − ‖a‖2
2r

> α.

Hence, we have for all x ∈ S2,

〈
x�, x

〉 − ‖x‖2
2r

≤ α <
〈
x�, a

〉 − ‖a‖2
2r

≤ ϕS1,r (x
�),
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and this entails ϕS2,r (x
�) < ϕS1,r (x

�) which is the desired contradiction.
If in addition S1 is connected, it suffices to note that F := S2 and G := Exter (S2) are
closed subsets of X satisfying

S1 ⊂ F ∪ G and S1 ∩ F ∩ G = ∅

and to use the equivalence (24) recalled above. ��
Corollary 1 Let S1, S2 be two r-prox-regular connected subsets of X for some r ∈
]0,+∞] with S1 ∩ S2 �= ∅. Then, one has

S1 = S2 ⇔ ϕS1,r (x
�) = ϕS2,r (x

�) for all x� ∈
2⋃

i=1

�Si ,r (Tuber (Si )).

If r < +∞, then one has

S1 = S2 ⇔ ϕS1(x
�) = ϕS2(x

�) for all x� ∈ Dr (S1) ∪ Dr (S2).

Given a nonempty closed convex subset C of X , it is well-known that

C =
⋂

x�∈X

{
x ∈ X : 〈

x�, x
〉 ≤ σ(x�,C)

}
,

that is, C is the intersection of the closed half-spaces which contain it. It is worth
pointing out that the latter equality can be written as

C =
⋂

x�∈�C,∞(Tube∞(C))

{
x ∈ X : 〈

x�, x
〉 ≤ σ(x�,C)

}
, (25)

where�C,∞(Tube∞(C)) =
{
u−projC (u)

dC (u)
: u ∈ X\C

}
. Then, it is quite natural to inves-

tigate if (25) could be extended to the context of an r -prox-regular set S with the help
of the function ϕS,r and the set �S,r (Tuber (S)).

Let us start with the following lemma which will play a great role in some places
in the rest of the paper.

Lemma 1 Let x� ∈ X,α ∈ R, r ∈]0,+∞[. Assume that S ⊂ Qx�,r ,α and x /∈ Qx�,r ,α .
Then, one has β := ϕS,r (x�) ≤ α and

S ⊂ Qx�,r ,β and x /∈ Qx�,r ,β .

Further, one has

d(x, Qx�,r ,α) ≤ d(x, Qx�,r ,β) ≤ d(x, S).
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Proof Set Q := Qx�,r ,α and Q′ := Qx�,r ,β . From the definition of β and Qx�,r ,β one
sees that S ⊂ Q′, then d(x, Q′) ≤ d(x, S). Further, note that from the inclusion S ⊂
Q, we must have β ≤ α, then Q′ ⊂ Q which in turn ensures that d(x, Q) ≤ d(x, Q′)
and x /∈ Q′ since x /∈ Q. ��

Given a nonempty closed subset of X and any real r > 0, we have with Qr :=
{Qx�,r ,α : x� ∈ X , α ∈ R}

S =
⋂

S⊂Q∈Qr

Q =
⋂

x�∈X
Qx�,r ,ϕS,r (x�) =

⋂

r x� /∈S
X\B(r x�, dS(r x

�)) =: I.

Indeed, it directly follows from Lemma 1 and Proposition 3 that the three intersections
involved above are equals. This along with the obvious inclusion S ⊂ ⋂

S⊂Q∈Qr
Q

justify that we only need to establish that I ⊂ S. By contradiction, if there is x ∈ I
such that x /∈ S, we must have x /∈ B(u, dS(u)) for every u ∈ X\S, in particular
x /∈ B(x, dS(x)) and this cannot hold true.

Taking into account what precedes and (25) leads to consider the intersection

⋂

x�∈�S,r (Tuber (S))

{
x ∈ X : qx�,r (x) ≤ ϕS,r (x

∗)
} =

⋂

x�∈�S,r (Tuber (S))

Qx�,r ,ϕS,r (x∗).

Theorem 5 Let S be an r-prox-regular set of X for some real r > 0. Then, one has

S ∪ Exte2r (S) =
⋂

x�∈�S,r (Tuber (S))

Qx�,r ,ϕS,r (x�),

or equivalently

Tube2r (S) =
⋃

x�∈Λr (S)

B(x�, r).

In particular, with Ωr (S) := Λr (S) ∪ {x ∈ X : dS(x) ≥ 2r}, one has the following
equality

X\S =
⋃

x�∈Ωr (S)

B(x�, r). (26)

Proof First, note that the equivalence claimed comes from the fact that by Proposition 3
and (19)

X\
⋃

x�∈Λr (S)

B(x�, r) =
⋂

x�∈�S,r (Tuber (S))

X\B(r x�, dS(r x
�))

=
⋂

x�∈�S,r (Tuber (S))

Qx�,r ,ϕS,r (x�). (27)
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Fix any x0 ∈ ⋃
x�∈Λr (S) B(x�, r). There is u ∈ Tuber (S) with ‖u� − x0‖ < r , where

u� := r�S,r (u). Since

∥∥u� − projS(u)
∥∥ =

∥∥∥∥r
(
1

r
− 1

dS(u)

)
projS(u) + r

dS(u)
u − projS(u)

∥∥∥∥ = r

we have

dS(x0) ≤ ∥∥x0 − projS(u)
∥∥ ≤ ∥∥x0 − u∗∥∥ + ∥∥u∗ − projS(u)

∥∥ < 2r .

Thus, we get

⋃

x�∈Λr (S)

B(x�, r) ⊂ Tube2r (S). (28)

Now, fix any x ∈ X\(S ∪ Exter (S)) = Tuber (S). From Theorem 3, we know
that there exist u� ∈ �S,r (Tuber (S)) and α ∈ R such that S ⊂ Qu�,r ,α and
x /∈ Qu�,r ,α . According to Lemma 1, we have S ⊂ Qu�,r ,β and x /∈ Qu�,r ,β , where

β := sup
y∈S

(〈u�, y〉 − ‖u�‖2

2r ) = ϕS,r (u�) ≤ α < +∞. Hence, we get

x /∈
⋂

x�∈�S,r (Tuber (S))

Qx�,r ,ϕS,r (x�),

and this says that

⋂

x�∈�S,r (Tuber (S))

Qx�,r ,ϕS,r (x�) ⊂ S ∪ Exter (S). (29)

Taking complements in (28) and (27), and then using (29), we arrive to

Tuber (S) ⊂
⋃

x�∈Λr (S)

B(x�, r) ⊂ Tube2r (S).

Now, let x ∈ Tube2r (S)\Tuber (S). According to [9, Lemma 6.3], we have

d := d(x, Dr (S)) = d(x, S) − r < 2r − r = r .

Fix any real ε > 0 such that d + ε < r . There is u ∈ Dr (S) such that d ≤ ‖x − u‖ <

d + ε/2. Thanks to the equality Dr (S) = cl‖·‖(Λr (S)) in Proposition 4(c), there is
x� ∈ Λr (S) such that ‖x� − u‖ < ε/2. It follows that

∥∥x − x�
∥∥ ≤ ‖x − u‖ + ∥∥x� − u

∥∥ < d + ε < r ,
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i.e., x ∈ B(x�, r). This justifies the equality

Tube2r (S) =
⋃

x�∈Λr (S)

B(x�, r),

or equivalently

S ∪ Exte2r (S) =
⋂

x�∈�S,r (Tuber (S))

Qx�,r ,ϕS,r (x�).

The proof is complete. ��
Remark 3 We derive from the latter result that the set

⋂
x�∈�S,r (Tuber (S)) Qx�,r ,ϕS,r (x�)

fails to be connected if Exte2r (S) �= ∅. ��

4 Distance function from a prox-regular set

Our aim in the present section is to provide several new links between dS(·) and ϕS,r (·)
for an r -prox-regular set. Doing so, we will extend in particular two among the most
basic results of convex analysis.

The first one (which is sometimes called analytic formulation of distance from a
convex set, see, e.g., [20, Theorem 6.23]) asserts that for any nonempty closed convex
subset C of X and for any x ∈ X\C , there is one and only one x� ∈ S (namely,
x� = �C,∞(x) = dC (x)−1

(
x − PC (x)

)
) such that

dC (x) = 〈
x�, x

〉 − σ(x�,C). (30)

The extension to the prox-regular setting is stated as follows.

Theorem 6 Let S be an r-prox-regular subset of X for some r ∈]0,+∞] and let
x ∈ Tuber (S). Then, there exists one and only one x� ∈ X with

∥∥x� − r−1x
∥∥ =

1 − r−1dS(x) (namely, x� := �S,r (x)) such that

dS(x)
(
1 − (2r)−1dS(x)

) = qx�,r (x) − ϕS,r (x
�).

In particular, one has ϕS,r (x�) < qx�,r (x).

Proof Existence. Set p := projS(x) and d := dS(x). Since x − p ∈ NP (S; p) (see
(4)) we have (thanks to Theorem 1)

〈x − p, y − p〉 ≤ (2r)−1d ‖y − p‖2 for all y ∈ S,

which gives d2 = inf y∈S
(〈x − p, x − y〉 + (2r)−1d‖y − p‖2), or equivalently

d = inf
y∈S

(
〈d−1(x − p), x − y〉 + (2r)−1‖y − p‖2

)
.
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From the latter equality we also see that

d − (2r)−1d2 = inf
y∈S

(
〈d−1(x − p), x − y〉 + (2r)−1(‖y − p‖2 − ‖x − p‖2)

)
.

Put g(y) := 〈d−1(x − p), x − y〉 + (2r)−1(‖y − p‖2 − ‖x − p‖2) for all y ∈ S and
x∗ := d−1(x − p) + r−1 p. Note that

g(y) = 〈x∗, x〉 − (2r)−1‖x‖2 − 〈x∗, y〉 + (2r)−1‖y‖2 for all y ∈ S.

The desired equality d(1 − (2r)−1d) = qx∗,r (x) − ϕS,r (x∗) then follows.

Uniqueness. Let x�
1, x

�
2 ∈ X such that for each i ∈ {1, 2}

∥∥∥x�
i − r−1x

∥∥∥ = 1 − r−1d and d
(
1 − (2r)−1d

) = qi (x) − ϕS,r (x
�
i ),

with qi := qx�
i ,r

. Set x� := 2−1(x�
1 + x�

2) and observe that

∥∥∥x� − r−1x
∥∥∥ ≤ 2−1

∥∥∥x�
1 − r−1x

∥∥∥ + 2−1
∥∥∥x�

2 − r−1x
∥∥∥ = 1 − r−1d. (31)

Thanks to the definition of x∗ we notice that

qx�,r (x) = 2−1[〈x�
1 + x�

2, x
〉 − 1

r
‖x‖2]

= 2−1[〈x�
1, x

〉 − 1

2r
‖x‖2 + 〈

x�
2, x

〉 − 1

2r
‖x‖2]

= 2−1[q1(x) + q2(x)],

which in turn ensures (see (15)) that

ϕS,r (x
�) = sup

u∈S
qx�,r (u) = 2−1 sup

u∈S
[q1(u) + q2(u)].

It results that

qx�,r (x) − ϕS,r (x
�) = 2−1[q1(x) + q2(x) − sup

u∈S
(q1(u) + q2(u))]

≥ 2−1[q1(x) + q2(x) − sup
u∈S

q1(u) − sup
u∈S

q2(u)]

= 2−1(q1(x) − ϕS,r (x
�
1) + q2(x) − ϕS,r (x

�
2)

)

= d
(
1 − (2r)−1d

)
> 0, (32)

where the latter equality is due to the choice of x�
1 and x�

2. From the inequal-
ity qx�,r (x) > ϕS,r (x�), it is readily seen that x /∈ Qx�,r ,ϕS,r (x�). According to
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Proposition 3, we see that ζ := d2(x, Qx�,r ,ϕS,r (x�)) = (
√

ρ − ‖x − r x�‖)2, with
ρ := r2 ‖x�‖2 − 2rϕS,r (x�). Elementary computations along with the equality
ρ = d2S(r x

�) (see Proposition 1(a)) yield

ζ = 2
(
r2

∥∥x�
∥∥2 − rϕS,r (x

�) + 2−1 ‖x‖2 − r
〈
x�, x

〉 − rdS(r x
�)

∥∥∥x� − r−1x
∥∥∥

)

= 2
(
r
〈
x�, x

〉 − ‖x‖2 /2 − rϕS,r (x
�) + r2

∥
∥x�

∥
∥2

− 2r
〈
x�, x

〉 + ‖x‖2 − rdS(r x
�)

∥∥∥x� − r−1x
∥∥∥

)

= 2r
(
qx�,r (x) − ϕS,r (x

�)
) + 2

∥∥r x� − x
∥∥2 − 2rdS(r x

�)

∥∥∥x� − r−1x
∥∥∥ .

Consequently, we obtain

qx�,r (x) − ϕS,r (x
�) = (2r)−1ζ +

∥∥∥x� − r−1x
∥∥∥

(
dS(r x

�) − r
∥∥∥x� − r−1x

∥∥∥
)

.

Putting together the latter inequality, the inclusion S ⊂ Qx�,r ,ϕS,r (x�), the inequality
dS(r x�) ≤ d + ‖r x� − x‖ and (31) and (32), we arrive to

qx�,r (x) − ϕS,r (x
�) ≤ (2r)−1d2 +

∥∥
∥x� − r−1x

∥∥
∥ d

≤ (2r)−1d2 + (
1 − r−1d

)
d

= d
(
1 − (2r)−1d

) ≤ qx�,r (x) − ϕS,r (x
�).

Then, it follows that
∥∥x� − r−1x

∥∥ = 1 − r−1d =: α, in particular the three points
x�
1, x

�
2, x

� lie on the sphere r−1x+αSX with x� = (x�
1 +x�

2)/2. The strict convexity of
this sphere of the Hilbert space X ensures that x�

1 = x�
2, which justifies the uniqueness

property. ��
Given a (nonempty closed) convex setC , a direct computation gives for every y ∈ C

and every u� ∈ X with ‖u�‖ = 1,

〈
u�, x

〉 − σ(u�,C) = inf
y∈C

〈
u�, x − y

〉 ≤ dC (x).

Hence, taking into account (30), we have

dC (x) = max‖x�‖=1
(
〈
x�, x

〉 − σ(x�,C)) = max‖x�‖=1
inf
y∈C

〈
x�, x − y

〉
.

Let us point out that we can reverse maximum/supremum and infimum in the latter
formula (see, e.g., [20, Remarks 7.2,p.126]), i.e.,

dC (x) = max
x�∈S inf

y∈C
〈
x�, x − y

〉 = inf
y∈C max

x�∈S
〈
x�, x − y

〉
.

The next result provides a similar feature for prox-regular sets.
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Proposition 5 Let S be an r-prox-regular subset of X with r ∈]0,+∞], x ∈ Tuber (S)

and L := {
x� ∈ X : ∥∥x� − r−1x

∥∥ = 1 − r−1dS(x)
}
. Then, one has

dS(x)
(
1 − dS(x)

2r

) = max
x�∈L

inf
y∈S

(
qx�,r (x) − qx�,r (y)

) = inf
y∈S max

x�∈L
(
qx�,r (x) − qx�,r (y)

)
.

Proof Let us focus on the first equality. Fix any v� ∈ L and observe that

inf
y∈S

(‖y‖2 − ‖x‖2
2r

+ 〈
v�, x − y

〉 ) = inf
y∈S

( 〈
v� − x

r
, x − y

〉
+ ‖x − y‖2

2r

)

≤ inf
y∈S

( ∥∥∥v� − x

r

∥∥∥ ‖x − y‖ + ‖x − y‖2
2r

)

= κ, (33)

with κ := inf y∈S
(
(1 − dS(x)

r ) ‖x − y‖ + ‖x−y‖2
2r

)
. By contradiction, suppose that

κ > (1 − dS(x)
r )dS(x) + d2S(x)

2r =: θ . Let ε ∈]θ, κ[. Pick any sequence (yn)n∈N of S
with ‖x − yn‖ → dS(x) and note that for every n ∈ N,

(
1 − dS(x)

r

)
‖x − yn‖ + ‖x − yn‖2

2r
≥ κ > ε > θ.

Passing to the limit then gives (1 − dS(x)
r )dS(x) + 1

2r d
2
S(x) ≥ ε > θ and this cannot

hold true. Hence, we have

inf
y∈S

(‖y‖2 − ‖x‖2
2r

+ 〈
v�, x − y

〉 ) ≤ κ ≤ θ = dS(x)(1 − dS(x)

2r
),

where the first inequality is due to (33). Taking the supremum yields

dS(x)
(
1 − dS(x)

2r

) ≥ sup
x�∈L

inf
y∈S

(‖y‖2 − ‖x‖2
2r

+ 〈
x�, x − y

〉 )
.

On other hand, using Theorem 6, there is u� ∈ L such that

dS(x)(1 − dS(x)

2r
) = qu�,r (x) − sup qu�,r (S)

= inf
y∈S

(‖y‖2 − ‖x‖2
2r

+ 〈
u�, x − y

〉 )
.

It remains to combine what precedes with the latter inequality to get the first equality
in the proposition. Now, let us establish the second equality of the proposition. Setting
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ρ := 1 − r−1dS(x) and writing

sup
x�∈L

‖y‖2 − ‖x‖2
2r

+ 〈
x�, x − y

〉 = ‖y‖2 − ‖x‖2
2r

+
〈 x
r
, x − y

〉
+ sup

‖z�‖=ρ

〈
z�, x − y

〉

= ‖x − y‖2
2r

+ ρ max‖z�‖=1

〈
z�, x − y

〉

= ‖x − y‖2
2r

+ ρ ‖x − y‖ ,

we see that

sup
x�∈L

‖y‖2 − ‖x‖2
2r

+ 〈
x�, x − y

〉 = max
x�∈L

‖y‖2 − ‖x‖2
2r

+ 〈
x�, x − y

〉

= ‖x − y‖2
2r

+ ρ ‖x − y‖ .

Consequently, we arrive to

inf
y∈S max

x�∈L
‖y‖2 − ‖x‖2

2r
+ 〈

x�, x − y
〉 = inf

y∈S
‖x − y‖2

2r
+ ρ ‖x − y‖ = κ,

which completes the proof. ��
Remark 4 A function f : C → R ∪ {+∞} on a convex subset C of X is recalled to
be σ -semiconvex (on C) for some σ ∈ R+ := [0,+∞[ if (see, e.g., [34])

f (t x + (1 − t)y) ≤ t f (x) + (1 − t) f (y) + σ

2
t(1 − t) ‖x − y‖2 ,

for all x, y ∈ C and for all t ∈]0, 1[. Recall also (see, e.g., [6,27,34]) that the closed
set S in X is r -prox-regular for some real r > 0 if and only if the function dS(·) is
(r − s)−1-semiconvex on any convex subset C ⊂ Us(S) with s < r , or equivalently
dS + ψC is (r − s)−1-semiconvex on X . Assuming the r -prox-regularity of the set S
and using the above semiconvexity property, it is derived in [1] from properties of the
Legendre-Fenchel r -conjugate that, for any nonempty closed convex C ⊂ Us(S)

(dS + ψC )(x) = sup
x�∈X

(
qx�,r−s(x) − (dS + ψC )�,r−s(x�)

)
for all x ∈ X ,

which can be rewritten as

dS(x) = sup
x�∈X

inf
y∈C

( 〈
x�, x − y

〉 + 1

2(r − s)
(‖y‖2 − ‖x‖2) + dS(y)

)
for all x ∈ C .

��
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The second crucial result coming from convex analysis that we will extend can be
seen as a geometrical counterpart of (30). Indeed, given a nonempty closed convex
subset C of X and x ∈ X\C , it is known (see, e.g., [20, Theorem 6.25]) that the
distance d(x,C) of x from C coincides with the maximum of d(x, H) taken over all
hyperplanes H which separate C and x , and this maximum is attained for one and
only one such hyperplane.

Theorem 7 Let S be an r-prox-regular subset of X for some r ∈]0,+∞[, and x ∈
Tuber (S). Then, one has

d(x, S) = max
{
d(x, Qy�,r ,α) : (y�, α) ∈ X × R, S ⊂ Qy�,r ,α, x /∈ Qy�,r ,α

}
.

The maximum is attained at (x�, ϕS,r (x�)) with x� := �S,r (x) and

projS(x) = projQx�,r ,ϕS,r (x�)
(x).

Further, for all y� ∈ X with
∥∥y� − r−1x

∥∥ = 1 − r−1dS(x) and all α ∈ R, one has
the following implication

d(x, S) = d(x, Qy�,r ,α),

S ⊂ Qy�,r ,α, x /∈ Qy�,r ,α

}
⇒ (y�, α) = (x�, ϕS,r (x

�)).

Proof Set x� := �S,r (x), d := dS(x), p := projS(x) and β := ϕS,r (x�). We have
already established (see Lemma 1)

sup
{
d(x, Qy�,r ,α) : (y�, α) ∈ X × R, S ⊂ Qy�,r ,α, x /∈ Qy�,r ,α

} ≤ d.

By Theorem 3, there is t ∈ R such that S ⊂ Qx�,r ,t and x /∈ Qx�,r ,t . Thanks to
Lemma 1, we have S ⊂ Qx�,r ,β and x /∈ Qx�,r ,β . On the other hand, from Theorem 6,

we get β = ϕS,r (x�) = 〈x�, x〉 − ‖x‖2
2r − d

(
1 − (2r)−1d

)
. It is routine to check that

r2‖x�‖2 = ‖r x� − x‖2 + ‖x‖2 + 2 〈r x� − x, x〉 and

−2rβ = −2r
〈
x�, x

〉 + 2rd
(
1 − (2r)−1d

) + ‖x‖2 .

Putting the two latter equalities together yields

r2
∥∥x�

∥∥2 − 2rβ = ∥∥r x� − x
∥∥2 + 2rd(1 − (2r)−1d). (34)

It is also readily seen that r x� − x = (
1 − rd−1

)
(p − x), so

∥∥r x� − x
∥∥2 + 2rd

(
1 − (2r)−1d

) = (
1 − rd−1)2d2 + 2rd

(
1 − (2r)−1d

) = r2.

(35)
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Using Proposition 3 and the equality (34), we obtain

d(x, Qx�,r ,β) =
√

‖r x� − x‖2 + 2rd
(
1 − (2r)−1d

) − ∥∥r x� − x
∥∥ .

Putting this, (35) and the inclusion x ∈ Tuber (S) together we arrive to

d(x, Qx�,r ,β) = r −
∣∣∣1 − d−1r

∣∣∣ d = d.

Now, fix any y� ∈ X with
∥∥y� − x

r

∥∥ = 1−r−1d and t ∈ R. Assume that d(x, S) =
d(x, Qy�,r ,t ) along with x /∈ Qy�,r ,t and S ⊂ Qy�,r ,t . By virtue of Lemma 1, we have

θ := ϕS,r (y
�) ≤ t and x /∈ Qy�,r ,θ (36)

and d(x, S) = d(x, Qy�,r ,t ) ≤ d(x, Qy�,r ,θ ) ≤ d(x, S). Via Proposition 3, we get

d(x, Qy�,r ,θ ) = √
ρ − ∥∥x − r y�

∥∥ with ρ := r2
∥∥y�

∥∥2 − 2rθ.

According to Proposition 3 again, we know that ρ = d2(r y�, S), so

d = d(x, Qy�,r ,θ ) = d(r y�, S) − ∥
∥x − r y�

∥
∥

≤ d + ∥∥x − r y�
∥∥ − ∥∥x − r y�

∥∥ = d.

Consequently, we have d(r y�, S) = d + ‖x − r y�‖, or equivalently

ρ = r2
∥∥y�

∥∥2 − 2rθ = (d + ∥∥x − r y�
∥∥)2.

Expanding the right-hand side of the latter equality and coming back to the definition
of θ yield

−2rϕS,r (y
�) = d2 + 2d

∥
∥x − r y�

∥
∥ + ‖x‖2 − 2r

〈
y�, x

〉
,

which can be rewritten as qy�,r (x)−ϕS,r (y�) = (2r)−1d(d+2 ‖x − r y�‖). Putting the
latter equality and the equality

∥∥y� − r−1x
∥∥ = 1−r−1d together ensure thatqy�,r (x)−

ϕS,r (y�) = d
(
1 − (2r)−1d

)
. The uniqueness property provided by Theorem 6 then

guarantees that x� = y�. It remains to show that t = ϕS,r (y�), or equivalently (see 36)
t ≥ ϕS,r (y�). If t < ϕS,r (y�), we have

d = d(x, Qy�,r ,t ) = d(x, Qx�,r ,t ) =
√
r ‖x�‖2 − 2r t − ∥∥x − r x�

∥∥

>

√
r ‖x�‖2 − 2rϕS,r (x�) − ∥∥x − r x�

∥∥

= d(x, Qx�,r ,ϕS,r (x�)) = d

which is a contradiction. The proof is complete. ��
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