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ABSTRACT
This paper is devoted to nonconvex/prox-regular separations
of sets in Hilbert spaces. We introduce the Legendre-Fenchel
r-conjugate of a prescribed function and r-quadratic support
functionals andpoints of agiven set, all associated to apositive
constant r. By means of these concepts we obtain nonlin-
ear functional separations for points and prox-regular sets. In
addition to such functional separations, we also establish geo-
metric separation results with balls for a prox-regular set and
a strongly convex set.
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1. Introduction

The present paper is concerned with the interest of the use of the Legendre-
Fenchel transform in the study of certain other crucial features for prox-regular
sets which allow us to provide fundamental separation results for such sets. By
means of the usual Legendre-Fenchel transform [1,2], we define the concept of
r-conjugate f �,r of a function f : X → R ∪ {−∞,+∞} as the Legendre-Fenchel
conjugate of f + 1

2r‖ · ‖2, where X is a Hilbert space and r ∈]0,+∞] is a posi-
tive extended-real number. We develop the study of r-conjugates and we obtain
diverse remarkable properties, especially for semiconvex functions. A fixed point
result is also obtained for the transform f �→ f �,r. Considering the fundamental
case when f is the indicator function of a subset S of X gives rise to the quadratic
functional qx∗,r := 〈x∗, ·〉 − 1

2r‖ · ‖2 on X for every x∗ ∈ X. Through this, the
usual notions of support linear functionals and support points in functional anal-
ysis are extended to support quadratic functionals and quadratically supported
points. We study in details the properties of these new notions mainly for (uni-
formly) r-prox-regular sets in X. We show in particular a Bishop-Phelps [3] type
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result for the density of r-quadratically supported points of the set S in its bound-
ary whenever S is r-prox-regular.With the above concepts and their properties at
hands, we establish functional separation results for points outside prox-regular
sets and also ball separation results (that is, separation with balls) between an
r-prox-regular set and an s-strongly convex set (see Section 5 for definition).

The paper is outlined as follows. Section 2 recalls the notions and results use-
ful for our analysis. Clarke tangent cones, normal cones and subdifferentials as
well as proximal normals and proximal subdifferentials, as basic tools in our
approach, are recalled in Subsection 2.1. The definition and main results needed
in the paper for prox-regular sets are given in Subsection 2.2. The concepts of
r-conjugate, quadratic support functional and quadratically supported point are
defined and analyzed in Section 3. Proposition 3.3 in this section shows prop-
erties of quadratic support functionals and points, Proposition 3.9 illustrates
particular features of f �,r when f is semiconvex, and Proposition 3.10 demon-
strates the fixed point result for the transform f �→ f �,r. In Section 4, for any
r-prox-regular set in X we establish in Proposition 4.4 and Theorem 4.6, func-
tional separation type results for points at positive distances less than the radius
r of prox-regularity. Ball separation type results between prox-regular sets and
strongly convex sets are provided in Theorems 5.5 and 5.6 in the last Section 5.

2. Notation and preliminaries

As usual, N denotes the set of integers starting from 1 and R := R ∪ {−∞,+∞}
is the extended real-line. Throughout the paper,X stands for a (real)Hilbert space
not reduced to the trivial space {0} endowed with the inner product 〈·, ·〉 and its
associated norm ‖ · ‖ := √〈·, ·〉. The open (resp. closed) ball and the sphere of
X centred at x ∈ X with radius ρ > 0 are denoted by B(x, ρ) (resp. B[x, ρ]) and
S(x, ρ). In the particular case of the closed unit ball and the unit sphere of X
centred at zero, we use the following notation

B := B[0X , 1] and S := S(0X , 1).

Now, consider any nonempty subset S of X. The distance function dS from S is
defined as

dS(x) = d(x, S) := inf
y∈S
∥∥x − y

∥∥ for all x ∈ X.

The multimapping ProjS : X ⇒ X of nearest points in S is defined by

ProjS(x) = Proj(S, x) := {y ∈ S :
∥∥x − y

∥∥ = dS(x)
}

for all x ∈ X.

Whenever the latter set is reduced to a singleton for some x ∈ X, that is
ProjS(x) = {y}, the vector y ∈ S is denoted by projS(x) or PS(x). Let r ∈]0,+∞]
be an extended real. Through the distance function, we can define the (open) r-
tube of S as the set Tuber(S) := Ur(S) \ SwhereUr(S) is the (open) r-enlargement



OPTIMIZATION 2099

of S

Ur(S) := {x ∈ X : dS(x) < r} ,
the (closed) r-exterior of S as the set

Exter(S) := {x ∈ X : dS(x) ≥ r} ,
and the set of points at exact r-distance to S

Dr(S) := {x ∈ X : dS(x) = r} .
If r = +∞, such sets become

U∞(S) = X and Exte∞(S) = ∅ = D∞(S).

2.1. Tangent and normal cones

Throughout this paragraph, S is a subset of X which contains a vector x.
The Bouligand tangent cone TB(S; x) of S at x ∈ S is defined as the set of h ∈

X such that there exist a sequence (tn)n∈N of positive reals with tn → 0 and a
sequence (hn)n∈N of X with hn → h such that

x + tnhn ∈ S for all n ∈ N.

The Clarke tangent cone TC(S; x) of S at x ∈ S is the set of h ∈ X such that for
every sequence (xn)n∈N of S with xn → x, for every sequence (tn)n∈N of positive
reals with tn → 0, there is a sequence (hn)n∈N of X with hn → h satisfying (see
[4])

xn + tnhn ∈ S for all n ∈ N;

the negative polar cone of TC(S; x) is the Clarke normal cone NC(S; x) of S at x,
i.e.

NC(S; x) = {ζ ∈ X : 〈ζ , h〉 ≤ 0, ∀ h ∈ TC(S; x)}.
Given a nonempty open set U in X and a function f : U → R, the Clarke
subdifferential ∂Cf (x) of f at a point x ∈ U where f is finite is defined by

∂Cf (x) := {ζ ∈ X : (ζ ,−1) ∈ NC(epi f ; (x, f (x)))},
where epi f := {(u, r) ∈ U × R : f (u) ≤ r} is the epigraph of f. By convention,
∂Cf (x) = ∅ when f (x) is not finite. Defining the indicator function ψS of the set
S by

ψS(x′) :=
{
0 if x′ ∈ S,
+∞ if x′ ∈ X \ S,

one has ∂CψS(x′) = NC(S; x′) for all x′ ∈ S.
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Besides the above notions of Clarke normal cone and subdifferential, let
us introduce the Fréchet and proximal normal ones. The Fréchet normal cone
NF(S; x) of S at x ∈ S is defined (see, e.g. [5]) by v ∈ NF(S; x) provided that for
any real ε > 0 there exists a real δ > 0 such that

〈v, y − x〉 ≤ ε‖y − x‖ for all y ∈ B(x, δ).

The proximal normal cone of S at x ∈ S denoted by NP(S; x) is defined as
(see, e.g. [6])

NP(S; x) := {v ∈ X : ∃r > 0, x ∈ ProjS(x + rv)
}
.

By convention, one puts

TC(S; x′)= ∅ and NC(S; x′)=NF(S; x′)=NP(S; x′) = ∅ for all x′ ∈ X \ S.
It is not difficult to see that v ∈ NP(S; x) if and only if there is a real r>0 such
that

〈v, x′ − x〉 ≤ 1
2r

‖x′ − x‖2 for all x′ ∈ S; (1)

in such a case we will say that v is a proximal normal to S at x with constant r>0.
It is known and not difficult to see that

NP(S; x) ⊂ NF(S; x) ⊂ NC(S; x).

According to the definition of the proximal normal cone, we notice that, for any
v ∈ X such that ProjS(v) �= ∅, we have

v − w ∈ NP(S;w) for all w ∈ ProjS(v). (2)

Coming back to the above function f : U → R defined on the nonempty open
setU ofX, a vector ζ ∈ X is said to be a proximal subgradient of f at a point x ∈ U
with f (x) finite, provided there are a real σ ≥ 0 and a real η > 0withB(x, η) ⊂ U
such that 〈

ζ , y − x
〉 ≤ f (y)− f (x)+ σ

∥∥y − x
∥∥2 for all y ∈ B(x, η),

which is known to be equivalent to (ζ ,−1) ∈ NP(epi f ; (x, f (x))). The set ∂Pf (x)
of all proximal subgradients of f at x is the proximal subdifferential of f at x. Like
for the Clarke subdifferential, one sets ∂Pf (x) = ∅ whenever f is not finite at x.

If S is convex, it is known (and easily seen) that the two normal conesNP(S; x)
and NC(S; x) coincide with the normal cone in the sense of convex analysis, that
is,

NP(S; x) = NF(S; x) = NC(S; x) = {ζ ∈ X :
〈
ζ , y − x

〉 ≤ 0,∀ y ∈ S
}
. (3)

If f : U → X is a convex function defined on a nonempty open convex subset U
of X, then the two above subdifferentials coincide on U with the subdifferential
in the sense of convex analysis, i.e. for every x ∈ U,

∂Pf (x) = ∂Cf (x) = {ζ ∈ X :
〈
ζ , y − x

〉 ≤ f (y)− f (x), ∀ y ∈ U
} =: ∂f (x).
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2.2. Prox-regular sets in the Hilbert setting

This succinct paragraph is devoted to the needed basic features on prox-
regularity which is at the heart of the present paper. Prox-regular sets (a term
coined in [7]) has a long history which goes back to the famous work [8] by H.
Federer with the class of positively reached sets in R

n. Over the years, various
names have been introduced in different contexts to refer to such sets: weakly
convex [9] or proximally smooth sets [10] are commonly used in Hilbert set-
ting; for other names we refer to the work [11]. Studies of prox-regular sets in
Banach spaces can be found in [12–14]. Besides those theoretical developments,
let usmention that prox-regular sets have also been successfully involved inmany
concrete problems as the celebratedMoreau’s sweeping process (see, e.g. the sur-
vey [15] and the references therein). For more details, in both theoretical and
concrete approaches, one can refer for instance to [7], the survey [11] and the
book [16] along with the references therein. We also refer to [17–19] for various
stability properties.

Definition2.1: Let S be a nonempty closed subset ofX and r ∈]0,+∞]. One says
that S is r-prox-regular (or uniformly prox-regular with constant r) whenever, for
every x ∈ S, for every v ∈ NP(S; x) ∩ B and for every real t ∈]0, r], one has

x ∈ ProjS(x + tv).

Given a closed subset S ⊂ X, x ∈ S and v ∈ NP(S; x)with ‖v‖ = 1, it is known
and easily seen that for every real t>0 one has

x ∈ ProjS(x + tv) ⇔ S ∩ B(x + tv, t) = ∅. (4)

In such a case, one says that the unit normal proximal vector v to S at x is realized
by the t-ball B(x + tv, t).

The following theorem provides some useful characterizations and properties
of uniform prox-regular sets for which we refer to [7,11,16].

Theorem2.2: Let S be a nonempty closed subset of X and let r ∈]0,+∞]. Consider
the following assertions.

(a) The set S is r-prox-regular.
(b) For all x, x′ ∈ S, for all v ∈ NP(S; x), one has

〈
v, x′ − x

〉 ≤ 1
2r

‖v‖ ∥∥x − x′∥∥2 .
(c) On the open set Ur(S) the mapping projS is well-defined, and for every real

s ∈]0, r[, for all x, x′ ∈ Us(S),∥∥projS(x)− projS(x
′)
∥∥ ≤ 1

1 − (s/r)
∥∥x − x′∥∥ .
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(d) For any u ∈ Tuber(S) such that projS(u) exists, one has

projS(u) = projS

(
projS(u)+ t

u − projS(u)∥∥u − projS(u)
∥∥
)

for all t ∈ [0, r[.

(e) The function d2S is C
1,1 on Ur(S) and

∇d2S(x) = 2
(
x − projS(x)

)
for all x ∈ Ur(S).

(f) The set S is tangentially regular as well as normally regular in the sense that

TB(S; x) = TC(S; x) and NP(S; x) = NF(S; x) = NC(S; x)

for all x ∈ X.

Further, one has

∂PdS(x) = ∂CdS(x) for all x ∈ Ur(S).

Then, the assertions (a)–(e) are pairwise equivalent and each one implies the
assertion (f).

When S is r-prox-regular, according to the above assertion (f) wewill just write
N(S; ·) in place of any of NP(S; ·), NF(S; ·) and NC(S; ·), except when we need to
precise the type of normal cone we are working with. If C is∞-prox-regular in X
(i.e. nonempty closed and convex) then N(C; ·) coincides with the normal cone
in the sense of convex analysis, that is,

N(C; x) = {ζ ∈ X :
〈
ζ , y − x

〉 ≤ 0,∀ y ∈ C
}

for all x ∈ C.

Remark 2.1: In addition to (d) in the above theorem, it is worth noticing that
for an r-prox-regular subset of X with r ∈]0,+∞[, we have the crucial inclusion

projS(u) ∈ ProjS

(
projS(u)+ r

u − projS(u)∥∥u − projS(u)
∥∥
)

for all u ∈ Tuber(S).

3. Quadratic support functional and Legendre-Fenchel r-conjugate

Consider for a moment a nonempty closed convex set C of X and x ∈ bdryC.
When the non-nullity property

N(C; x) �= {0}
holds, we can see that it translates a geometrical separation between the setC and
the vector x. Indeed, with the definition of the normal cone in the sense of convex
analysis at hands (see (3)), we observe that for any x� ∈ N(C; x) \ {0},〈

x�, c
〉 ≤ 〈x�, x〉 for all c ∈ C,

and this can be rewritten with the help of the support function σ(·,C) :=
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supc∈C〈·, c〉 as
C ⊂ {〈x�, ·〉 ≤ σ(x�,C)

}
and

〈
x�, x

〉 ≥ σ(x�,C).

It should be noted that the latter inequality is in fact an equality, that is〈
x�, x

〉 = σ(x�,C). (5)

Coming back to an r-prox-regular set S of X for some real r>0, let us take a look
at the meaning of the non-nullity similar property

NP(S; x) �= {0} for some x ∈ bdry S.

Fix any x� ∈ NP(S; x) ∩ S. According to the r-prox-regularity property (see
Theorem 2.2), we have

〈
x�, u − x

〉 ≤ 1
2r

‖u − x‖2 for all u ∈ S,

or equivalently,〈
x� + x

r
, u
〉
− ‖u‖2

2r
≤
〈
x� + x

r
, x
〉
− ‖x‖2

2r
for all u ∈ S.

Setting y� := x� + x
r �= x

r (since x
� �= 0X) andϕS,r(y�) := supu∈S(〈y�, u〉 − ‖u‖2

2r ),
we arrive to

S ⊂
{〈
y�, ·〉− ‖·‖2

2r
≤ ϕS,r(y�)

}
and

〈
y�, x

〉− ‖x‖2
2r

≥ ϕS,r(y�).

Defining the quadratic functional qy∗,r : X → R by

qy�,r(x) := 〈y�, x〉 − ‖x‖2
2r

for all x ∈ X,

we observe in the same line as (5) that

qy�,r(x) = ϕS,r(y�).

This leads to introduce the following definition.

Definition 3.1: Let S be a nonempty closed subset of X and r ∈]0,+∞] be an
extended real. Given u� ∈ X, we say that qu�,r is an r-quadratic support functional
of S whenever there exists x ∈ S such that

qu�,r(x) :=
〈
u�, x

〉− 1
2r

‖x‖2 = sup
x∈S

(〈
u�, x

〉− 1
2r

‖x‖2
)

= sup
x∈S

qu�,r(x)

=: ϕS,r(u�).

In such a case, qu�,r is said to r-quadratically support S at x. We say that x ∈ S is
an r-quadratic support point of S whenever there exists u� ∈ X with u� �= x

r such
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that qu�,r supports S at x. The set of all r-quadratic support points of S is denoted
by suppr(S).

The quadratic support functionals can be easily characterized through the
nearest points as follows:

Proposition 3.2: Let S be a nonempty closed subset of X, u� ∈ X and r ∈]0,+∞].
Then, the set S is r-quadratically supported by qu�,r at x ∈ S if and only if x ∈
ProjS(ru

�).

Whenever r = +∞, the above definition of r-quadratic support functional is
reduced to saying that 〈u∗, ·〉 (resp. x) is a support linear functional (resp. support
point) of S in the usual sense of functional analysis. Recall that 〈u�, ·〉with u� ∈ X
is a support linear functional to a nonempty closed subset S of X provided there
is some x ∈ S such that 〈

u�, x
〉 = sup

x∈S

〈
u�, x

〉 =: σ(u�, S),

and if u� �= 0, such a point x ∈ S is said to be a support point of S. If in addition
S is convex, it is readily seen that the latter equality is equivalent to the following
inclusion

u� ∈ N(S; x).

Through the next proposition, we see that the notions of r-quadratic support
functionals and points are related to the proximal normal cone of S.

Proposition 3.3: Let S be a closed subset of X, u� ∈ X, x ∈ S, r ∈]0,+∞]. The
following hold.

(a) The functional qu�,r is an r-quadratic support functional of S if and only if there
exists z ∈ S such that〈

u� − z
r
, x − z

〉
≤ 1

2r
‖x − z‖2 for all x ∈ S.

(a′) The vector x is an r-quadratic support point of S supported by qu�,r if and only
if u� �= x

r and 〈
u� − x

r
, x − x

〉
≤ 1

2r
‖x − x‖2 for all x ∈ S.

(b) If qu�,r is an r-quadratic support functional of S, then there exists z ∈ S such
that u� − z

r
is a proximal normal to S at z with constant r.

(b′) If x is an r-quadratic support point of S supported by the quadratic functional
qu�,r, then there exists a nonzero proximal normal v� to S at x with constant r
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such that

u� = v� + x
r
.

(c) If qu�,r is an r-quadratic support functional of S, then for every real α > 0,
qαu�,r/α is an r

α
-quadratic support functional of S.

(c′) If x is an r-quadratic support point of S supported by the quadratic functional
qu�,r, then x is an r

α
-quadratic support point of S supported by the quadratic

functional qαu�,r/α .
If in addition the set S is r-prox-regular, one has:

(d) qu�,r is an r-quadratic support functional of S whenever there exists z ∈ S such
that

u� ∈ N(S; z) ∩ B + z
r
.

(d′) The vector x is an r-quadratic support point of S supported by the r-quadratic
functional qu�,r whenever u� �= x

r and

u� ∈ N(S; x) ∩ B + x
r
.

(e) One has the equality

suppr(S) = {x ∈ bdryXS : N(S; x) �= {0}} .
Proof: (a) and (a′): To establish (a), it suffices to fix any z ∈ S and to note that for
every x ∈ S,

〈
u�, x

〉− 1
2r

‖x‖2 ≤ 〈u�, z〉− 1
2r

‖z‖2

⇔ 〈
u�, x − z

〉 ≤ 1
2r
( ‖x‖2 − ‖z‖2 )

⇔ 〈
u�, x − z

〉 ≤ 1
2r
( ‖x − z‖2 + 2 〈x − z, z〉 )

⇔
〈
u� − z

r
, x − z

〉
≤ 1

2r
‖x − z‖2 .

The equivalence provided by (a′) is a direct consequence of what precedes.
(b) and (b′): The implication claimed by (b) is a direct consequence of (a) and

of the characterization (1) of proximal normal vectors. Similarly, (b’) follows from
both (a’) and (1).

(c) and (c′): These assertions follows from (a) and (a′) respectively.
Now, assume that the set S is r-prox-regular.
(d) and (d′): It is enough to establish (d). If there is z ∈ S such that

u� ∈ N(S; z) ∩ B + z
r
,

then Theorem 2.2 ensures that
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〈
u� − z

r
, x − z

〉
≤ 1

2r
‖x − z‖2 for all x ∈ S.

Applying (a) yields that qu�,r is an r-quadratic support functional of S.
(e) The inclusion

suppr(S) ⊂ {x ∈ bdryXS : N(S; x) �= {0}}
is a direct consequence of (b′). In order to establish the converse inclusion, fix
any x ∈ bdryXS such that N(S; x) �= {0}. Let any v� ∈ N(S; x) with ‖v�‖ = 1. We
have

u� := v� + x
r

∈ N(S; x) ∩ B + x
r

and u� �= x
r (otherwise v� = 0). It follows from (d′) that x is an r-quadratic

support point of the set S. �

Remark 3.1: Consider any nonempty closed set S of X with S �= X. According
to [5, Theorem 2.10 and Proposition 2.6], we know that the set{

x ∈ bdry S : NF(S; x) �= {0}}
is dense in bdry S, where NF(S; ·) denotes the Fréchet normal cone of S (see, e.g.
[5]). Taking into account the property (e) in the above proposition and assuming
in addition that S is r-prox-regular for some r ∈]0,+∞], we arrive to the density
of suppr(S) in the boundary of S. This can be seen as an prox-regular extension
of the celebrated Bishop-Phelps theorem (see [3]).

Let S be an r-prox-regular subset of X with r ∈]0,+∞] and let x ∈ Tuber(S).
Thanks to the inclusion

R+(x − projS(x)) ⊂ N(S; projS(x))

we have

x − projS(x)
dS(x)

+ projS(x)
r

∈ N(S; projS(x)) ∩ B + projS(x)
r

.

Denoting

S,r(x) :=
(
1
r

− 1
dS(x)

)
projS(x)+ x

dS(x)
, (6)

we see that qS,r(x),r-quadratically supports S at projS(x) according to (d) in
Proposition 3.3 above. Since x ∈ Tuber(S), we must have S,r(x) �= projS(x)

r (oth-
erwise, x = projS(x) which is a contradiction), and then (d′) above says that
projS(x) is an r-quadratic support point of S quadratically supported by qS,r(x),r.

We summarize those features in the following proposition.
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Proposition 3.4: Let S be an r-prox-regular set of X with r ∈]0,+∞] and x ∈
Tuber(S). The following hold:

(a) qS,r(x),r-quadratically supports S at projS(x);
(b) projS(x) is an r-quadratic support point of S supported by qS,r(x),r.

The quantity in Definition 3.1

ϕS,r(x�) := sup
x∈S

(〈
x�, x

〉− ‖x‖2
2r

)

can be seen as a particular Legendre-Fenchel conjugate since

ϕS,r =
(
ψS + ‖·‖2

2r

)�
.

Let us point out here that ϕS,1 (which is sometimes called Asplund function) is
greatly involved in convex analysis and approximation theory (see, e.g. [20–23]).
Various and numerous properties ofϕS,r are given in our paper [24]. In particular,
it is shown that such a function is the right tool to extend fundamental metric
properties known in Convex Analysis to the framework of Variational Analysis
of prox-regular sets. The important role of ϕS,r leads us to introduce the following
definition for any function.

Definition 3.5: Given a function f : X → R and an extended real r ∈]0,+∞],
one defines the Legendre-Fenchel r-conjugate f �,r : X → R ∪ {−∞,+∞} by

f �,r(x�) :=
(
f + 1

2r
‖·‖2

)�
(x�)

= sup
x∈X

(〈
x�, x

〉− 1
2r

‖x‖2 − f (x)
)

for all x� ∈ X. (7)

The following proposition states a list of properties which can be verified in a
straightforwardway.As usual, a function f : X → R is said to be proper if its effec-
tive domain domf := {x ∈ X : f (x) < +∞} is nonempty (i.e. f �≡ +∞) along
with f (X) ⊂ R ∪ {+∞}. Recall also that, given two functions f , g : X → R with
f (u)+ g(v)well-defined for all u, v ∈ X, their infimal convolution f�g : X → R

is defined by

(f�g)(x) := inf
y∈X
(
f (x − y)+ g(y)

)
for all x ∈ X.

Proposition 3.6: Let f : X → R be a function and r>0 be an extended real. The
following hold.
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(a) One has the equality

f �,r(0) = − inf
X

(
f + 1

2r
‖·‖2

)
and

f �,r(x�) = r‖x�‖2
2

−
(
f�‖ · ‖2

2r

)
(rx�)

(b) One has the equivalences

−∞ ∈ f �,r(X) ⇔ f ≡ +∞ ⇔ f �,r ≡ −∞.

(c) If the function f �,r is proper, then f is proper.
(d) For every (x�, t) ∈ X × R, one has the equivalence

(x�, t) ∈ epi f �,r ⇔ 〈
x�, ·〉− 1

2r
‖·‖2 − t ≤ f (·).

(e) The function f has no continuous r-quadratic minorants if and only if f �,r ≡
+∞.

(f) If dom f �,r �= ∅, then f is bounded from below on each bounded subset of X.
(g) The function f �,r is convex and lower semicontinuous.
(h) For all x� ∈ X, one has

f �,r(x�) = sup
x∈dom f

(〈
x�, x

〉− 1
2r

‖x‖2 − f (x)
)

= sup
(x,t)∈epi f

(〈
x�, x

〉− 1
2r

‖x‖2 − t
)
.

(i) If f is a proper function, then one has the following Fenchel-Young inequality

f (x)+ f �,r(x�) ≥ 〈x�, x〉− 1
2r

‖x‖2 for all x�, x ∈ X.

The following example will be crucial in order to get fixed points of for the
r-conjugate transforms f �→ f �,r with r>0 (see Proposition 3.10).

Example 3.7: Let S be a nonempty subset of X and let r>0 be a positive real.
Fix any real α > − 1

2r and set f := ψS + α‖ · ‖2. From the very definition of r-
conjugate, we see with ρ := r

2αr+1 > 0

f �,r(x�) = ϕS,ρ(x�) = ρ

2
∥∥x�∥∥2 − 1

2ρ
d2S(ρx

�) for all x� ∈ X. (8)

In particular, with S = X we obtain

(α‖ · ‖2)�,r = r
2(2rα + 1)

‖ · ‖2. (9)
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Recall that if f is proper then the celebrated Fenchel-Moreau theorem (see,
e.g. [16,25,26]) asserts that f is lower semicontinuous and convex if and only if
f = f ∗∗.

In the statement of the next proposition, the concept of semiconvexity will be
involved (see, e.g. [27]).

Definition 3.8: A function f : C → R ∪ {+∞} defined on a nonempty convex
subset C of X is said to be σ -semiconvex (on C) for some σ ∈ R+ := [0,+∞[ if

f (tx + (1 − t)y) ≤ tf (x)+ (1 − t)f (y)+ σ

2
t(1 − t)

∥∥x − y
∥∥2 ,

for all x, y ∈ C and for all t ∈]0, 1[, or equivalently if f + σ
2 ‖ · ‖2 is convex on C.

The function f is said to be semiconvex near a point if it is semiconvex on a ball
centered at that point.

Recall that if f is σ -semiconvex near a point x, then for some real η > 0

∂Pf (x) = ∂Cf (x)

=
{
ζ ∈ X : 〈ζ , h〉 ≤ f (x + h)− f (x)+ σ

2
‖h‖2 ∀ h ∈ B(x, η)

}
.

The next proposition continues the features (a)–(i) for f ∗,r. Here the additional
properties (j)–(o) are related to the semiconvexity.

Proposition 3.9: Let f : X → R be a function and r>0 be an extended real.

(j) If f is r−1-semiconvex and lower semicontinuous on Xwith f (X) ⊂ R ∪ {+∞},
then one has

f (x) = sup
x�∈X

(
qx�,r(x)− f �,r(x�)

)
for all x ∈ X.

(k) If f is proper, then f is r−1-semiconvex and lower semicontinuous on X if and
only if f = (f �,r)� − 1

2r‖ · ‖2.
(l) If f is proper, r−1-semiconvex and lower semicontinuous on X, then one has(

x, u − 1
r
x
)

∈ gph ∂Cf ⇔ (u, x) ∈ gph ∂f �,r.

(m) (f �,r)� = (f + 1
2r‖ · ‖2)��.

(n) (f �)�,r = (f� r
2‖ · ‖2)��.

(o) (f �)�,r = (f� r
2‖ · ‖2) if and only if (f� r

2‖ · ‖2) is proper, convex and lower
semicontinuous.
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Proof: (j) Under the assumption in (j) the function g(·) := f (·)+ 1
2r‖ · ‖2 is

proper, lower semicontinuous and convex. Fix any x ∈ X. According to the
Fenchel-Moreau theorem, we may write

g(x) = sup
x�∈X

(
〈
x�, x

〉− g�(x�)),

or equivalently

f (x)+ 1
2r

‖x‖2 = sup
x�∈X

(〈
x�, x

〉− (f + 1
2r

‖·‖2
)�
(x�)

)
.

Consequently, we derive

f (x) = sup
x�∈X

(〈
x�, x

〉− 1
2r

‖x‖2 − f �,r(x�)
)

which is the desired equality.
(k) It suffices to apply again the Fenchel-Moreau theorem.
(l) It suffices to use the fact that for a proper convex lower semicontinuous

function h : X → R, we have (see, e.g. [26, Proposition 10.1]) for every x, u ∈ X

(x, u) ∈ gph ∂h ⇔ (u, x) ∈ gph ∂h�.

It remains to establish assertions (m)–(o). Note that (o) is a direct consequence
of the Fenchel-Moreau theorem and the equality provided (n). According to (7),
we can write

(f �,r)� =
[(

f + 1
2r

‖·‖2
)�]�

=
(
f + 1

2r
‖·‖2

)��
,

which is (m). Invoking again (7), we have

(f �)�,r =
(
f � + 1

2r
‖·‖2

)�
= (f � + g�)�,

where g(·) := r
2‖ · ‖2. It remains to apply the equality f � + g� = (f�g)� (see, e.g.

[26, (6.15), p. 45], [16]) to get the desired equality in (n). This finishes the proof
of the proposition. �

We establish now the fixed point result for the r-conjugate transform.

Proposition 3.10: Given a function f : X → R and a real r>0, one has

f �,r(·) = f (·) ⇔ f (·) = −1 + √
1 + 4r2

4r
‖·‖2 .
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Proof: Fix any real r>0. Let us consider the function g : R → R defined by

g(t) := 4rt2 + 2t − r for all t ∈ R.

It is a routine to observe that g has exactly two zeros, namely

α := −1 + √
1 + 4r2

4r
≥ 0 and β := −1 − √

1 + 4r2

4r
.

(⇐), Assume that f (·) = α‖ · ‖2. Observe first that the equality g(α) = 0 entails
ρ
2 = α with ρ := r

2αr+1 . Then, using the formulae (8) provided by Example 3.7
furnishes

f �,r(·) = ρ

2
‖·‖2 = α ‖·‖2 = f (·).

(⇒), Assume that f �,r(·) = f (·). According to Proposition 3.6(b), −∞ /∈
f �,r(X) = f (X) (otherwise f �= f �,r) and then f �≡ +∞. Thus, f is a proper
function and this allows us to apply the extended Fenchel-Young inequality in
Proposition 3.6(i) above to obtain

f (x) ≥ 2r − 1
4r

‖x‖2 for all x ∈ X. (10)

Now, let us consider the function h : I :=] − 1
2r ,+∞[→ R given by

h(t) := r
2

1
2rt + 1

for all t ∈ I.

Note that α is the only one fixed point for h. Further, it is clear that h is decreasing
on I along with h(I) ⊂ I. Hence, with u0 := 2r−1

4r ∈ I, we can set

un := h(un−1) for all n ∈ N.

Rewriting (10) as u0‖ · ‖2 ≤ f , we see through the equality (9) that f = f �,r ≤
h(u0)‖ · ‖2 = u1‖ · ‖2, so u0‖ · ‖2 ≤ f ≤ u1‖ · ‖2. By induction we derive that

u2n ‖x‖2 ≤ f (x) ≤ u2n+1 ‖x‖2 for all n ∈ N, x ∈ X. (11)

Observe that for all t ∈ I,

(h ◦ h)(t)− t = − g(t)
2r2 + 4rt + 2

.

Thanks to the inclusion u0 ∈]β ,α[∩I, we have g(u0) ≤ 0, and hence

0 ≤ (h ◦ h)(u0)− u0 = u2 − u0.

Consequently, the sequence (u2n)n≥0 is nondecreasing, and then (see the
definition of (un)n≥0) we have the fact that (u2n+1)n≥0 is nonincreasing. Com-
ing back to (11), we get that (u2n)n≥0 (resp. (u2n+1)n≥0) is bounded from above
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(resp. below). We deduce that u2n → α and u2n+1 → α as n → +∞. It remains
to let n → ∞ in (11) to complete the proof of the proposition. �

Remark 3.2: Let S be an r-prox-regular subset of X with r>0. Let also C be
any nonempty closed convex subset of X with C ⊂ Us(S) for some real 0< s< r.
It is known (see, e.g. [16,28]) that the distance function dS(·) is (r − s)−1-
semiconvex on C, or equivalently dS + ψC is semiconvex on X. This along with
Proposition 3.9(j) allows us to write

(dS + ψC)(x) = sup
x�∈X

(qx�,r−s(x)− (dS + ψC)
�,r−s(x�)) for all x ∈ X.

Consequently, for any x ∈ C we have

dS(x) = sup
x�∈X

(
qx�,r−s(x)− sup

y∈X

(〈
x�, y

〉− ‖y‖2
2(r − s)

− (dS + ψC)(y)
))

= sup
x�∈X

(
qx�,r−s(x)− sup

y∈C

(〈
x�, y

〉− ‖y‖2
2(r − s)

− dS(y)
))

= sup
x�∈X

inf
y∈C
(
qx�,r−s(x)− qx�,r−s(y)+ dS(y)

)
.

Now, assume for a moment that the nonempty closed set S is convex and take any
x ∈ X. The latter equalities with C: = X give

dS(x) = sup
x�∈X

inf
y∈X
( 〈
x�, x − y

〉+ dS(y)
)
.

Writting

inf
y∈X
( 〈
x�, x − y

〉+ dS(y)
) = inf

u∈S
(〈x�, x − u〉 − sup

y∈X
[〈x∗, y − u〉 − ‖y − u‖])

= inf
u∈S
(〈x∗, x − u〉 − ψBX (x

∗)
)
,

we then obtain the known formula (see, e.g. [29, Remarks 7.2, p. 126])

dS(x) = sup
x�∈BX

inf
y∈S

〈x�, x − y〉 = max
x�∈BX

inf
y∈S

〈x�, x − y〉,

where the latter equality is due to the weak upper semicontinuity of x� �→
〈x�, x − y〉. We mention here that an extension of the latter inf-sup formula to
the context of prox-regular sets is established in our paper [24].

4. Prox-regularity and functional separation

It has been well-recognized that the geometric Hahn-Banach theorems are
among of the most important and powerful principles of functional analysis
(see, e.g. [5,6,29,30] and the references therein). Roughly speaking, the geometric
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Hahn-Banach theorem for closed convex sets asserts that a compact convex set
A and a closed convex set B of X (or more generally of a locally convex space)
with A ∩ B = ∅ can be separated by a hyperplane/half-space. The case where A
is reduced to a singleton (so A is an exterior point of B) is of a great interest and
can be stated as follows (see also [29, Theorem 6.23]).

Theorem4.1: Let S be a nonempty closed convex set of X, x ∈ X \ S. Then, one has
with x� := dS(x)−1(x − projS(x)) ∈ S the following separation property for some
α ∈ R,

S ⊂ {〈x�, ·〉 < α
} ⊂ H≤(x�,α) := {〈x�, ·〉 ≤ α}.

and 〈
x�, x

〉
> α ≥ sup

y∈S

〈
x�, y

〉 =: σ(x�, S).

Applying the latter theorem with S: = B−A for two subsets A,B ⊂ X and
x: = 0 leads to the following general convex separation result:

Theorem 4.2: Let A and B be two nonempty disjoint closed and convex sets in X
with A+B closed (which holds if B is weakly compact). Then, there exist x� ∈ X
and a real α > 0 such that

sup
a∈A

〈
x�, a

〉+ α ≤ inf
b∈B
〈
x�, b

〉
,

in particular

σ(x�,A) ≤ −σ(x�,−B) = −σ(−x�,B).

It is worth noticing that, to argue the two above results, Zorn lemma is not
needed because of the Hilbertian structure of X.

Our aim in this section is to extend such separation results to the context of r-
prox-regular sets. As expected, the (classical) support function σS(·) = ϕS,∞(·)
(resp. the linear form qx�,∞(·) = 〈x�, ·〉) will be replaced by ϕS,r(·) (resp. the
quadratic function qx�,r(·)). Let us mention that going beyond convexity in sep-
aration theory is a very challenging issue which has been (apparently) developed
in a very few number of works. General nonconvex separation lies at the heart of
the construction ofMordukhovich’s generalized differentiationwith the so-called
extremal variational principle (see, e.g. [5, Chapter 2] and the references therein).
To the best of our knowledge, the first separation result for prox-regular sets is
due to J.P. Vial. In his paper, Vial shows ([9, Theorem 5.1]) in the finite dimen-
sional setting that a weakly convex set of constant r (a concept equivalent to the
r-prox-regularity in Hilbert spaces) and an R-strongly convex set can always be
separated by a ball whenever a certain condition holds between the radii r,R. Vial
also provides an estimate for the radius of the involved ball, depending on r and
R. Such a result has been successfully extended to the Hilbert framework by G.E.
Ivanov [31] (see also the survey [32]) and byM.V. Balashov and G.E. Ivanov [12]
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with separation result in the context of uniformly convex and smooth Banach
spaces. In this section and the next one, we provide other additional separation
properties.

Let us start by extending Theorem 4.1 to the context of prox-regular sets. The
following easy result will be needed.

Lemma 4.3: Let S be a nonempty closed subset of X, x ∈ X \ S. Assume that p ∈
ProjS(x) and let ρ be an extended real such that ρ > dS(x). The following hold with
x� := dS(x)−1(p − x).

(a) One has the estimate〈
x�, x

〉+ 1
ρ
d2S(x) <

〈
x�, x

〉+ dS(x) = 〈x�, p〉 . (12)

(b) If in addition the set S is r-prox-regular for some r ∈]0,+∞], then for all y ∈ S,〈
x�, x

〉+ 1
ρ
d2S(x) <

〈
x�, p

〉 ≤ 〈x�, y〉+ 1
2r
∥∥p − y

∥∥2 .
Proof: The assertion (a) is a direct consequence of the inequality ρ−1dS(x) < 1.
Let us show (b). Assume that S is r-prox-regular for some extended real r>0 and
fix any y ∈ S. Noting that −x� ∈ NP(S; p) (see (2)), we can apply Theorem 2.2 to
get 〈−x�, y − p

〉 ≤ ‖x�‖
2r

∥∥y − p
∥∥2 ,

or equivalently 〈
x�, p

〉 ≤ 〈x�, y〉+ 1
2r
∥∥y − p

∥∥2 . (13)

Combining (12) and (13), we arrive to

〈
x�, x

〉+ d2S(x)
ρ

<
〈
x�, p

〉 ≤ 〈x�, y〉+ 1
2r
∥∥p − y

∥∥2 .
The proof is complete. �

We derive from the particular case when S is r-prox-regular and r ≥ ρ the
following separation type result.

Proposition 4.4: Let S be an r-prox-regular subset of X with r ∈]0,+∞]. Let x ∈
Tuber(S) and x� := dS(x)−1(projS(x)− x), and let ρ > dS(x). Then, for all y ∈ S

〈
x�, x

〉+ d2S(x)
ρ

<
〈
x�, projS(x)

〉 ≤ 〈x�, y〉+ 1
2r
∥∥projS(x)− y

∥∥2 ,
so there exists α ∈ R such that for all y ∈ S,

〈
x�, x

〉+ d2S(x)
ρ

< α <
〈
x�, y

〉+ 1
2r
∥∥projS(x)− y

∥∥2 .
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Remark 4.1: In addition to the above result, diverse intrinsic metric characteri-
zations of prox-regular sets can be found in [7,16,28,33,34].

In Theorem 4.1, the separation property holds thanks to the vector x� =
dS(x)−1(x − projS(x)) ∈ X \ {0}. In the context of r-prox-regular sets, the vec-
tor x� will be replaced by S,r(x) := ( 1r − 1

dS(x) )projS(x)+ 1
dS(x)x (see (6)). The

next lemma shows in particular that S,r(x) ∈ X \ 1
r S. For x, y ∈ X, we denote as

usual ]x, y[:= {(1 − t)x + ty : t ∈]0, 1[}.

Lemma 4.5: Let S be an r-prox-regular subset of X with r ∈]0,+∞[ and let x ∈
Tuber(S). The following hold with t := dS(x)

r ∈]0, 1[.

(a) One has

x = trS,r(x)+ (1 − t)projS(x) and
∥∥∥S,r(x)− x

r

∥∥∥ = 1 − t,

in particular x ∈]projS(x), rS,r(x)[.
(b) One has the inclusions

rS,r(x) = (1 − t−1)projS(x)+ t−1x ∈ Dr(S) and

projS(x) ∈ ProjS(rS,r(x)).

(c) One has

Tuber(S) =
⋃

u∈Tuber(S)
]projS(u), rS,r(u)[.

(d) For all y ∈]projS(x), rS,r(x)[, one has
S,r(x) = S,r(y).

(e) For every s ∈]0, r[, one has

�r(S) := rS,r
(
Tuber(S)

) =
{(

1 − r
s

)
projS(y)+ r

s
y : y ∈ Ds(S)

}
.

(f) For every s ∈]0, r[, one has

Tuber(S) =
⋃

u∈Ds(S)

]projS(u), rS,r(u)[.

Proof: (a) It can be checked in a straightforward way.
(b) Observe from Remark 2.1 that with p := projS(x) and d := dS(x)

p ∈ ProjS

(
p + r

x − p
d

)
= ProjS

(
rS,r(x)

)
.

Consequently, we have dS(rS,r(x)) = ‖rS,r(x)− p‖ = t−1‖x − p‖ = r.
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(c) According to the assertion (a) above, we know that

Tuber(S) ⊂
⋃

u∈Tuber(S)
]projS(u), rS,r(u)[.

Let us show the converse inclusion. Fix any u ∈ Tuber(S) and any y ∈
]projS(u), rS,r(u)[. Set d := dS(u) and p := projS(u). Let λ ∈]0, 1[ such that
y = λp + (1 − λ)rS,r(u). We obviously have

y =
(
λ+ (1 − λ)

(
1 − r

d

))
p + (1 − λ)

r
d
u =

(
1 − (1 − λ)

r
d

)
p + (1 − λ)

r
d
u,

hence

dS(y) = dS
((

1 − (1 − λ)
r
d

)
p + (1 − λ)

r
d
u
)

≤
∥∥∥(1 − λ)

r
d
(
u − p

)∥∥∥ = (1 − λ)
r
d
d < r,

where the first inequality is due to p ∈ S. By contradiction, suppose that y ∈ S.
Then, obviously projS(y) is well defined and satisfies projS(y) = y. On the other
hand, the inclusions y ∈]p, rS,r(u)[ and p ∈ ProjS(rS,r(u)) give projS(y) = p. It
follows that y = p and this is the desired contradiction.

(d) Fix any y ∈]projS(x), rS,r(x)[. According to (c) above, we have y ∈
Tuber(S), in particular S,r(y) is well defined. Further, the second inclusion
provided by (b) above guarantees that projS(y) = projS(x) =: p. Through ele-
mentary computations, we see that

ω := S,r(x)− S,r(y) =
(

1
dS(y)

− 1
dS(x)

)
(p − x)+ 1

dS(y)
(x − y),

hence

‖ω‖2 = (dS(x)− dS(y))2

d2S(y)
+
∥∥x − y

∥∥2
d2S(y)

+ 2
〈(

1
dS(y)

− 1
dS(x)

)
(p − x),

x − y
dS(y)

〉
.

(14)

Now, let us distinguish two cases:

Case 1: y ∈]p, x[. In such a case, we have

p − x = dS(x)
‖x − y‖(y − x) and dS(x) = dS(y)+ ‖x − y‖. (15)

Then, it is not difficult to check that〈(
1

dS(y)
− 1

dS(x)

)
(p − x),

x − y
dS(y)

〉
= −‖x − y‖2

d2S(y)
. (16)
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Putting together (14), (15) and (16), we arrive to

‖ω‖2 = ‖x − y‖2
d2S(y)

+ ‖x − y‖2
d2S(y)

− 2
‖x − y‖2
d2S(y)

= 0,

i.e. S,r(y) = S,r(x).

Case 2: y ∈]x, rS,r(x)[. It is clear that

p − x = dS(x)
‖x − y‖(x − y) and dS(y) = dS(x)+ ‖x − y‖.

Proceeding as in Case 1, we obtain ω = 0, which is the desired equality.
(e) Fix any s ∈]0, r[. Observe first that we obviously have with px := projS(x)

and py := projS(y){(
1 − r

s

)
py + r

s
y : y ∈ Ds(S)

}

⊂ �r(S) :=
{(

1 − r
dS(x)

)
px + r

s
x : x ∈ Tubes(S)

}
.

Let us show the converse inclusion. Let x ∈ Tuber(S). Set vx := rS,r(x). Thanks
to the continuity of θ : [0, 1] → R+ defined by

θ(t) := dS
(
px + t(vx − px)

)
for all t ∈ [0, 1],

we can choose some t0 ∈ [0, 1] such that

y0 := px + t0(vx − px) ∈ Ds(S).

It remains to apply (d) above to get vx = rS,r(y0).
(f) In view of (c), there is only one inclusion to justify.
Fix any x ∈ Tuber(S). By (a) above, we know that x ∈]projS(x), rS,r(x)[.

Defining the function θ : [0, 1] → R by

θ(t) := dS
(
projS(x)+ t

(
rS,r(x)− projS(x)

))
for all t ∈ [0, 1]

and noticing by (b) above that θ(1) = r, the intermediate value theorem gives
some

y ∈ Ds(S)∩]projS(x), rS,r(x)[.
We derive from (d) thatS,r(y) = S,r(x). On the other hand, we have projS(x) =
projS(y) because ProjS(rS,r(x)) � projS(x). The inclusion x ∈]projS(x),
rS,r(x)[ in (a) can then be rewritten as

x ∈]projS(y), rS,r(y)[.
The proof is thereby completed. �
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The geometrical meaning ofthe separation property in Theorem 4.6 is illus-
trated in Figure 1. With the above results at hands, we are ready to establish
a separation theorem by means of S,r(·). In order to state the theorem, let us
denote for any x� ∈ X, ρ,α ∈ R

Qx�,ρ,α := {qx�,ρ ≤ α} :=
{
x ∈ X :

〈
x�, x

〉− ‖x‖2
2ρ

≤ α

}
.

Theorem 4.6: Let S be an r-prox-regular subset of X with r ∈]0,+∞], x ∈
Tuber(S). Then, one has with x� := S,r(x) = (1r − 1

dS(x) )projS(x)+ 1
dS(x)x the

following separation property for some α ∈ R

S ⊂
{〈
x�, ·〉− ‖·‖2

2r
< α

}
⊂ Qx�,r,α (17)

and

qx�,r(x) :=
〈
x�, x

〉− ‖x‖2
2r

> α ≥ sup qx�,r(S) =: ϕS,r(x�). (18)

Proof: Set p := projS(x), d := dS(x) and u� := d−1(p − x). Applying Proposi-
tion 4.4 with ρ := 2r > d gives some β ∈ R such that for every y ∈ S,

〈
u�, x

〉+ d2

2r
< β <

〈
u�, y

〉+ 1
2r
∥∥p − y

∥∥2 . (19)

Now, observe that for all y ∈ X,

〈
u�, y

〉+ 1
2r
∥∥y − p

∥∥2 =
〈
u� − 1

r
p, y
〉
+ 1

2r
(
∥∥y∥∥2 + ∥∥p∥∥2). (20)

Putting the second inequality of (19) and the equality (20) together gives for all
y ∈ S, 〈

1
r
p − u�, y

〉
−
∥∥y∥∥2
2r

<

∥∥p∥∥2
2r

− β .

On the other hand, the first inequality of (19) and the equality (20) yield

〈
1
r
p − u�, x

〉
− ‖x‖2

2r
>

∥∥p∥∥2
2r

− β .

Then, x� := 1
r p − u� = S,r(x) and α := ‖p‖2

2r − β fulfill the inclusion in (17)
along with the estimates (18). The proof is complete. �

Remark 4.2: It should be noted that we have a similar separation property as (17)
with reversed inequalities. Indeed, consider any r-prox-regular subset S ofX with
r ∈]0,+∞] and x ∈ Ur(S) \ S. It is straightforward to check that −S is also r-
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prox-regular and that the inclusion −x ∈ Ur(−S) \ −S holds. Hence, according
to Theorem 4.6, we can write for some u� ∈ X and some real β

−S ⊂
{〈
u�, ·〉− ‖·‖2

2r
< β

}
and

〈
u�,−x

〉− ‖x‖2
2r

> β .

Setting x� := −u� and α := −β , we obtain

S ⊂
{〈
x�, ·〉+ ‖·‖2

2r
> α

}
and

〈
x�, x

〉+ ‖x‖2
2r

< α.

As a direct application, we can extend the classical fact that a lower semicon-
tinuous convex function has continuous affine minorants.

Theorem 4.7: Let f : X → R ∪ {+∞} be a function with an r-prox-regular epi-
graph for some r ∈]0,+∞[. Then, there exist x� ∈ X, α, θ ∈ R with θ < supX

1
r f

such that 〈
x�, x

〉− ‖x‖2
2r

+ α ≤ f (x)
(
f (x)
2r

− θ

)
for all x ∈ X.

Proof: We endow X × R with the canonical inner product and we still denote
the associated norm by ‖ · ‖. If f ≡ +∞ there is nothing to establish, so we may
assume that f �≡ +∞. Fix any u ∈ X with f (u) < +∞ and choose any real 0 <
ε < r. Note that (u, f (u)) ∈ epi f , (u, f (u)− ε) /∈ epi f and

depi f (u, f (u)− ε) ≤ ε < r.

Consequently, we have Tuber(epi f ) ∩ (dom f × R) �= ∅. Fix any (x, c) ∈ Tuber
(epi f ) with f (x) < +∞. According to Theorem 4.6, there are (u�, θ) ∈ X × R

and α ∈ R such that

epi f ⊂ {ϕ ≤ α} and (x, c) ∈ {ϕ > α}
with ϕ : X × R → R defined by

ϕ(x, t) := 〈u�, x〉+ θ t − 1
2r

‖(x, t)‖2 for all (x, t) ∈ X × R.

This says that
〈
u�, x

〉+ θ t − 1
2r

‖(x, t)‖2 ≤ α for all (x, t) ∈ epi f (21)

and 〈
u�, x

〉+ θc − 1
2r

‖(x, c)‖2 > α. (22)

Combining (21) and the inclusion (x, f (x)) ∈ epi f , we obtain
〈
u�, x

〉+ θ f (x)− 1
2r
∥∥(x, f (x))∥∥2 ≤ α.

From this and (22), we get
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〈
u�, x̄

〉+ θ f (x̄) ≤ 1
2r
∥∥(x̄, f (x̄))∥∥2 + α

<
1
2r
∥∥(x̄, f (x̄))∥∥2 + 〈u�, x̄〉+ θc − 1

2r
‖(x̄, c)‖2 ,

hence

θ f (x) < θc + 1
2r
(f (x)2 − c2).

On the other hand, using the inequality f (x) > c, we arrive to

θ <
1
2r
(f (x)+ c) <

1
r
f (x) ≤ sup

X

1
r
f .

Finally, taking any x ∈ X with f (x) �= +∞ (otherwise, the desired inequality is
obvious), it remains to apply (21) with the inclusion (x, f (x)) ∈ epi f to obtain

〈
u�, x

〉− 1
2r

‖x‖2 ≤ α + f (x)
(
1
2r
f (x)− θ

)
.

The proof is complete. �

Remark 4.3: Any r−1-semiconvex continuous function f : X → R has its epi-
graph uniformly prox-regular with constant r. Indeed, since g := f + 1

2r‖ · ‖2 is
a continuous convex function, it is locally Lipschitz on int(dom f ) = X as well as
the function h : X → R defined by

h(x, t) := g(x)− ‖x‖2
2r

− t for all (x, t) ∈ X × R.

From the definition of h it can be checked in a straightforward way that

{h ≤ 0} = epi f .

On the other hand, we see that

∂Ch(x, t) =
{(

x� − x
r
,−1

)
: x� ∈ ∂Cg(x)

}
for all x ∈ X.

Since g is convex, its Clarke subdifferential ∂Cg is monotone, hence ∂Ch is 1
r -

hypomonotone. It remains to see that for every (x�, x) ∈ X2,〈(
x� − x

r
,−1

)
, (0, 1)

〉
= −1

to apply [17, Theorem 4.1] and get the r-prox-regularity of {h ≤ 0} as desired.

Theorem 4.3 makes clear the important role played by sublevel sets (Qx�,r,α)α
of the function qx�,r. Such sets are in general nothing but complement of suitable
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open balls. Indeed, fix any x� ∈ X, α ∈ R and r ∈]0,+∞[. Let x ∈ X. Thanks to
the elementary equality

∥∥x − rx�
∥∥2 = r2

∥∥x�∥∥2 − 2r
〈
x�, x

〉+ ‖x‖2

it is easy to observe that

x ∈ Qx�,r,α ⇔ ∥∥x − rx�
∥∥2 ≥ r2

∥∥x�∥∥2 − 2rα.

Hence, we get the following equivalence

x ∈ Qx�,r,α ⇐⇒
{
x �∈ B(rx�,

√
r2 ‖x�‖2 − 2rα) if r2 ‖x�‖2 − 2rα > 0

x ∈ X otherwise.

If α = ϕS,r(x�) for some closed subset S of X, the above equivalence along with
the following equalities

r2
∥∥x�∥∥2 − 2rα = r2

∥∥x�∥∥2 − 2r sup
x∈S

(〈
x�, x

〉− ‖x‖2
2r

)

= − sup
x∈S

(
−r2

∥∥x�∥∥2 + 2r
〈
x�, x

〉− ‖x‖2
2r

)

= inf
x∈S
∥∥rx� − x

∥∥2 = d2S(rx
�) ≥ 0

ensure that

Qx�,r,α =
{
X \ B(rx�, dS(rx�)) if rx� /∈ S,
X otherwise.

We state the above descriptions of Qx�,r,α in the following proposition.

Proposition 4.8: Let x� ∈ X, α ∈ R and r ∈]0,+∞[. One has

Qx�,r,α =
{
X \ B(rx�,

√
r2 ‖x�‖2 − 2rα) if r2 ‖x�‖2 − 2rα > 0,

X otherwise.

In particular, if ϕS,r(x�) = α ∈ R for some closed subset S of X, one has

r2
∥∥x�∥∥2 − 2rα = d2S(rx

�) (23)

and

Qx�,r,α =
{
X \ B(rx�, dS(rx�)) if rx� /∈ S,
X otherwise.

Remark 4.4: Let S be an r-prox-regular subset of X with r ∈]0,+∞[.
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(a) Fix x ∈ bdryXS and choose any x
� ∈ N(S; x). According to Theorem 2.2, for

every x ∈ S, we have

〈
x�, x − x

〉 ≤ ‖x�‖
2r

‖x − x‖2 ,

which can be rewritten as

S ⊂
{
x ∈ X :

〈
x�, x − x

〉 ≤ ‖x�‖
2r

‖x − x‖2
}
.

If x� = 0, the latter inclusion is reduced to the evident one S ⊂ X, so assume
that x� �= 0. Set u� := x�

‖x�‖ + x
r and α := 〈 x�

‖x�‖ , x〉 + ‖x‖2
2r and note that for

each x ∈ S

〈
x�, x − x̄

〉 ≤ ‖x�‖
2r

‖x − x̄‖2

⇔ 〈
x�, x

〉 ≤ 〈x�, x̄〉+ ‖x�‖
2r

(‖x‖2 − 2 〈x, x̄〉 + ‖x̄‖2)

⇔ 〈
u�, x

〉− ‖x‖2
2r

≤ α,

hence

S ⊂ Qu�,r,α .

On the other hand, it is easy to check that

ρ := r2
∥∥u�∥∥2 − 2rα = r2 > 0.

Then, by virtue of Proposition 4.8

S ⊂ X
∖

B
(
r
x�

‖x�‖ + x, r
)
.

Hence, the setX \ Qu�,r,α is nothing but an r-ball which realizes the proximal
normal vector x�

‖x�‖ to S at x.
(b) Let x ∈ Tuber(S). Setd := dS(x), p := projS(x) and x

� := (1r − 1
d )p + x

d . The
second inclusion in (17) can be rewritten (see Proposition 4.8) in a geometric
way as follows:

S ∩ B(rx�,
√
r2‖x�‖2 − 2rα) = ∅ if r2‖x�‖2 − 2rα > 0.

Taking α = supu∈S qx�,r(u), we then have (see (23) and Remark 2.1)
r2‖x�‖2 − 2rα = r2, so the latter property can be translated into

S ∩ B
(
p + r

x − p
‖x − p‖ , r

)
= ∅.
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Figure 1. An r-prox-regular set with its r-open enlargement and some r-balls associated to prox-
imal normals. For the point x2, the complement of the ball B2 illustrates the separation property
provided by Theorem 4.6.

Given x� ∈ X, r ∈]0,+∞[ and α ∈ R such that ρ = r2‖x�‖2 − 2rα > 0, from
the above description of the closed set Qx�,r,α in Proposition 4.8 says that

Qx�,r,α = X \ B(rx�,√ρ),
hence Qx�,r,α is

√
ρ-prox-regular,

d(x,Qx�,r,α) = (
√
ρ − ∥∥x − rx�

∥∥)+ for all x ∈ X

and for every x ∈ X \ Qx�,r,α

ProjQx� ,r,α
(x) =

⎧⎪⎨
⎪⎩
S(rx�,√ρ) if x = rx�,{ √

ρ

‖x − rx�‖(x − rx�)+ rx�
}

otherwise.

It is worth mentioning that the above uniformly prox-regular sets Qx�,r,α are
never weakly sequentially closed and never weakly ball-compact whenever the
Hilbert space X is infinite-dimensional.

Remark 4.5: The √
ρ-prox-regularity of Qx�,r,α (with ρ := r2‖x�‖2 − 2rα) can

also be seen through [17, Theorem 4.1]. Indeed, keep the assumption ρ > 0 and
define the function f : X → R by setting

f (u) := 〈x�, u〉− ‖u‖2
2r

− α for all u ∈ X,
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soQx�,r,α = {f ≤ 0}. Set δ :=
√
ρ

r > 0 and consider any x ∈ bdryQx�,r,α . Choose
w ∈ B such that

sup
v∈B

〈
rx� − x, v

〉 = 〈rx� − x,w
〉 = ∥∥rx� − x

∥∥ .
According to Proposition 4.8, we have ‖rx� − x‖ = √

ρ, hence with v :=
−w ∈ B 〈∇f (x), v

〉 = 〈x� − x, v
〉 = −

√
ρ

r
= −δ.

A direct application of [17, Theorem 4.1] gives the r′-prox-regularity of Qx�,r,α
with r′ := rδ = √

ρ.

Remark 4.6: There is no hope for a kind ofMazur’s lemma for prox-regular sets.
Besides the non-sequential weak closedness observed above for the uniformly
prox-regular sets Qx�,r,α , let us mention that there exist uniformly prox-regular
sets which are weakly sequentially closed but not weakly closed. Indeed, with
(en)n∈N the natural hilbertian basis of l2

R
(N), the set

S := {√nen : n ∈ N}

is weakly sequentially closed (in particular, strongly closed), not weakly closed
[35, Example 3.31] and uniformly prox-regular thanks to the equality∥∥√pep − √

qeq
∥∥ = √p + q ≥ √

3 for all p, q ∈ N with p �= q.

5. Ball separation

This section is devoted to a ball separation for a prox-regular set and a strongly
convex set in X.

Definition 5.1: Let C be a nonempty closed subset of X and s ∈]0,+∞[. One
says that C is s-strongly convex (or strongly convex with constant s) provided
that it is an intersection of closed balls with radius s>0, otherwise stated there
exists a nonempty set L such that

C =
⋂
x∈L

B[x, s].

Let us recall some basic features for such sets.

Theorem5.2: Let C be a nonempty closed bounded convex subset of X with C �= X
and let s ∈]0,+∞[. The following assertions are equivalent:

(a) The set C is s-strongly convex.
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(b) For all (x, v) ∈ X2 with x ∈ bdryC and v ∈ N(C; x) ∩ S, one has

C ⊂ B[x − sv, s].

(c) For all x′ ∈ bdryC and for all (x, v) ∈ X2 with x ∈ bdryC and v ∈ N(C; x) ∩
S, one has 〈

v, x′ − x
〉 ≤ − 1

2s
∥∥x′ − x

∥∥2 .
(d) For all x, x′ ∈ C and for all v ∈ N(C; x), one has

〈
v, x′ − x

〉 ≤ −‖v‖
2s
∥∥x′ − x

∥∥2 .
Furthermore, any non-singleton strongly closed set has nonempty interior.

The equivalence (a) ⇔ (b) in the above theorem was proved by J.-P. Vial [36,
Theorem 1] and by E.S. Polovinkin and M.V. Balashov [37, Theorem 4.1.2], and
(c) is a translation of (b).

We will need another property which can be found in G.E. Ivanov’s book [31,
Theorem 1.12.3].

Theorem 5.3: Let S1 and S2 be nonempty sets in X. If S1 is r-prox-regular with
r ∈]0,+∞] and S2 is s-strongly convexwith 0< s< r. Then the set S1 + S2 is closed.

The result in the next proposition is known (see G.E. Ivanov [31,
Theorem 1.12.4]).We provide a simple proof different from that in [31]. Observe
first that, given two sets S1, S2 in X and x∗ ∈ NP(S1 + S2; x), for any xi ∈ Si
with x = x1 + x2 it directly results from the definition of proximal normal that
x∗ ∈ NP(S1; x1) ∩ NP(S2; x2).

Proposition 5.4: Let S1 be an r-prox-regular set in X and S2 be a strongly convex
set in X with constant s ∈]0, r[. Then, the set S1 + S2 is (r − s)-prox-regular.

Proof: We know by Theorem 5.3 that S1 + S2 is closed. Fix any x ∈ S1 + S2, so
there are xi ∈ Si, with i = 1, 2, such that x = x1 + x2. Take any x∗ ∈ NP(S1 +
S2; x) and any y ∈ S1 + S2. Choose yi ∈ Si, with i = 1, 2, such that y = y1 + y2.
We have x∗ ∈ N(S2; x2) ∩ NP(S1; x1). Using both (d) in Theorem 5.2 and (b) in
Theorem 2.2 we obtain

〈x∗, y1 + y2 − x〉 ≤ ‖x∗‖
2

(
1
r
‖y1 − x1‖2 − 1

s
‖y2 − x2‖2

)
. (24)

Set a := y1 − x1 and b := y2 − x2 and note that

−2
〈√

s
r
a,
√
r
s
b
〉

≤ s
r
‖a‖2 + r

s
‖b‖2, − s

r
‖a‖2 − r

s
‖b‖2 ≤ 2〈a, b〉,
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which entails that(
1 − s

r

)
‖a‖2 +

(
1 − r

s

)
‖b‖2 ≤ ‖a‖2 + ‖b‖2 + 2〈a, b〉 = ‖a + b‖2.

The latter inequality means that

1
r
‖a‖2 − 1

s
‖b‖2 ≤ 1

r − s
‖a + b‖2.

This combined with (24) yields 〈x∗, y1 + y2 − x〉 ≤ ‖x∗‖
2(r−s)‖y1 + y2 − x‖2, which

ensures the (r − s)-prox-regularity of S1 + S2 by (b) in Theorem 2.2 again. �

We can now give two ball separation results in the next two theorems between
a prox-regular set and a strongly convex set. Similar results were also established
by J.-P. Vial [9, Theorem 5.1] in finite-dimensional Euclidean spaces and by G.E.
Ivanov [31, Theorem 1.18.2] in Hilbert spaces.

Theorem 5.5: Let S be an r-prox-regular set of the Hilbert space X with r>0 and
C be a non-singleton closed set in X which is r-strongly convex with C ∩ S = {x̄}
and x̄ ∈ bdryC. Then, for some vector v ∈ S, one has the ball separation property

C ⊂ B[x̄ − rv, r] and B(x̄ − rv, r) ∩ S = ∅.

Proof: By Theorem 5.2 we know that intC �= ∅. Let us first show that (−x̄ +
intC) ∩ TB(S; x̄) = ∅. Indeed, suppose there is some h in the latter intersection.
There are sequences (tn)n tending to 0 with 0 < tn < 1 and (hn)n converging
to h in X such that x̄ + tnhn ∈ S for all n ∈ N. For n large enough, say n ≥ N,
we have hn ∈ −x̄ + intC, hence (since 0 ∈ cl (−x̄ + intC)) we see that tnhn ∈
−x̄ + intC. It ensues that x̄ + tNhN ∈ S ∩ intC, which is a contradiction.

By the emptiness of the above intersection and the Hahn-Banach separation
property there is some v ∈ X with ‖v‖ = 1 such that

〈v,−x̄ + z〉 < 0 ∀ z ∈ intC and 〈v, h〉 ≥ 0 ∀ h ∈ TB(S; x̄) = TC(S; x̄),

keep in mind that TC(S; x̄) is a closed convex cone and 0 ∈ cl (−x̄ + C). Using
the equalities (TC(S; x̄))◦ = NC(S; x̄) = NP(S; x̄), it results that v ∈ N(C; x̄) and
−v ∈ NP(S; x̄), thus by (b) in Theorem 5.2 and by Definition 2.1 combined
with (4) we have

C ⊂ B[x̄ − rv, r] and S ∩ B(x̄ − rv, r) = ∅,

which is the desired separation property. �

Theorem 5.6: Let S be an r-prox-regular set of the Hilbert space X with r>0 and
C be a closed set in X which is s-strongly convex with 0< s< r. For g := gap(S,C),
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where gap(S,C) := inf{‖x − y‖ : x ∈ S, y ∈ C}, assume that 0< g< r−s. Then
there exists a ∈ X such that

C ⊂ B[a, s] and S ∩ B(a, s + g) = ∅,
and the latter equality entails in particular S ∩ B[a, s] = ∅.

Proof: ByProposition 5.4 the set S−C is (r − s)-prox-regular and 0 �∈ S − Cwith
d(0, S − C) = g < r − s. The point 0 then admits a (unique) nearest point z̄ ∈
S − C. Write z̄ = x̄ − ȳ with x̄ ∈ S and ȳ ∈ C, so g = ‖x̄ − ȳ‖. Note that x̄ (resp.
ȳ) is a nearest point of ȳ (resp. x̄) in S (resp. C). Setting v := (ȳ − x̄)/‖ȳ − x̄‖,
we see that v belongs to N(C; ȳ) and NP(S; x̄). By (b) in Theorem 5.2 and by
Definition 2.1 combined with (4) we have

C ⊂ B[ȳ + sv, s] and S ∩ B(x̄ + rv, r) = ∅.
It remains to prove the inclusion B(ȳ + sv, s + g) ⊂ B(x̄ + rv, r). Take any y ∈
B(ȳ + sv, s + g) and note that

‖y − (x̄ + rv)‖ = ‖(y − (ȳ + sv)
)+ (ȳ − x̄ + sv − rv)‖

< s + g +
∥∥∥∥(ȳ − x̄)

(
1 − r − s

g

)∥∥∥∥ ,
then ‖y − (x̄ + rv)‖ < s + g + g( r−s

g − 1) = r, which confirms that B(ȳ +
sv, s + g) ⊂ B(x̄ + rv, r). This finishes the proof of the theorem. �
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