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DISCONTINUOUS SWEEPING PROCESS WITH PROX-REGULAR SETS
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Abstract. In this paper, we study the well−posedness (in the sense of existence and uniqueness
of a solution) of a discontinuous sweeping process involving prox-regular sets in Hilbert spaces. The
variation of the moving set is controlled by a positive Radon measure and the perturbation is assumed
to satisfy a Lipschitz property. The existence of a solution with bounded variation is achieved thanks to
the Moreau’s catching-up algorithm adapted to this kind of problem. Various properties and estimates
of jumps of the solution are also provided. We give sufficient conditions to ensure the uniform prox-
regularity when the moving set is described by inequality constraints. As an application, we consider
a nonlinear differential complementarity system which is a combination of an ordinary differential
equation with a nonlinear complementarily condition. Such problems appear in many areas such as
nonsmooth mechanics, nonregular electrical circuits and control systems.
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1. Introduction

The paper is devoted to the study of discontinuous sweeping processes through Mordukhovich limiting normal
cone to nonconvex prox-regular sets. The notion of sweeping process founds its roots back to the seminal
works of Jean Jacques Moreau in the seventies. Jean Jacques Moreau wrote more than 25 papers devoted to
the treatment of both theoretical and numerical aspects of the sweeping process as well as its applications in
unilateral mechanics. It was first considered for modeling the quasi-static evolution of elastoplastic systems. The
sweeping process consists in finding a trajectory t ∈ [0, T ] �→ u(t) ∈ C(t) satisfying the following generalized
Cauchy problem {

u̇(t) ∈ −N(C(t);u(t)) a.e. t ∈ [0, T ]
u(0) = u0 ∈ C(0), (1.1)

where N(C(t);u(t)) is the (outward) normal cone to the moving convex and closed set C(t) at the point u(t) in
the sense of Convex Analysis. This is a wonderful class of evolution problems subject to unilateral constraints. In
order to give an idea to the reader, let us consider a mechanical system with a finite number of degrees of freedom
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n ≥ 1. Let u = (u1, u2, . . . , un) ∈ R
n be the local coordinate in the manifold of the possible positions. The

motion of the system is described with the dependency of the position u(t) with respect to time t ∈ [0, T ]. The
velocity of the system is given by the derivative u̇(t) = (u̇1(t), . . . , u̇n(t)) if it exists. Let us assume that the
system is submitted to some unilateral constraints expressed geometrically by the following set of inequalities

C0(t) = {x ∈ R
n : g1(t, x) ≤ 0, . . . , gm(t, x) ≤ 0}, (1.2)

where each function gk : [0, T ]× R
n → R is supposed to be of class C1. The gradient

∇gk(t, x) := ∇gk(t, ·)(x) =
(
∂gk(t, ·)
∂x1

(x), . . . ,
∂gk(t, ·)
∂xn

(x)
)

is supposed to be different from zero (or at least in a neighborhood of the corresponding hypersurface gk(t, ·) = 0).
The subset C0(t) is called the moving feasible region. For simplicity of the expository, let us start with a single
inequality, i.e., m = 1. The general case of m inequality constraints will be considered at the end of the paper.
In this case, the moving point u(t) is required to be in the feasible region

C0(t) = {x ∈ R
n : g(t, x) ≤ 0}, t ∈ [0, T ].

Let t ∈ [0, T ] be an instant such that the right-side velocity v+(t) := u̇+(t) exists. The right-derivative of the
following scalar function τ �→ φ(τ) = g(τ, u(τ)) at τ = t is given by

φ′+(t) =
∂g

∂t
(t, u(t)) + 〈v+(t),∇g(t, u(t))〉.

If g(t, u(t)) = 0, then it is easy to see that

∂g

∂t
(t, u(t)) + 〈v+(t),∇g(t, u(t))〉 = φ′+(t) ≤ 0. (1.3)

This leads Moreau to introduce the following set-valued mapping Γ : [0, T ]× R
n ⇒ R

n defined by

Γ (t, x) =
{

R
n if g(t, x) < 0{
v ∈ R

n : ∂g
∂t (t, x) + 〈v,∇g(t, x)〉 ≤ 0

}
if g(t, x) ≥ 0.

Using the definition of Γ , the observation (1.3) means

u̇+(t) ∈ Γ (t, u(t)). (1.4)

Moreau proved a viability lemma showing that if the function t �→ u(t) is absolutely continuous on [0, T ] and if
u̇(t) ∈ Γ (t, u(t)) holds for a.e. t ∈ [0, T ], then if the inequality g(t, u(t)) ≤ 0 is satisfied at the initial instant t0,
it is satisfied for every subsequent t.

With the lazy selector m(t, x) of Γ (t, x) defined as its element of minimal norm, that is, m(t, x) =
proj Γ (t,x)(0), let us consider the ordinary differential equation

u̇(t) = m(t, u(t)). (1.5)

Moreau showed that the solution of (1.5), called the lazy solution of the differential inclusion associated with
Γ (·, ·), is exactly the solution of the following sweeping process

u̇(t) ∈ −N(C0(t);u(t)) a.e. t ∈ [0, T ]. (1.6)

This means that if g(t, u(t)) < 0, then u(t) is in the interior of C0(t) and the normal cone is reduced to zero. If
g(t, u(t)) = 0, then there exists a Lagrange multiplier �(t) ≥ 0 such that

u̇(t) = −�(t)∇g(t, u(t)), (1.7)
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with the following complementarity conditions

0 ≤ �(t) ⊥ g(t, u(t)) ≤ 0. (1.8)

The lazy solution (sometimes called the slow solution) possesses some crucial properties and plays an important
role in economics for the study of resource allocation mechanisms (see, e.g., [10,13,15]) as well as in mechanics
(see, e.g., [26]). Let us notice that in the case when the moving set is described by an inequality constraint,
the sweeping process (1.6) is connected with the steepest descent method (1.7) as well as complementarity
conditions (1.8).

Translating inclusion (1.6) to a mechanical language, we obtain the following interpretation:

− if the position u(t) of a particule lies in the interior of the moving set C0(t), then u̇(t) = 0, which means
that the particule remains at rest;

− when the boundary of C0(t) catches up the particle, then this latter is pushed in an inward normal direction
by the boundary of C0(t) to stay inside C0(t) and satisfies the constraint. This mechanical visualization
leads Moreau to call this problem the sweeping process: the particule is swept by the moving set.

For the general case where the feasible set C0(t) is defined by m inequality constraints (1.2), if some qualification
condition is satisfied on the constraints gk(t, ·), then the sweeping process (1.6) is equivalent to the following
Differential Complementarity System:

⎧⎪⎨
⎪⎩
u̇(t) = −

m∑
k=1

�k(t)∇gk(t, u(t)) a.e. t ∈ [0, T ]

0 ≤ �k(t) ⊥ gk(t, u(t)) ≤ 0, k = 1, 2, . . . ,m, t ∈ [0, T ].

Moreau studied, in a Hilbert space, the sweeping process under the convexity of the moving closed set C(t)
in the absolutely continuous situation as well as when merely bounded variation property is satisfied. The
convexity of the moving set C(t) is equivalent to the monotonicity of the normal cone N(C(t); ·), which ensures
that if u1(·) and u2(·) are two solutions of the sweeping process (1.1), then the function t �→ ‖u1(t) − u2(t)‖ is
nonincreasing. Hence, the sweeping process (1.1) with initial condition u0 possesses at most one solution u(·)
satisfying u(0) = u0.

The existence of at least one solution of problem (1.1) can be performed by the so-called “catching-up
algorithm”. Let us fix k ∈ N and choose a time discretization

0 = tk0 < tk1 < . . . < tkN−1 < tkN = T, with tki+1 − tki ≤ 1
k
, 0 ≤ i ≤ N − 1.

Using an implicit Euler discretization for problem (1.1) and the fact that [I + N(C(t); ·)]−1 = proj C(t)(·) for
all t ∈ [0, T ], we get

uk
0 = u0, uk

i+1 = projC(tk
i+1)

(uk
i ), i = 0, 1, . . . , N − 1. (1.9)

Using a linear interpolation, it is possible to construct a sequence of mappings t �→ uk(t), which contains a
subsequence converging to some u(·) satisfying (1.1) for a.e. t ∈ [0, T ]. The key assumption for the proof is the
control of the moving set C(t) which is allowed to change shape with respect to time. If the set C(t) moves
in a Lipschitz continuous way with respect to the Hausdorff distance, then there exists a unique absolutely
continuous solution to problem (1.1).

There are some situations in mechanical systems where discontinuous motions of the moving set C(t) occurs.
More precisely, the set-valued mapping t �→ C(t) is only assumed to have a bounded variation with respect to the
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Hausdorff distance. Taking into account the possible jumps, Moreau transformed the model (1.1) to a measure
differential inclusion and proves the following existence and uniqueness result:
Assume that the sets C(t) of a Hilbert space H are nonempty closed convex sets for which there is a positive
Radon measure μ on [0, T ] such that, for each y ∈ H,

d(y, C(t)) ≤ d(y, C(s)) + μ(]s, t]), for all 0 ≤ s ≤ t ≤ T.

Then, the measure differential evolution inclusion{
du ∈ − N(C(t);u(t))
u(0) = u0 ∈ C(0) (1.10)

admits one and only one right continuous solution with bounded variation.
The convexity assumption of the moving set C(t) can be too restrictive in some applications. This is the case

for example when the set C(t) is given by (1.2) and at least one of the sublevel sets {gk(t, ·) ≤ 0} is nonconvex.
In [32], Valadier studied (1.1), in the absolutely continuous framework, with nonconvex set fulfilling a regularity
property for the normal cone; the main case is the complement C(t) of the interior of a closed convex set K(t) of
the space R

n, i.e., C(t) = R
n \ Int (K(t)). This can model a material point moving outside a moving convex set

K(t) being pushed outwards normal direction when it is caught up by the boundary of K(t). Valadier obtained
an existence result for problem (1.1), which can be considered as one of the first results in the nonconvex
setting. The normal cone in this case is in the sense of Clarke. We can also cite the works of Benabdellah [2]
and Colombo and Goncharov [9] where an existence result of (1.1) with general nonconvex subsets C(t) ⊂ R

n

was given.
Usually in mechanical systems, external forces are applied, which leads to consider the perturbed version of

problem (1.10)
du ∈ −N(u(t);C(t)) − F (t, u(t)), (1.11)

where F is a set-valued mapping from [0, T ] × R
n into weakly compact convex sets. Castaing and Monteiro

Marques extended the result of Valadier to the perturbed problem (1.11). It seems that the setting of prox-
regular subset is well appropriate for handling nonconvex sweeping process in general Hilbert spaces. The
prox-regularity assumption of the sets C(t) allows the use of Moreau’s catching-up algorithm in choosing uk

i

in (1.9) sufficiently close to the boundary of C(tki+1). This was considered, in the absolutely continuous case, by
Colombo and Goncharov [9] with F = 0 and by Bounkhel and Thibault [4] with general set-valued mappings F .
Edmond and Thibault in [12] considered the case when the sets C(t) are prox-regular and move with a bounded
variation in infinite dimensional Hilbert space H, but under the compact growth condition

F (t, x) ⊂ β(t)(1 + ‖x‖)K, (1.12)

where K is a compact subset of H.
Recently, Maury and Venel [18] used the perturbed sweeping process involving prox-regular sets for the

modeling of crowd motion in the case of emergency evacuation.
The existence of the compact set K in the growth condition (1.12) can be too restrictive in some situations in

an infinite dimensional Hilbert space. So, our aim in this paper is to prove, for a Hilbert space H, the existence
and uniqueness of solution for the measure differential inclusion

du ∈ −N(u(t);C(t)) − f(t, u(t)), (1.13)

where f(t, ·) : H → H is a mapping which is Lipschitz on bounded sets and C(t) is a prox-regular set of the
Hibert space H which has a bounded variation with respect to t.

In nonsmooth mechanics, the feasible region is usually expressed in the form of finite intersection of m
inequalities (1.2). Traditionally each inequality corresponds to the so-called unilateral constraint. As we just



DISCONTINUOUS SWEEPING PROCESS WITH PROX-REGULAR SETS 5

mentioned above, the prox-regularity of the set C(t) plays an important role in the existence and uniqueness
proofs. One remaining question subsists: under which conditions on the functions gk : [0, T ] × R

n → R
n,

k = 1, 2, . . . ,m, the set C0(t) in (1.2) is prox-regular? The answer to this question is discussed in Section 9 with
gk : [0, T ]×H → R, where H is a Hilbert space.

The paper is organized as follows:
In Sections 2 and 3, we introduce notations and recall some important notions which will be used through

the paper. The next section is devoted to the concept of solution for the measure differential inclusion (1.13).
In Sections 5−7 we study the existence and the uniqueness of solution for (1.13). Then, we recover the classical
case, i.e., the absolutely continuous case. In Section 9, we give sufficient conditions to ensure the uniform prox-
regularity of a moving set described by inequality constraints. Then, we provide an application of our results to
the theory of nonlinear differential complementarity systems.

2. Notation and preliminaries

In this section, we recall the backgrounds and preliminaries that will be useful for the rest of the paper.
Throughout, N is the set of positive integers n = 1, . . . For I a nonempty interval of R, λ stands for the
Lebesgue measure. In all the paper, H is a real Hilbert space endowed with the inner product 〈·, ·〉 and the
associated norm ‖·‖; its closed unit ball centered at zero will be denoted by B. For any subset S of H, coS
stands for the closed convex hull of S and dS is the distance function from S, i.e.,

dS(x) := inf
s∈S

‖x− s‖ for all x ∈ H.

For a set A ⊂ R, the notation 1A stands for the characteristic function in the sense of measure theory, i.e., for
all x ∈ R, 1A(x) = 1 if x ∈ A and 1A(x) = 0 otherwise.

2.1. Support function

For any subset S of the real Hilbert space H, its support function σ(·, S) is defined by

σ(ζ, S) := sup
x∈S

〈ζ, x〉 for all ζ ∈ H.

It is well-known that, for any two closed convex subsets S1, S2 of H, one has

S1 ⊂ S2 ⇐⇒ σ(·, S1) ≤ σ(·, S2). (2.1)

2.2. Normal cone, subdifferential

In this subsection, S is a nonempty susbset of the real Hilbert space H.
The Clarke tangent cone of S at x ∈ S, denoted by TC(S;x), is the set of h ∈ H such that, for every sequence

(xn)n∈N of S with xn −→
n→+∞ x and for every sequence (tn)n∈N of positive reals with tn −→

n→+∞ 0, there exists a

sequence (hn)n∈N of H with hn −→
n→+∞ h satisfying

xn + tnhn ∈ S for all n ∈ N.

This set is obviously a cone containing zero and it is known to be closed and convex. The polar cone of TC(S;x)
is the Clarke normal cone NC(S;x) of S at x, that is,

NC(S;x) :=
{
ζ ∈ H : 〈ζ, h〉 ≤ 0, ∀h ∈ TC(S;x)

}
.

If x /∈ S, by convention TC(S;x) and NC(S;x) are empty.
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Let U be a neighborhood of a point x ∈ H and f : U −→ R∪{−∞,+∞} be an extended real-valued function
which is finite at x. The Clarke subdifferential ∂Cf(x) of f at x is defined by

∂Cf(x) :=
{
ζ ∈ H : (ζ,−1) ∈ NC

(
epif ; (x, f(x))

)}
,

where H× R is endowed with the usual product structure and epi f is the epigraph of f , that is,

epi f := {(x′, r) ∈ H× R : x′ ∈ U, f(x′) ≤ r}.

If f is not finite at x, we see that ∂Cf(x) = ∅. In addition to the latter definition, there is another link between
the Clarke normal cone and the Clarke subdifferential, given by

∂CψS(x) = NC(S;x),

where ψS denotes the indicator function of the subset S of H, i.e., ψS(x′) = 0 if x′ ∈ S and ψS(x′) = +∞
otherwise.

When f is γ−Lipschitz near x for some real γ ≥ 0, one defines its Clarke directional derivative at x in the
direction h ∈ H by

fo(x;h) := lim sup
t↓0,x′→x

t−1
(
f(x′ + th) − f(x′)

)
,

where in the whole paper t ↓ 0 means t→ 0 with t > 0. Recall that under such a Lipschitz hypothesis, one has

∂Cf(x) = {ζ ∈ H : ∀h ∈ H, 〈ζ, h〉 ≤ fo(x;h)},

so, as readily seen, ∂Cf(x) ⊂ γB. In particular, for any y ∈ H, one has ∂CdS(y) ⊂ B.
For any x ∈ H, one defines the (possibly empty) set of all nearest points of x in S by

ProjS(x) := {y ∈ S : dS(x) = ‖x− y‖} .

When ProjS(x) contains one and only one point ȳ, we will denote by PS(x) or projS(x) the unique element,
that is, PS(x) := ȳ. Since x′ ∈ ProjS(x) amounts to writing x′ ∈ S and ‖x− x′‖2 ≤ ‖x− y‖2 for all y ∈ S, it is
readily seen that, for all x ∈ H

x′ ∈ ProjS(x) ⇐⇒ x′ ∈ S and 〈x− x′, y − x′〉 ≤ 1
2
‖y − x′‖2 for all y ∈ S. (2.2)

A vector ζ ∈ H is said to be a proximal normal to S at x ∈ S whenever there exists a real r > 0 such
that x ∈ ProjS(x+ rζ). The set NP (S;x) (which is obviously a cone of H containing 0) of all proximal normal
vectors to S at x is called the proximal normal cone of S at x. For v ∈ H such that ProjS(v) is a singleton, it
is straightforward that

v − PS(v) ∈ NP (S;PS(v)). (2.3)

Weak limits of proximal normal vectors define the Mordukhovich limiting normal cone NL(S;x), that is, for
ζ ∈ H, ζ ∈ NL(S;x) if and only if (see [19]) there are sequences (xn)n in S convering to x and (ζn)n weakly
converging to ζ with ζn ∈ NP (S;xn) for all n ∈ N. As for the Clarke normal cone, one puts NP (S;x) =
NL(S;x) = ∅ if x /∈ S, so

NP (S;x) ⊂ NL(S;x) ⊂ NC(S;x) for all x ∈ H. (2.4)

For a neighborhood U of x ∈ H and an extended real-valued function f : U −→ R ∪ {−∞,+∞} which is
finite at x, putting Ef := epi f and yx := (x, f(x)) one defines the proximal subdifferential ∂P f(x) and the
Mordukhovich limiting subdifferential ∂Lf(x) of f at x by

∂P f(x) =
{
ζ ∈ H : (ζ,−1) ∈ NP

(
Ef ; yx

)}
, ∂Lf(x) =

{
ζ ∈ H : (ζ,−1) ∈ NL

(
Ef ; yx

)}
,
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so ∂P f(x) = ∂lf(x) = ∅ whenever f is not finite at x. It is clear from (2.4) that

∂P f(x) ⊂ ∂Lf(x) ⊂ ∂Cf(x).

It is well-known that, for ζ ∈ H, ζ ∈ ∂P f(x) if and only if there is some real σ ≥ 0 and a neighborhood V ⊂ U
of x such that

〈ζ, u − x〉 ≤ f(u) − f(x) + σ‖u− x‖2 for all u ∈ V. (2.5)

As for the Clarke subdifferential, one has,

∂PψS(x) = NP (S;x) and ∂LψS(x) = NL(S;x) for all x ∈ H.
Moreover, if S is closed, the following relations hold true for all x ∈ S (see, e.g., [4, 19]):

∂PdS(x) = NP (S;x) ∩ B (2.6)

and
∂LdS(x) ⊂ NL(S;x) ∩ B, ∂CdS(x) ⊂ NC(S;x) ∩ B. (2.7)

For more details, we refer to [8, 19].

2.3. Prox-regular sets

In this subsection, we will recall the definition and some properties of prox-regular sets. Let S be a nonempty
closed subset of the real Hilbert space H and r ∈ ]0,+∞]. We will use the convention 1

r = 0 whenever r = +∞.

Definition 2.1. The nonempty closed set S is said to be r-prox-regular (or uniformly prox-regular with constant
r) whenever, for all x ∈ S, for all ζ ∈ NL(S;x) ∩ B and for all t ∈]0, r[, one has x ∈ ProjS(x+ tζ).

It seems that Federer [14] was the first to consider this class of sets in the finite-dimensional framework.
Concerning Theorem 2.2 and Proposition 2.3 below in the context of Hilbert spaces, we refer, for example, to
the paper [28] by Poliquin, Rockafellar and Thibault.

Theorem 2.2. The following assertions are equivalent.
(a) The set S is r-prox-regular.
(b) For all x1, x2 ∈ S, for all ζ ∈ NL(S;x1), one has

〈ζ, x2 − x1〉 ≤ 1
2r

‖ζ‖ ‖x1 − x2‖2
.

(c) For all x1, x2 ∈ S, for all ζ1 ∈ NL(S;x1), for all ζ2 ∈ NL(S;x2), one has

〈ζ1 − ζ2, x1 − x2〉 ≥ −1
2

(‖ζ1‖
r

+
‖ζ2‖
r

)
‖x1 − x2‖2

.

The following facts given by the next result are fundamental.

Proposition 2.3. Assume that the set S is r-prox-regular and define Ur(S) = {u ∈ H : dS(x) < r}. The fol-
lowing assertions hold true.

(a) For any x ∈ S, one has

NP (S;x) = NL(S;x) = NC(S;x) and ∂PdS(x) = ∂LdS(x) = ∂CdS(x).

(b) For any x ∈ Ur(S), the set ProjS(x) is a singleton, i.e., PS(x) is well-defined.
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(c) The well-defined mapping PS : Ur(S) −→ S is locally Lipschitz on Ur(S).

According to (a), whenever S is uniformly prox-regular, we set

N(S;x) := NP (S;x) = NL(S;x) = NC(S;x) for all x ∈ S.

We also need to recall another useful characterization of the uniform prox-regularity.

Proposition 2.4. Let s ∈]0,+∞] be an extended real. The set S is r-prox-regular if and only for all x, x′ ∈ S
with ‖x− x′‖ < 2r and for all ζ ∈ NC(S;x), 〈ζ, x′ − x〉 ≤ 1

2r ‖ζ‖ ‖x′ − x‖2.

2.4. Radon measure

Since we deal with measure differential inclusions, some preliminary results about vector measure theory are
necessary. Most of the results can be found in [1, 11]. For the convenience of the reader, we recall them in this
part of the paper. Throughout this subsection, I denotes a real interval with nonempty interior. For ε > 0 and
t ∈ I, we will put I(t, ε) := I ∩ [t− ε, t+ ε].

Given two positive Radon measures ν1 and ν2 on I, we know (see [16]) that the limit (in which we use the
convention 0

0 = 0)
dν1
dν2

(t) := lim
ε↓0

ν1(I(t, ε))
ν2(I(t, ε))

(2.8)

exists and is finite for ν2-almost every t ∈ I. This nonnegative function is the derivative of the measure ν1
with respect to ν2. When the measure ν1 is absolutely continuous with respect to ν2, the function dν1

dν2
(·) is a

density of ν1 relative to ν2, otherwise stated the equality ν1 = dν1
dν2

(·)ν2 holds. Under such an absolute continuity
assumption, a mapping u(·) : I −→ H is ν1-integrable on a subsinterval J ⊂ I if and only if the mapping
t �−→ u(t)dν1

dν2
(t) is ν2-integrable on J ; furthermore, in that case,

∫
J

u(t)dν1(t) =
∫

J

u(t)
dν1
dν2

(t)dν2(t). (2.9)

If the two Radon measures ν1 and ν2 are each one absolutely continuous with respect to the other one, it will
be convenient for us to declare that they are absolutely continuously equivalent.

If for some t ∈ I, ν2({t}) > 0, (keeping in mind that λ denotes the Lebesgue measure) the relation (2.8) says
that dλ

dν2
(t) = λ({t})

ν2({t}) = 0. So, for ν2-almost every t ∈ I,

dλ
dν2

(t)ν2({t}) = 0. (2.10)

2.5. Mapping of locally bounded variation and differential measure

From now on, unless otherwise stated, I denotes a real interval of R with nonempty interior.
The concept of solution of a measure differential inclusion involves in general mappings of locally bounded

variation. The following definition is in this sense.
Let u : I −→ H be a mapping from I into H. Let a, b ∈ R with a < b and [a, b] ⊂ I. A subdivision

σ of [a, b] being a finite sequence (t0, . . . , tk) ∈ R
k+1 with k ∈ N such that, a = t0 < . . . < tk = b, one

associates with σ, the real Sσ :=
k∑

i=1

‖u(ti) − u(ti−1)‖ . The variation of u on [a, b] is defined as the extended

real var(u; a, b) := sup
σ∈S

Sσ, where S is the set of all subdivisions of [a, b]. The mapping u is said to be of (or, with)

bounded variation on [a, b] (BV on [a, b], for short) if var(u; a, b) < +∞. Whenever u is of bounded variation on
any compact interval included in I, one says that u is of (or, with) locally bounded variation on I (LBV on I,
for short). If I is a compact interval of R, it is obvious that, u is BV on I if and only if it is LBV on I.
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It is well-known that a mapping u : I −→ H of locally bounded variation on I has one sided limits at each
point of I. In such a case, one defines u(τ−) := lim

t↑τ
u(t), for each τ ∈ I which is not the left endpoint of I. For

more details about mappings of locally bounded variation, we refer to [11, 22].
Consider a right-continuous mapping u(·) : I −→ H with locally bounded variation on I. With this mapping

is associated a vector measure du on I with values in H (see Dinculeanu [11] and Moreau [22]) such that, for
all s, t ∈ I with s ≤ t,

u(t) = u(s) +
∫

]s,t]

du.

This measure du is called the differential measure (or the Stieltjes measure) of u(·).
Reciprocally, let ν be a positive Radon measure on I, u(·) : I −→ H a mapping and z(·) ∈ L1

loc(I,H, ν).
Given T0 ∈ I, if for any t ∈ I,

u(t) = u(T0) +
∫

]T0,t]

z(s) dν(s),

then u(·) is of locally bounded variation, right continuous on I, and clearly du = z(·) dν. Thus, the mapping
z(·) is a density of the measure du relative to ν.

Setting I−(t, ε) = [t− ε, t] ∩ I and I+(t, ε) = [t, t+ ε] ∩ I with ε > 0, for ν-almost every t ∈ I, according to
Moreau and Valadier [27] the limits below exist in H and

z(t) =
du
dν

(t) := lim
ε↓0

du(I(t, ε))
ν(I(t, ε))

= lim
ε↓0

du(I+(t, ε))
ν(I+(t, ε))

= lim
ε↓0

du(I−(t, ε))
ν(I−(t, ε))

· (2.11)

From this, it is not difficult to verify that, one also has

du
dν

(t) = lim
s↑t

du(]s, t] ∩ I)
ν(]s, t] ∩ I) · (2.12)

Above L1
loc(I,H, ν) denotes the set of (equivalence classes of) mappings Bochner ν-integrable on every compact

interval included in I. Similarly, Lp(I,H, ν) will stand for the space of (equivalence classes of) measurable
mappings u(·) from I into H with ‖u(·)‖p in the usual space Lp(I,R, ν).

3. Preparatory results

This section is devoted to recall some specific results which are fundamental in the rest of the paper. We
begin with a Gronwall type lemma, which is due to Monteiro Marques [17].

Lemma 3.1. Let I be a proper interval of R with a real T0 ∈ I as its left endpoint. Let ν be a positive Radon
measure on I, and g, ϕ : I −→ [0,+∞[ two functions such that:

(i) For some fixed θ ∈ [0,+∞[, one has, for all t ∈ I \ {T0}, 0 ≤ g(t)ν({t}) ≤ θ < 1 and g ∈ L1
loc(I,R, ν) with

g(·) ≥ 0;

(ii) for some fixed α ∈ [0,+∞[, one has, for all t ∈ I, ϕ(t) ≤ α +
∫
]T0,t]

g(s)ϕ(s) dν(s) and ϕ ∈ L∞
loc(I,R, ν)

with ϕ(·) ≥ 0.

Then, for all t ∈ I,

ϕ(t) ≤ α exp

(
1

1 − θ

∫
]T0,t]

g(s)dν(s)

)
.

The next useful proposition is a consequence of a more general inequality due to Moreau [20, 22].
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Proposition 3.2. Let ν be a positive Radon measure on a proper real interval I and u(·) : I −→ H be a
mapping from I into the real Hilbert space H which is right continuous with locally bounded variation and such
that the differential measure du has a density du

dν relative to ν. Then, the function Φ(·) = ‖u(·)‖2 : I −→ R is
a right continuous function of locally bounded variation whose differential measure dΦ satisfies, in the sense of
the order of real measures,

dΦ ≤ 2
〈
u(·), du

dν
(·)

〉
dν.

The following lemma will be useful. We refer to [4] for the proof.

Lemma 3.3. Let S a subset of the real Hilbert space H which is r-prox-regular, with r ∈]0,+∞]. Let x ∈ S and
ζ ∈ ∂P dS(x). Then, for all z ∈ H such that dS(z) < r, one has

〈ζ, z − x〉 ≤ 1
2r

‖z − x‖2 +
1
2r
d2

S(z) +
(

1
r
‖z − x‖ + 1

)
dS(z),

and
〈ζ, z − x〉 ≤ 2

r
‖z − x‖2 + dS(z).

The proof of existence of a solution of our measure differential sweeping process requires the following result.
Because of its own interest, the proof with a positive measure μ will be given in a general form.

Proposition 3.4. Let C : I ⇒ H be a set-valued mapping from a proper real interval I into the real Hilbert
space H satisfying:

(i) For some extended real r ∈]0,+∞], all the sets C(t) are r-prox-regular;

(ii) There exists a positive measure μ on I such that, for all s1, s2 ∈ I with s1 ≤ s2, for all y ∈ H,

dC(s2)(y) − dC(s1)(y) ≤ μ(]s1, s2]).

Let (tn)n∈N be a sequence of I converging to some t ∈ I with tn ≥ t for all n ∈ N, (xn)n∈N a sequence of H
converging to some x ∈ C(t) with xn ∈ C(tn) for all n ∈ N. If there exists N ∈ N with μ(]t, tN ]) < +∞, then,
for any z ∈ H, one has

lim sup
n→+∞

σ(z, ∂PdC(tn)(xn)) ≤ σ(z, ∂PdC(t)(x)).

Proof. Assume there exists N ∈ N with μ(]t, tN ]) < +∞. Let us fix any z ∈ H. Extracting a subsequence, we
may suppose (thanks to (2.6)), without loss of generality, that (σ(z, ∂PdC(tn)(xn))n∈N converges and then

lim sup
n→+∞

σ(z, ∂PdC(tn)(xn)) = lim
n→+∞σ(z, ∂P dC(tn)(xn)).

For every n ∈ N, as C(tn) is r-prox-regular, one has ∂P dC(tn)(xn) = ∂CdC(tn)(xn) and then ∂PdC(tn)(xn) is
weakly compact. So, for all n ∈ N, there exists ξn ∈ ∂P dC(tn)(xn) such that σ(z, ∂P dC(tn)(xn)) = 〈ξn, z〉. Since
‖ξn‖ ≤ 1 for all n ∈ N, we may suppose, without loss of generality, that (ξn)n∈N converges weakly to some
ξ ∈ H. We are going to prove that ξ ∈ ∂CdC(t)(x). Fix any u ∈ H. As xn ∈ C(tn) for all n ∈ N, there exists a
real α0 > 0 such that for all α ∈ ]0, α0[, one has for all n ∈ N,

dC(tn)(xn + αu) ≤ ‖αu‖ < r.

Then, for all α ∈ ]0, α0[, one has for all n ∈ N, via Lemma 3.3,

〈ξn, αu〉 ≤ 2
r
α2 ‖u‖2 + dC(tn)(xn + αu). (3.1)
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Using (ii), one also has for all α ∈]0, α0], for all n ∈ N,

dC(tn)(xn + αu) ≤ dC(t)(x+ αu) + μ(]t, tn]) + ‖xn − x‖ .
Let us show that lim

n→+∞μ(]t, tn]) = 0. Extracting a subsequence if necessary, we may suppose that (tn)n∈N is

nonincreasing (keep in mind that tn ≥ t for all n ∈ N). One observes that

lim
n→+∞μ(]t, tn]) = μ

(⋂
k∈N

]t, tk]

)
= 0.

We deduce for all α ∈ ]0, α0[, lim sup
n→+∞

dC(tn)(xn + αu) ≤ dC(t)(x+ αu). Using (3.1), we obtain for all α ∈]0, α0]

〈ξ, αu〉 ≤ 2
r
α2 ‖u‖2 + dC(t)(x+ αu).

As a result, since dC(t)(x) = 0,

〈ξ, u〉 ≤ lim inf
α↓0

1
α

(
dC(t)(x+ αu) − dC(t)(x)

) ≤ d◦C(t)(x;u).

This being true for any u ∈ H, it results that ξ ∈ ∂CdC(t)(x) = ∂PdC(t)(x). Consequently, one has

lim
n→+∞ σ(z, ∂PdC(tn)(xn)) = lim

n→+∞ 〈ξn, z〉 = 〈ξ, z〉 ≤ σ(z, ∂PdC(t)(x)).

The proof is then complete. �

With the normal cone, we have the following property on the nearest points of a uniformly prox-regular set.

Proposition 3.5. Let S be an r-prox-regular set of the real Hilbert space H with r ∈]0,+∞], and let x, x′ ∈ H.
If x− x′ ∈ N(S;x′) and ‖x− x′‖ ≤ r (resp. ‖x− x′‖ < r) then x′ ∈ ProjS(x) (resp. x′ = PS(x)).

Proof. Assume that, x−x′ ∈ N(S;x′) and ‖x− x′‖ ≤ r. The nonvacuity of N(S;x′) gives us x′ ∈ S. Combining
the r-prox-regularity of S and (b) of Theorem 2.2, we get

〈x− x′, y − x′〉 ≤ 1
2r

‖x− x′‖ ‖y − x′‖2 for all y ∈ S.

So, the inequality ‖x′ − x‖ ≤ r yields

〈x− x′, y − x′〉 ≤ 1
2
‖y − x′‖2 for all y ∈ S.

Since x′ ∈ S, the latter inequality and (2.2) entails that x′ ∈ ProjS(x). If in addition, ‖x− x′‖ < r, then
dS(x) ≤ ‖x− x′‖ < r. According to Proposition 2.3, x′ = PS(x). �

4. Concept of solution

Following [1, 12], we define the concept of solution for our measure differential inclusion as follows:

Definition 4.1. Let I be any (not necessarily bounded) proper interval of R with a real T0 ∈ I as its left
endpoint. Let C : I ⇒ H be a set-valued mapping from I into the nonempty closed sets of the real Hilbert space
H, and let f : I × H −→ H be a mapping. Assume that, there exists a positive Radon measure μ on I (thus
finite on every compact subinterval of I) such that

|d(y, C(s)) − d(y, C(t))| ≤ μ(]s, t]) for all s, t ∈ I with s ≤ t.

Given u0 ∈ C(T0), a mapping u : I −→ H is a solution of the measure differential inclusion

(P)

{
−du ∈ N(C(t);u(t)) + f(t, u(t))
u(T0) = u0



12 S. ADLY ET AL.

whenever:

(a) the mapping u(·) is of locally bounded variation on I, right continuous on I and satisfies u(T0) = u0 and
u(t) ∈ C(t) for all t ∈ I;

(b) there exists a positive Radon measure ν absolutely continuously equivalent to μ+λ with respect to which
du admits a density, so du

dν (·) is defined ν-a.e. and belongs to L1
loc(I,H, ν) with du = du

dν (·)ν in the sense
that

du(]s, t]) =
∫

]s,t]

du
dν

(τ) dν(τ), for all s, t ∈ I with s ≤ t;

(c) du
dν (t) + f(t, u(t))dλ

dν (t) ∈ −N(C(t);u(t)) ν-a.e. t ∈ I.

As in [1], the concept of solution does not depend on the measure ν in the sense that a mapping u(·) : I −→ H
satisfying (a) above is a solution of P if and only if (b) and (c) hold for any positive Radon measure ν which is
absolutely continuously equivalent to μ + λ. Indeed, let u(·) : I −→ H be a solution of P and let ν0, given by
the definition of a solution to P , be an associated Radon measure absolutely continuously equivalent to μ + λ
for which

du
dν0

(t) + f(t, u(t))
dλ
dν0

(t) ∈ −N(C(t);u(t)) ν0-a.e. t ∈ I. (4.1)

Fix any other Radon measure ν absolutely continuously equivalent to μ+ λ. Then, the measures ν0 and ν are
absolutely continuously equivalent. Consequently, dν0

dν (·) and dν
dν0

(·) exist as densities, and for du
dν (·) and the

derivative dλ
dν (·) the following equalities hold

du
dν

(t) =
du
dν0

(t)
dν0
dν

(t),
dλ
dν

(t) =
dλ
dν0

(t)
dν0
dν

(t) ν-a.e. t ∈ I.

This yields according to (4.1)

du
dν

(t) + f(t, u(t))
dλ
dν

(t) ∈ −N(C(t);u(t)) ν-a.e. t ∈ I.

5. Existence result

Now, we can state and prove one of the main results of the paper.

Theorem 5.1. Let r ∈]0,+∞], T0, T ∈ R with T0 < T , I := [T0, T ], and C(·) : I ⇒ H be a set-valued mapping
from I into the r-prox-regular subsets of the real Hilbert space H for which there exists a positive Radon measure
μ on I such that,

|d(y, C(t)) − d(y, C(s))| ≤ μ (]s, t]) for all y ∈ H, for all s, t ∈ I with s ≤ t. (5.1)

Assume that, one has sup
s∈]T0,T ]

μ({s}) < r
2 . Let f : I ×H −→ H be a mapping such that:

(i) the mapping f(·, x) is Lebesgue measurable for each x ∈ H and there exists a nonnegative function β : I −→ R

with β ∈ L1(I,R, λ) such that, for all t ∈ I, x ∈ ⋃
τ∈I

C(τ),

‖f(t, x)‖ ≤ β(t)(1 + ‖x‖);

(ii) for each real α ≥ 0, there exists some nonnegative function Lα : I −→ R with Lα ∈ L1(I,R, λ) such that,
for all t ∈ I, for all x, y ∈ αB,

‖f(t, x) − f(t, y)‖ ≤ Lα(t) ‖x− y‖ .
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Then, for each u0 ∈ C(T0), the following measure differential inclusion sweeping process on [T0, T ]{
−du ∈ N(C(t);u(t)) + f(t, u(t))
u(T0) = u0

has at least one solution which satisfies both inequalities∥∥u(t) − u(t−)
∥∥ ≤ μ({t}) for all t ∈]T0, T ], (5.2)

and ∥∥∥∥du
dν

(t) + f(t, u(t))
dλ
dν

(t)
∥∥∥∥ ≤ dμ

dν
(t) + ‖f(t, u(t))‖ dλ

dν
(t) ν-a.e. t ∈ I, (5.3)

for any measure ν absolutely continuously equivalent to μ+ λ.

Proof. Let us give the plan of the proof. First, we consider a time discretization T0 = tn0 < . . . < tnp(n) = T

taking into account the variation of C(·) in such a way which allows us to apply (thanks to the fact that C(·) is
r-prox-regular valued) the Moreau catching-up algorithm, in order to obtain some sequences of H, depending on
our discretization. Then, we interpolate these points to get some suitable approximate solutions un : I −→ H.
An important part of the proof is devoted to show, for each t ∈ I, that (un(t))n is a Cauchy sequence, obtaining
in this way some mapping u : I −→ H. Finally, through the analysis of additional properties of convergence of
the sequence (un)n, we prove that u is a solution of the measure differential inclusion.

The proof will be divided into two cases depending whether
∫
[T0,T ](β(s) + 1)dλ(s) is ≤ 1

4 or ≥ 1
4 . Fix any

u0 ∈ C(T0).

Case 1. Assume that ∫
[T0,T ]

(β(s) + 1)dλ(s) ≤ 1
4
· (5.4)

In order to construct a sequence (un(·))n of suitable right continuous with bounded variation mappings, we will
need a preparatory step which will allow us to define the points of which un(·) will be the interpolation. Set

l = 2
(
μ(]T0, T ]) + ‖u0‖ + 1

)
(5.5)

and consider on I the positive Radon measure

ν = μ+ (l + 1)(β(·) + 1)λ. (5.6)

Put M := ν(]T0, T ]) and note that the function t �→ ν(]T0, t]) is clearly increasing and right continuous on I.
Let (εn)n∈N be a sequence of positive real numbers with εn ↓ 0 and such that for all n ∈ N,

εn + sup
s∈]T0,T ]

μ({s}) < r. (5.7)

As in Moreau [23], for each n ∈ N, choose 0 = Mn
0 < Mn

1 < . . . < Mn
qn

= M (with qn ∈ N) such that:

(a) for all j ∈ {0, . . . , qn − 1}, Mn
j+1 −Mn

j ≤ εn;

(b) for all k ∈ N,
{
Mk

0 , . . . ,M
k
qk

} ⊂
{
Mk+1

0 , . . . ,Mk+1
qk+1

}
.

For every n ∈ N, set Mn
1+qn

:= M + εn. For each n ∈ N, consider the partition of I associated with the
subsets (j ∈ {0, . . . , qn})

Jn
j := {t ∈ [T0, T ] : Mn

j ≤ ν(]T0, t]) < Mn
j+1}
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and note that (Jm
j )0≤j≤qm is a refinement of (Jn

j )0≤j≤qn for all m,n ∈ N with m ≥ n. Since t �→ ν(]T0, t]) is
increasing and right continuous on I, it is easy to see that, for each n ∈ N, j ∈ {0, . . . , qn − 1}, the set Jn

j is
either empty or an interval of the form [a, b[ with a < b. Furthermore, we have Jn

qn
= {T } for all n ∈ N. This

produces for each n ∈ N, an integer p(n) ∈ N and a finite sequence

T0 = tn0 < . . . < tnp(n) = T

such that, for each i ∈ {0, . . . , p(n) − 1}, there is some j ∈ {0, . . . , qn − 1} satisfying Jn
j =

[
tni , t

n
i+1

[
. Observe

that (p(n))n∈N is an increasing sequence. Fix for a moment any n ∈ N. For each i ∈ {0, . . . , p(n) − 1}, put

ηn
i := tni+1 − tni and σn

i := (l + 1)
∫
[tn

i ,tn
i+1]

(β(s) + 1)dλ(s), (5.8)

and put also ηn := max
0≤i≤p(n)−1

(tni+1 − tni ). For every i ∈ {0, . . . , p(n) − 1} and every t ∈ [
tni , t

n
i+1

[
, one has

ν(
]
t, tni+1

]
) ≤ ν(]tni , t

n
i+1]) = ν(]T0, t

n
i+1]) − ν(]T0, t

n
i ]) ≤Mn

i+1 −Mn
i ≤ εn, (5.9)

thus in particular
ν(
]
tni , t

n
i+1

]
) ≤ εn. (5.10)

Hence (since λ ≤ ν), one has
ηn

i = tni+1 − tni ≤ εn, (5.11)

for all i ∈ {0, . . . , p(n) − 1}, so we observe that lim
k→+∞

ηk = 0. Now, put un
0 = u0 and yn

0 =
1

ηn
0

∫
[tn

0 ,tn
1 ]
f(s, un

0 ) dλ(s). Let us show that dC(tn
1 )(un

0 − ηn
0 y

n
0 ) < r. According to the assumption (5.1) on the

variation of C(·) and the fact un
0 ∈ C(tn0 ), we can write

dC(tn
1 )(un

0 − ηn
0 y

n
0 ) ≤ μ (]T0, t

n
1 ]) + dC(tn

0 )(un
0 − ηn

0 y
n
0 ) ≤ μ (]T0, t

n
1 ]) + ηn

0 ‖yn
0 ‖ . (5.12)

By the choice of yn
0 , the assumption (i) on the mapping f and (5.5), we obtain

ηn
0 ‖yn

0 ‖ =

∥∥∥∥∥
∫

[tn
0 ,tn

1 ]

f(s, un
0 ) dλ(s)

∥∥∥∥∥
≤ (1 + ‖un

0‖)
∫
[tn

0 ,tn
1 ]
β(s) dλ(s) ≤ (1 + l)

∫
[T0,tn

1 ]
β(s) dλ(s). (5.13)

Taking the definition of ν in (5.6) into account and combining (5.12), (5.13), (5.10) and (5.7), we get

dC(tn
1 )(un

0 − ηn
0 y

n
0 ) ≤ μ(]T0, t

n
1 ]) + (1 + l)

∫
[T0,tn

1 ]

(β(s) + 1)dλ(s)

= ν(]T0, t
n
1 ]) ≤ εn < r. (5.14)

Then, the r-prox-regularity of C(tn1 ) allows us to define un
1 := PC(tn

1 )(un
0 − ηn

0 y
n
0 ). By finite induction, let us

construct (un
k )0≤k≤p(n) and (yn

k )0≤k≤p(n)−1 such that, for all k ∈ {0, . . . , p(n) − 1}

yn
k =

1
ηn

k

∫
[tn

k ,tn
k+1]

f(s, uk) dλ(s) and un
k+1 = PC(tn

k+1)

(
un

k − ηn
k y

n
k

)
. (5.15)

The case p(n) = 1 is obvious. Assume that p(n) > 1. Suppose that un
0 , . . . , u

n
i and yn

0 , . . . , y
n
i−1 with 0 < i < p(n)

have been defined satisfying the above equalities. We can then set yn
i : = 1

ηn
i

∫
[tn

i ,tn
i+1]

f(s, un
i ) dλ(s). We claim
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that PC(tn
i+1)

(
un

i − ηn
i y

n
i

)
is well-defined. The case i = 0 has already been studied, so we can suppose that i > 0.

As in (5.12) and (5.13), we have

dC(tn
i+1)

(un
i − ηn

i y
n
i ) ≤ μ

(]
T0, t

n
i+1

[)
+ ηn

i ‖yn
i ‖ ,

and
ηn

i ‖yn
i ‖ ≤ (1 + l)

∫
[T0,tn

i+1]
β(s) dλ(s).

In the same way as (5.14), we get dC(tn
i+1)

(un
i − ηn

i y
n
i ) < r and this completes the induction, thanks to the

r-prox-regularity of C(tni+1).
For any i ∈ {0, . . . , p(n) − 1}, from (5.15) and (5.1), we have∥∥un

i+1 − un
i + ηn

i y
n
i

∥∥ = dC(tn
i+1)

(un
i − ηn

i y
n
i )

≤ dC(tn
i )(un

i − ηn
i y

n
i ) + μ

(]
tni , t

n
i+1

])
≤ ηn

i ‖yn
i ‖ + μ

(]
tni , t

n
i+1

])
, (5.16)

and hence ‖un
i+1‖ − ‖un

i − ηn
i y

n
i ‖ ≤ μ

(]
tni , t

n
i+1

])
+ ηn

i ‖yn
i ‖. It follows that, for all i ∈ {0, . . . , p(n) − 1},∥∥un

i+1

∥∥ ≤ ‖un
i ‖ + μ

(]
tni , t

n
i+1

])
+ 2ηn

i ‖yn
i ‖. Thus, we get

∥∥un
i+1

∥∥ ≤ ‖un
0‖ +

i∑
k=0

(
μ
(]
tnk , t

n
k+1

] )
+ 2ηn

k ‖yn
k ‖

)
. (5.17)

Using the definition of yn
i and the assumption (i), we also have, for all i ∈ {0, . . . , p(n) − 1},

‖yn
i ‖ ≤ 1

ηn
i

(1 + ‖un
i ‖)

∫
[tn

i ,tn
i+1]

β(s) dλ(s) ≤ 1
ηn

i

(1 + max
0≤k≤p(n)

‖un
k‖)

∫
[tn

i ,tn
i+1]

β(s) dλ(s). (5.18)

Fix any i ∈ {0, . . . , p(n) − 1}. The inequalities (5.17) and (5.18) yield

∥∥un
i+1

∥∥ ≤ ‖un
0‖ +

i∑
k=0

μ
(]
tnk , t

n
k+1

])
+ 2

(
1 + max

0≤k≤p(n)
‖un

k‖
)∫

[tn
0 ,tn

i+1]

β(s) dλ(s).

Therefore, ∥∥un
i+1

∥∥ ≤ ‖un
0‖ + μ (]T0, T ]) + 2

(
1 + max

0≤k≤p(n)
‖un

k‖
)∫

[T0,tn
i+1]

β(s) dλ(s),

so the inequality
∫
[T0,tn

i+1](β(s) + 1)dλ(s) ≤ 1
4 gives us

max
0≤k≤p(n)

‖un
k‖ ≤ ‖un

0‖ + μ (]T0, T ]) +
1
2

(
1 + max

0≤k≤p(n)
‖un

k‖
)
.

Using the definition of l, we can then write

max
0≤k≤p(n)

‖un
k‖ ≤ 2

(
‖un

0‖ + μ (]T0, T ]) +
1
2

)
≤ l, (5.19)

which combines with (5.18) and (5.8) implies

ηn
i ‖yn

i ‖ ≤ (1 + ‖un
i ‖)

∫
[tn

i ,tn
i+1]

β(s) dλ(s) ≤ (l + 1)
∫
[t,n

i ,tn
i+1]

(β(s) + 1)dλ(s) = σn
i . (5.20)
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The latter inequality and (5.16) assure us that

dC(tn
i+1)

(un
i − ηn

i y
n
i ) =

∥∥un
i+1 − un

i + ηn
i y

n
i

∥∥ ≤ ηn
i ‖yn

i ‖ + μ
(]
tni , t

n
i+1

]) ≤ σn
i + μ

(]
tni , t

n
i+1

])
. (5.21)

This along with (5.8) and the definition of ν in (5.6) entails, for all n ∈ N and for all i ∈ {0, . . . , p(n) − 1},∥∥un
i+1 − un

i + ηn
i y

n
i

∥∥ ≤ ν
(]
tni , t

n
i+1

])
. (5.22)

Step 1. Construction of the sequence (un(·))n∈N.
In this first step, fix any n ∈ N and define the mapping un(·) : I −→ H by putting, for t ∈ [tni , t

n
i+1] with

i ∈ En := {0, . . . , p(n) − 1},

un(t) = un
i +

ν
(
]tni , t]

)
ν
( ]
tni , t

n
i+1

] ) (un
i+1 − un

i + ηn
i y

n
i ) −

∫
[tn

i ,t]

f(s, un
i ) dλ(s). (5.23)

We observe that un is well defined on I and it is right continuous on I with bounded variation on the whole
interval I. Furthermore, we have by the definition of un(·)

un(t) = un(T0) +
∫

]T0,t]

Fn(s)dν(s) −
∫

]T0,t]

f
(
s, un(δn(s))

)
dλ(s) for all t ∈ I,

where we set for every t ∈ I,

Fn(t) =
p(n)−1∑

i=0

un
i+1 − un

i + ηn
i y

n
i

ν
(]
tni , t

n
i+1

]) 1]tn
i ,tn

i+1](t),

and

δn(t) =

{
tni if t ∈ [

tni , t
n
i+1

[
with i ∈ En,

tnp(n)−1 if t = T.
(5.24)

Since by (5.6), the measure λ is absolutely continuous with respect to ν, it has dλ
dν (·) as a density in

L∞(I, [0,+∞[, ν) relative to ν and then by (2.9), for all t ∈ I,

un(t) = un(T0) +
∫

]T0,t]

(
Fn(s) − f

(
s, un(δn(s))

)dλ
dν

(s)
)

dν(s).

This tells us that the vector measure dun has the latter integrand as a density in L1(I,H, ν) relative to ν.
Consequently the derivative dun

dν (·) is a density of dun relative to ν and

dun

dν
(t) + f

(
t, un(δn(t))

)dλ
dν

(t) = Fn(t) for ν-a.e. t ∈ I. (5.25)

Taking (5.22) into account, it results∥∥∥∥dun

dν
(t) + f

(
t, un(δn(t))

)dλ
dν

(t)
∥∥∥∥ ≤ 1 for ν-a.e. t ∈ I. (5.26)

On the other hand, by (5.6) again, the measure (l + 1)β(·)λ is absolutely continuous with respect to ν, thus it

has
d
(
(l+1)β(·)λ

)
dν as a density relative to ν, and

0 ≤ (l + 1)β(t)
dλ
dν

(t) =
d
(
(l + 1)β(·)λ)

dν
(t) ≤ 1 for ν-a.e. t ∈ I. (5.27)
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Observing also by (5.19) and by the assumption (i) that

‖f(t, un(δn(t)))‖ ≤ (l + 1)β(t) for all t ∈ I,

it ensues that ∥∥∥∥f(t, un(δn(t))
)dλ
dν

(t)
∥∥∥∥ ≤ (l + 1)β(t)

dλ
dν

(t) ≤ 1 for ν-a.e. t ∈ I. (5.28)

This and (5.26) say that ∥∥∥∥dun

dν
(t)

∥∥∥∥ ≤ 2 for ν-a.e. t ∈ I. (5.29)

From (5.26) again and the equality dλ
dν (t) = 0 for all t ∈ I with ν({t}) > 0, we note that∥∥∥∥dun

dν
(t)

∥∥∥∥ ≤ 1 for all t ∈ I with ν({t}) > 0. (5.30)

Let us define the function θn : I −→ I by

θn(t) =

{
tni+1 if t ∈ [

tni , t
n
i+1

[
with i ∈ En,

T if t = T.
(5.31)

Using (5.25) and (2.3), we can write

dun

dν
(t) + f

(
t, un(δn(t))

)dλ
dν

(t) ∈ −NP (C(θn(t));un(θn(t))) for ν-a.e. t ∈ I.

By (5.26) and (2.6), we get

dun

dν
(t) + f

(
t, un(δn(t))

)dλ
dν

(t) ∈ −∂PdC(θn(t))

(
un(θn(t))

)
for ν-a.e. t ∈ I. (5.32)

Step 2. We claim that (un(·))n∈N is a Cauchy sequence in B(I,H) (the real space of bounded mappings from
I to H) endowed with the norm of the uniform convergence, which is a real Banach space.

Fix any n,m ∈ N. Since un
0 = u0 ∈ C(tn0 ) and un

i+1 = PC(tn
i+1)(un

i − ηn
i y

n
i ) for all i ∈ {0, . . . , p(n) − 1}, we

note by (5.23) and (5.31) that
un(θn(t)) ∈ C(θn(t)) for all t ∈ I. (5.33)

This allows us to write, for every t ∈ I,

dC(θn(t))(um(t)) = dC(θn(t))(um(t)) − dC(θm(t))(um(θm(t)))

≤ dC(θn(t))(um(t)) − dC(θm(t))(um(t)) + ‖um(θm(t)) − um(t)‖ .
According to the variation assumption on C(·) in (5.1), we have for every t ∈ I,

dC(θn(t))(um(t)) ≤ max {μ(]t, θn(t)]), μ(]t, θm(t)])} + ‖um(θm(t)) − um(t)‖ , (5.34)

hence by (5.29) and the equality um(θm(t)) − um(t) =
∫
]t,θm(t)]

dun

dν (t)dν(t),

dC(θn(t))(um(t)) ≤ max {μ(]t, θn(t)]), μ(]t, θm(t)])} + 2ν(]t, θm(t)]). (5.35)

Fix any s ∈ [T0, T [ and choose some is ∈ {0, . . . , p(m) − 1} such that s ∈ [
tmis
, tmis+1

[
. From (5.23), we have

um(θm(s)) − um(s) = um
is+1 − um

is
− ν(

]
tmis
, s
]
)

ν(
]
tmis
, tmis+1

](um
is+1 − um

is
+ ηm

is
ym

is
) + (s− tmis

)ym
is
. (5.36)
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Taking this, (5.9) and (5.22) into account, we get

‖um(θm(s)) − um(s)‖ ≤ ∥∥um
is+1 − um

is
+ (s− tmis

)ym
is

∥∥ + εm,

and thus

‖um(θm(s)) − um(s)‖ ≤ ∥∥um
is+1 − um

is
+ ηm

is
ym

is

∥∥ + ηm
is

∥∥ym
is

∥∥ + εm. (5.37)

From the latter inequality, (5.22), (5.20) and (5.10), we have

‖um(θm(s)) − um(s)‖ ≤ ν
( ]
tmis
, tmis+1

] )
+ σm

is
+ εm ≤ σm

is
+ 2εm. (5.38)

This is also true for s = T because θm(s) = T . Coming back to (5.34) and using (5.38), we obtain

dC(θn(s))(um(s)) ≤ max {μ(]s, θn(s)]), μ(]s, θm(s)])} + ‖um(θm(s)) − um(s)‖
≤ εn + εm + σm

is
+ 2εm = εn + 3εm + σm

is
.

Using the equalities lim
k→+∞

εk = 0 and lim
k→+∞

sup
0≤i≤p(k)−1

σk
i = 0 (see (5.8)), there exists some N ∈ N such that,

for all t ∈ I and for all integers n,m ≥ N ,

dC(θn(t))(um(t)) < r. (5.39)

For each n ∈ N, for all t ∈ I, set

γn(t) = μ(]t, θn(t)]) + ν(]t, θn(t)]). (5.40)

Note by (5.35) and (5.40) that, for all n,m ∈ N, and all t ∈ I, we have

dC(θn(t))(um(t)) ≤ γn(t) + 2γm(t). (5.41)

Fix any n ∈ N. By (5.29) and the fact that dun

dν is a density of dun relative to ν, we get

‖un(τ2) − un(τ1)‖ ≤ 2ν
(
]τ1, τ2]

)
for all τ1, τ2 ∈ I with τ1 < τ2. (5.42)

Fix any τ ∈]T0, T ]. By (5.30), we have ‖un(τ) − un(τ−)‖ ≤ ν({τ}) = μ({τ}), whenever ν({τ}) > 0. We get
by (5.42), ‖un(τ) − un(τ−)‖ ≤ 2ν({τ}) = 0 = μ({τ}), under the hypothesis ν({t}) = 0. As a consequence,

∥∥un(t) − un(t−)
∥∥ ≤ μ({t}) for all t ∈]T0, T ]. (5.43)

Now, for ν-almost every t ∈ I, put for all n,m ∈ N

An(t) :=
dun

dν
(t) + f

(
t, un(δn(t))

)dλ
dν

(t) and Bn(t) := f
(
t, un(δn(t))

)
, (5.44)

and for ν-almost every t ∈ I,

ϕn,m(t) =
dλ
dν

(t)
∥∥f(t, un(δn(t))

) − f
(
t, un(t)

)∥∥ ‖un(t) − um(t)‖ . (5.45)
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Fix any integers n ≥ N and m ≥ N . Using (5.32), (5.39), Lemma 3.3, (5.40), (5.42) and (5.41), it follows that,
for ν-almost every t ∈ I,

〈
An(t), un

(
θn(t)

)− um(t)
〉

≤ 1
2r

∥∥um(t) − un

(
θn(t)

)∥∥2 +
1
2r
d2

C(θn(t))(um(t))

+
(

1
r

∥∥un

(
θn(t)

)− um(t)
∥∥ + 1

)
dC(θn(t))(um(t))

≤ 1
2r

( ‖un(t) − um(t)‖ +
∥∥un

(
θn(t)

)− un(t)
∥∥ )2 +

1
2r
d2

C(θn(t))(um(t))

+
[
1
r

( ∥∥un

(
θn(t)

) − un(t)
∥∥ + ‖un(t) − um(t)‖ ) + 1

]
dC(θn(t))(um(t))

≤ 1
2r

( ‖un(t) − um(t)‖ + 2γn(t)
)2 +

1
2r

(
γn(t) + 2γm(t)

)2

+
[
1
r

(
2γn(t) + ‖un(t) − um(t)‖ ) + 1

] (
γn(t) + 2γm(t)

)
. (5.46)

Then, for ν-almost every t ∈ I, since ‖An(t)‖ ≤ 1 by (5.26), from (5.42) and (5.46) we have

〈An(t), un(t) − um(t)〉
=

〈
An(t), un(t) − un

(
θn(t)

)〉
+

〈
An(t), un

(
θn(t)

)− um(t)
〉

≤ ∥∥un(t) − un

(
θn(t)

)∥∥ +
1
2r

( ‖um(t) − un(t)‖ + 2γn(t)
)2 +

1
2r

(
γn(t) + 2γm(t)

)2

+
[
1
r

(
2γn(t) + ‖un(t) − um(t)‖ ) + 1

] (
γn(t) + 2γm(t)

)
≤ 2ν

(
]t, θn(t)]

)
+

1
2r

( ‖um(t) − un(t)‖ + 2γn(t)
)2 +

1
2r

(
γn(t) + 2γm(t)

)2

+
[
1
r

(
2γn(t) + ‖un(t) − um(t)‖ ) + 1

] (
γn(t) + 2γm(t)

)
. (5.47)

The definition of Bn(·) in (5.44) allows us to write, for ν-almost every t ∈ I,〈
dun

dν
(t), un(t) − um(t)

〉

≤
〈
Bn(t)

dλ
dν

(t), um(t) − un(t)
〉

+ 2ν
(
]t, θn(t)]

)
+

1
2r

( ‖um(t) − un(t)‖ + 2γn(t)
)2

+
[
1
r

(
2γn(t) + ‖un(t) − um(t)‖ ) + 1

] (
γn(t) + 2γm(t)

)
+

1
2r

(
γn(t) + 2γm(t)

)2
.

Interchanging m and n, we obtain〈
dum

dν
(t), um(t) − un(t)

〉

≤
〈
Bm(t)

dλ
dν

(t), un(t) − um(t)
〉

+ 2ν
(
]t, θm(t)]

)
+

1
2r

( ‖un(t) − um(t)‖ + 2γm(t)
)2

+
[
1
r

(
2γm(t) + ‖um(t) − un(t)‖ ) + 1

] (
γm(t) + 2γn(t)

)
+

1
2r

(
γm(t) + 2γn(t)

)2
.
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Hence, by adding both latter inequalities, it follows that, for ν-almost every t ∈ I,

〈
dun

dν
(t) − dum

dν
(t), un(t) − um(t)

〉

≤ dλ
dν

(t) ‖Bn(t) −Bm(t)‖ ‖un(t) − um(t)‖ + 2ν
(
]t, θn(t)]

)
+ 2ν

(
]t, θm(t)]

)
+

1
2r

( ‖um(t) − un(t)‖ + 2γn(t)
)2

+
1
2r

( ‖un(t) − um(t)‖ + 2γm(t)
)2

+
1
2r

[(
γn(t) + 2γm(t)

)2 +
(
γm(t) + 2γn(t)

)2
]

+
[
1
r

(
2γn(t) + ‖un(t) − um(t)‖ ) + 1

] (
γn(t) + 2γm(t)

)
+

[
1
r

(
2γm(t) + ‖um(t) − un(t)‖ ) + 1

] (
γm(t) + 2γn(t)

)
. (5.48)

Now from (5.42) and the fact that uk(T0) = u0 for all k ∈ N, we note that

‖uk(t)‖ ≤ α for all t ∈ I, all k ∈ N, (5.49)

where α := ‖u0‖ + 2ν
(
]T0, T ]

)
. Consequently, for ν-almost every t ∈ I, we have

‖Bn(t) −Bm(t)‖ ≤‖Bn(t) − f(t, un(t))‖ + ‖f(t, un(t)) − f(t, um(t))‖ + ‖f(t, um(t)) −Bm(t)‖
≤‖Bn(t) − f(t, un(t))‖ + Lα(t) ‖un(t) − um(t)‖ + ‖f(t, um(t)) −Bm(t)‖ , (5.50)

where the last inequality is a consequence of the Lipschitz hypothesis (ii) on f .

Thus, taking into account the definition of ϕn,m in (5.45), (5.50) and (5.48), we obtain for ν-almost every
t ∈ I, and for all integers n,m ≥ N

〈
dun

dν
(t) − dum

dν
(t), un(t) − um(t)

〉

≤Lα(t)
dλ
dν

(t) ‖un(t) − um(t)‖2 + ϕn,m(t) + ϕm,n(t) + 2ν
(
]t, θn(t)]

)
+ 2ν

(
]t, θm(t)]

)
+

1
2r

( ‖um(t) − un(t)‖ + 2γn(t)
)2 +

1
2r

( ‖un(t) − um(t)‖ + 2γm(t)
)2

+
1
2r

[(
γn(t) + 2γm(t)

)2 +
(
γm(t) + 2γn(t)

)2
]

+
[
1
r

(
2γn(t) + ‖un(t) − um(t)‖ ) + 1

] (
γn(t) + 2γm(t)

)
+

[
1
r

(
2γm(t) + ‖um(t) − un(t)‖ ) + 1

] (
γm(t) + 2γn(t)

)
.
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Consequently, according to (5.49), for ν-almost every t ∈ I, for all n,m ≥ N ,〈
dun

dν
(t) − dum

dν
(t), un(t) − um(t)

〉

≤
(
Lα(t)

dλ
dν

(t) +
1
r

)
‖un(t) − um(t)‖2 + ϕn,m(t) + ϕm,n(t)

+ 2ν
(
]t, θn(t)]

)
+ 2ν

(
]t, θm(t)]

)
+

1
2r

(
4γ2

n(t) + 8αγn(t) + 4γ2
m(t) + 8αγm(t)

)
+

1
2r

[(
γn(t) + 2γm(t)

)2 +
(
γm(t) + 2γn(t)

)2
]

+
[
1
r

(
2γn(t) + 2α

)
+ 1

] (
γn(t) + 2γm(t)

)
+

[
1
r

(
2γm(t) + 2α

)
+ 1

] (
γm(t) + 2γn(t)

)
. (5.51)

Write that, for ν-almost every t ∈ I, and for all n ∈ N

(
Bn(t) − f

(
t, un(t)

))dλ
dν

(t) =
(
f
(
t, un(δn(t))

) − f
(
t, un(t)

))dλ
dν

(t). (5.52)

Using the inequality due to (5.42),

‖un(δn(t)) − un(t)‖ dλ
dν

(t) ≤ 2ν
(
]δn(t), t]

)dλ
dν

(t) ν-a.e. t ∈ I,

and using (2.10), we also see that ‖un(δn(t)) − un(t)‖ dλ
dν (t) −→ 0 as n −→ ∞ for ν-a.e. t ∈ I. By (5.52) and

according to the Lipschitz property, for each t ∈ I, of f(t, ·) on αB and to the inequality ‖un(t)‖ ≤ α, for
ν-almost every t ∈ I, we have

lim
n→+∞

(
Bn(t) − f

(
t, un(t)

))dλ
dν

(t) = 0. (5.53)

By the Lebesgue dominated convergence theorem, it ensues by (5.44) and (5.49) that∫
]T0,T ]

ϕn,m(t)dν(t) −→ 0 as n,m −→ +∞.

For all n,m ∈ N, setting

An,m =
1
2

∫
]T0,T ]

{
ϕn,m(t) + ϕm,n(t) + 2ν

(
]t, θn(t)]

)
+ 2ν

(
]t, θm(t)]

)
+

1
2r

[(
γn(t) + 2γm(t)

)2 +
(
γm(t) + 2γn(t)

)2
]

+
1
2r

(
4γ2

n(t) + 8αγn(t) + 4γm(t) + 8αγm(t)
)

+
[
1
r

(
2γn(t) + 2α

)
+ 1

] (
γn(t) + 2γm(t)

)
+

[
1
r

(
2γm(t) + 2α

)
+ 1

] (
γm(t) + 2γn(t)

)}
dν(t)

we see that An,m −→ 0 as n,m −→ +∞. On the other hand, Proposition 3.2 says that

d(‖un(·) − um(·)‖2) ≤ 2
〈

dun

dν
(·) − dum

dν
(·), un(·) − um(·)

〉
dν for all n,m ∈ N. (5.54)
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Fix for a moment n,m ∈ N with n,m ≥ N . Putting for all t ∈ I, ψn,m(t) = ‖un(t) − um(t)‖2 and noting that
un(T0) = um(T0), we deduce from (5.51) that, for all t ∈ I

ψn,m(t) ≤
∫

]T0,t]

2
(
Lα(s)

dλ
dν

(s) +
1
r

)
ψn,m(s)dν(s) +An,m.

According to (2.10), we have Lα(s)dλ
dν (s)ν({s}) = 0 for ν-almost every s ∈ I. It follows, for ν-almost every

t ∈ ]T0, T ]

2
(
Lα(t)

dλ
dν

(t) +
1
r

)
ν({t}) =

2
r
ν({t}) =

2
r
μ({t}) ≤ 2

r
sup

s∈]T0,T ]

μ({s}) < 1,

where the last inequality is due to the assumption sup
s∈]T0,T ]

μ({s}) < r
2 . We can apply Lemma 3.1, and this yields,

for all t ∈]T0, T ]

ψn,m(t) ≤ An,m exp

(
1

1 − θ

∫
]T0,t]

2
(
Lα(s)

dλ
dν

(s) +
1
r

)
dν(s)

)

≤ An,m exp

(
1

1 − θ

(∫
]T0,T ]

2Lα(s)dν(s) +
2
r
ν(]T0, T ]

))

where θ = 2
r sup

s∈]T0,T ]

μ({s}). This ensures that the sequence (un(·))n satisfies the Cauchy property with respect

to the norm of uniform convergence on the space of all bounded mappings from I into H. Consequently,
this sequence (un(·))n converges uniformly on I to some mapping u(·). Furthermore, by (5.29), extracting a
subsequence if necessary, we may suppose that (dun

dν (·))n converges weakly in L2(I,H, ν) to some mapping
h(·) ∈ L2(I,H, ν), so, for every t ∈ I,∫

]T0,t]

dun

dν
(s)dν(s) −→

n→+∞

∫
]T0,t]

h(s)dν(s) weakly in H.

Since dun

dν (·) is a density of dun relative to ν for all n ∈ N, we also have for all n ∈ N, for all t ∈ I, un(t) =
u0 +

∫
]T0,t]

dun

dν (s)dν(s). Thus it ensues that, for all t ∈ I, u(t) = u0 +
∫
]T0,t]

h(s)dν(s) and this tells us that u(·)
is right continuous with bounded variation on I and the vector measure du has h(·) ∈ L2(I,H, ν) as a density
relative to ν and du

dν (·) = h(·) ν-almost everywhere. We also deduce that

dun

dν
(·) −→

n→+∞
du
dν

(·) weakly in L2(I,H, ν).

Step 3. Let us prove that u(·) is a solution and that (5.2) holds.
First, from (5.43) and the uniform convergence of (un(·))n to u(·) we get∥∥u(t) − u(t−)

∥∥ ≤ μ({t}) for all t ∈]T0, T ], (5.55)

which is the property (5.2).
Let us notice that by (5.11), we have for all n ∈ N and all t ∈ I, 0 ≤ θn(t) − t ≤ εn. Using (5.42), we can

write ‖un(θn(t)) − u(t)‖ ≤ ‖un(t) − u(t)‖ + 2ν
(
]t, θn(t)]

)
. By letting n→ +∞, we obtain

θn(t) ↓ t and un(θn(t)) −→ u(t) for all t ∈ I. (5.56)

Further, from (5.1), (5.33) and (5.10), we have for all t ∈ I, all n ∈ N

dC(t)(un(θn(t))) =
∣∣dC(t)(un(θn(t))) − dC(θn(t))(un(θn(t)))

∣∣ ≤ μ(]t, θn(t)]) ≤ εn.
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We then see according to (5.56) and the closedness of C(t) that,

u(t) ∈ C(t) for all t ∈ I. (5.57)

Now, let us show that
du
dν

(t) + f(t, u(t))
dλ
dν

(t) ∈ −N(C(t);u(t)) ν-a.e. t ∈ I.

From (5.53) we first notice that, for ν-almost every t ∈ I

en(t) := f
(
t, un(δn(t))

)dλ
dν

(t) −→
n→+∞ f

(
t, u(t)

)dλ
dν

(t) =: e(t).

By this and (5.28) the Lebesgue dominated convergence theorem yields that (en(·))n converges strongly to
e(·) in L2(I,H, ν). Following a technique due to Castaing [5] and putting for ν-a.e. t ∈ I, for all n ∈ N,
ζn(t) = dun

dν (t) + en(t) and for ν-a.e. t ∈ I, ζ(t) = du
dν (t) + e(t), the sequence (ζn(·))n converges weakly in

L2(I,H, ν) to ζ(·) and by Mazur’s lemma there is a sequence (ξn(·))n converging strongly in L2(I,H, ν) to ζ(·)
with

ξn(·) ∈ co {ζk(·) : k ≥ n} .
This sequence (ξn(·))n has a subsequence (that we do not relabel) converging ν-almost everywhere to ζ(·), hence,
there is some Borel set I0 ⊂ I with ν(I \ I0) = 0 such that, for all t ∈ I \ I0,

ζ(t) ∈
⋂
n∈N

co {ζk(t) : k ≥ n} .

We may also suppose that the inclusion (5.32) is satisfied for all t ∈ I \ I0 and all n ∈ N. Then, fixing any
t ∈ I \ I0, we obtain for any fixed w ∈ H, 〈w, ζ(t)〉 ≤ inf

n∈N

sup
k≥n

〈w, ζk(t)〉, which entails by (5.32), 〈w, ζ(t)〉 ≤
lim sup
n→+∞

σ(w,−∂P dC(θn(t))(un(θn(t))), so Proposition 3.4 tells us that

〈w, ζ(t)〉 ≤ σ(w,−∂P dC(t)(u(t))).

As the Clarke subdifferential is always closed and convex, this last inequality yields (using (2.1)), for all t ∈ I\I0,

ζ(t) ∈ −∂CdC(t)(u(t)) ⊂ −NC(C(t);u(t)).

As a consequence, u(·) is a solution satisfying (5.2).
It remains to show that (5.3) holds true. Clearly, the inequality is invariant with respect to absolutely

continuously equivalent measures, hence it suffices to show it with the measure ν involved in the development
above. Consider first any t ∈ [T0, T ] with ν({t}) > 0. For such an element t, we know that dλ

dν (t) = 0 and
by (5.55) ∥∥∥∥du

dν
(t)

∥∥∥∥ =
∥∥∥∥u(t) − u(t−)

ν({t})
∥∥∥∥ ≤ μ({t})

ν({t}) =
dμ
dν

(t),

which guarantees the inequality∥∥∥∥du
dν

(t) + f(t, u(t))
dλ
dν

(t)
∥∥∥∥ ≤ dμ

dν
(t) + ‖f(t, u(t))‖ dλ

dν
(t).

On the other hand, take A ⊂ I with ν(A) = 0 such that for all t ∈ I \A the inclusion

du
dν

(t) + f(t, u(t))
dλ
dν

(t) ∈ −N(
C(t);u(t)

)
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is fulfilled (so, in particular both du
dν (t) and dλ

dν (t) exist). Fix any such t satisfying ν({t}) = 0. By definition of
proximal normal, there is some real a > 0 such that

u(t) ∈ Proj C(t)

(
u(t) − a

du
dν

(t) − af(t, u(t))
dλ
dν

(t)
)
·

Since ν(]s, t]) → ν({t}) = 0 as s ↑ t, we can choose some s0 ∈ I with s0 < t such that 0 < ν(]s, t]) < a for all
s ∈ [s0, t[. Thus, for every s ∈ [s0, t[, with as := ν(]s, t]) we derive from the latter inclusion that

as

∥∥∥∥du
dν

(t) + f(t, u(t))
dλ
dν

(t)
∥∥∥∥ = dC(t)

(
u(t) − as

du
dν

(t) − asf(t, u(t))
dλ
dν

(t)
)

≤ dC(s)(u(s)) + μ(]s, t]) +
∥∥∥∥u(t) − u(s) − as

du
dν

(t) − asf(t, u(t))
dλ
dν

(t)
∥∥∥∥ ,

where the inequality follows from the variation assumption of C(·). Fix any s ∈ [s0, t[. Since dC(s)(u(s)) = 0,
dividing by as > 0 we obtain∥∥∥∥du

dν
(t) + f(t, u(t))

dλ
dν

(t)
∥∥∥∥ ≤ μ(]s, t])

ν(]s, t])
+

∥∥∥∥u(t) − u(s)
ν(]s, t])

− du
dν

(t) − f(t, u(t))
dλ
dν

(t)
∥∥∥∥ ·

Making s ↑ t yields ∥∥∥∥du
dν

(t) + f(t, u(t))
dλ
dν

(t)
∥∥∥∥ ≤ dμ

dν
(t) +

∥∥∥∥du
dν

(t) − du
dν

(t) − f(t, u(t))
dλ
dν

(t)
∥∥∥∥

=
dμ
dν

(t) + ‖f(t, u(t))‖ dλ
dν

(t)·

Consequently, as desired, (5.3) holds true for all t ∈ I \ A. This finishes the proof of existence of a solution
satisfying (5.2) and (5.3), in the case when the inequality∫

[T0,T ]

(β(s) + 1)dλ(s) ≤ 1
4

is fulfilled.

Case 2. Assume that ∫
[T0,T ]

(β(s) + 1)dλ(s) >
1
4
·

Let us follow [1,12]. First, we note that the mapping u(·) in the above case is also a solution with measure μ+λ
in place of ν therein, since the measure μ + λ is absolutely continuous with respect to ν and vice versa. Let
T0, . . . , Tp (with p ∈ N) be such that, for each i ∈ {1, . . . , p},∫

[Ti−1,Ti]

(β(s) + 1)dλ(s) ≤ 1
4
·

For each i ∈ {1, . . . , p}, denote by μi (resp. λi) the Radon measure induced on [Ti−1, Ti] by μ (resp. λ) and
set νi := μi + λi. Then, the Case 1 provides a mapping u1 : [T0, T1] −→ H right continuous on [T0, T1] with
bounded variation, such that u1(t) ∈ C(t) for all t ∈ [T0, T1], u1(T0) = u0,∥∥u1(t) − u1(t−)

∥∥ ≤ μ1({t}) = μ({t}) for all t ∈]T0, T1],∥∥∥∥du1

dν1
(t) + f(t, u1(t))

dλ1

dν1
(t)

∥∥∥∥ ≤ dμ1

dν1
(t) + ‖f(t, u1(t))‖ dλ1

dν1
(t) ν1-a.e. t ∈ [T0, T1],



DISCONTINUOUS SWEEPING PROCESS WITH PROX-REGULAR SETS 25

du1 has du1
dν1

in L1([T0, T1] ,H, ν1) as density relative to ν1 and

du1

dν1
(t) + f(t, u1(t))

dλ1

dν1
(t) ∈ −N(C(t);u1(t)) ν1-a.e. t ∈ [T0, T1] .

Similarly, there is a right continuous with bounded variation mapping u2 : [T1, T2] −→ H such that u2(t) ∈ C(t)
for all t ∈ [T1, T2], u2(T1) = u1(T1),∥∥u2(t) − u2(t−)

∥∥ ≤ μ2({t}) = μ({t}) for all t ∈]T1, T2],∥∥∥∥du2

dν2
(t) + f(t, u2(t))

dλ2

dν2
(t)

∥∥∥∥ ≤ dμ2

dν2
(t) + ‖f(t, u2(t))‖ dλ2

dν2
(t) ν2-a.e. t ∈ [T1, T2],

du2 has du2
dν2

as a density in L1([T1, T2] ,H, ν2) relative to ν2 and

du2

dν2
(t) + f(t, u2(t))

dλ2

dν2
(t) ∈ −N(C(t);u2(t)) ν2-a.e. t ∈ [T1, T2] .

So, by induction, we obtain for each i ∈ {1, . . . , p} a mapping ui : [Ti−1, Ti] −→ H with bounded variation and
right continuous such that, ui(t) ∈ C(t) for all t ∈ [Ti−1, Ti], ui(Ti−1) = ui−1(Ti−1),∥∥ui(t) − ui(t−)

∥∥ ≤ μi({t}) = μ({t}) for all t ∈]Ti−1, Ti],∥∥∥∥dui

dνi
(t) + f(t, ui(t))

dλi

dνi
(t)

∥∥∥∥ ≤ dμi

dνi
(t) + ‖f(t, ui(t))‖ dλi

dνi
(t) νi-a.e. t ∈ [Ti−1, Ti],

the vector measure dui has dui

dνi
as a density in L1([Ti−1, Ti] ,H, νi) relative to νi, and there exists a Borel set of

[Ti−1, Ti] with νi(Bi) = 0 such that

dui

dνi
(t) + f(t, ui(t))

dλi

dνi
(t) ∈ −N(C(t);ui(t)) for all t ∈ [Ti−1, Ti] \Bi. (5.58)

Then, the mapping u : [T0, T ] −→ H with u(t) := ui(t) if t ∈ [Ti−1, Ti] (i ∈ {1, . . . , p}) is well defined and right
continuous with bounded variation, and the inclusions u(t) ∈ C(t), for all t ∈ [T0, T ], along with the equality
u(T0) = u0 hold true. Further, with the measure ν0 := μ+ λ on [T0, T ], the inequalities∥∥u(t) − u(t−)

∥∥ ≤ μ({t}) for all t ∈]T0, T ]

and ∥∥∥∥ du
dν0

(t) + f(t, u(t))
dλ
dν0

(t)
∥∥∥∥ ≤ dμ

dν0
(t) + ‖f(t, u(t))‖ dλ

dν0
(t) ν-a.e. t ∈ [T0, T ],

are obviously fulfilled. On the other hand, considering the function g defined for ν0-almost every t ∈ [T0, T ] by

g(t) := 1[T0,T1](t)
du1

dν1
(t) +

p∑
i=2

1]Ti−1,Ti](t)
dui

dνi
(t), (5.59)

we easily see that u(t) = u(T0) +
∫
]T0,t] g(s)dν0(s) for all t ∈ [T0, T ], so the vector measure du has g(·) ∈

L1([T0, T ] ,H, ν0) as a density relative to ν0 and du
dν0

(·) = g(·) ν0-a.e., that is, there is some Borel set B′ ⊂ I
with ν0(B′) = 0 such that

du
dν0

(t) = g(t) for all t ∈ [T0, T ] \B′. (5.60)
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Let B := B′ ∪
p⋃

i=1

Bi. Fix any τ ∈ [T0, T ] \B. Either τ ∈ [T0, T1] or τ ∈]Ti0 , Ti0+1] for some i0 ≥ 1. On the one

hand, considering the case where τ is an interior or endpoint of the corresponding interval and using (2.11) we
see that dλi0

dνi0
(τ) = dλ

dν (τ). On the other hand, from (5.59) and (5.60), we have

dui0

dνi0

(τ) = g(τ) =
du
dν0

(τ).

For all t ∈ I \B, it results that

du
dν0

(t) + f(t, u(t))
dλ
dν0

(t) ∈ −N(C(t);u(t)),

so u(·) is a solution on the whole interval [T0, T ] satisfying both conditions (5.2) and (5.3). �

The next result can be viewed as an extension of the equality (2.13) of Moreau [23] to Lipschitz perturbed
BV sweeping process with nonconvex prox-regular sets.

Corollary 5.2. Under the assumptions of Theorem 5.1, for each u0 ∈ C(T0), the solution obtained in this
theorem for the measure differential perturbed sweeping process

(P)

{
−du ∈ N(C(t);u(t)) + f(t, u(t))
u(T0) = u0

also satisfies the equality
u(t) = PC(t)(u(t−)) for all t ∈]T0, T ].

Proof. Fix any u0 ∈ C(T0). We know by (5.2) that (P) has a solution satisfying,∥∥u(t) − u(t−)
∥∥ ≤ μ({t}) for all t ∈]T0, T ].

Fix any t ∈]T0, T ].

Case 1. μ({t}) = 0. Under this assumption the above inequality ensures that

u(t−) = u(t) ∈ C(t),

hence u(t) = PC(t)(u(t−)).

Case 2. μ({t}) > 0. In this second case, we have∥∥u(t) − u(t−)
∥∥ ≤ μ({t}) ≤ sup

s∈]T0,T ]

μ({s}) < r. (5.61)

With ν := μ+ λ, the inequality μ({t}) > 0 also entails ν({t}) > 0, thus by definition of a solution

du
dν

(t) + f(t, u(t))
dλ
dν

(t) ∈ −N(C(t);u(t)).

By (2.10), we have dλ
dν (t) = 0, so the last inclusion gives us

du
dν

(t) ∈ −N(C(t);u(t)).
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Using this and (2.12), we obtain

−N(
C(t);u(t)

) � du
dν

(t) = lim
s↑t

du(]s, t])
ν(]s, t])

= lim
s↑t

u(t) − u(s)
ν(]s, t])

=
u(t) − u(t−)

ν({t}) ,

which is equivalent to
u(t−) − u(t) ∈ N(C(t);u(t)), (5.62)

since N(C(t);u(t)) is a cone. Using (5.61) and (5.62), we can apply Proposition 3.5 to get

u(t) = PC(t)(u(t−)). �

6. Uniqueness

Requiring a control on the jumps, we have the following result of uniqueness of solution for our measure
differential inclusion.

Theorem 6.1. Under the assumptions of Theorem 5.1, for each u0 ∈ C(T0), the perturbed sweeping process

(P)

{
−du ∈ N(C(t);u(t)) + f(t, u(t))
u(T0) = u0

has one and only one solution satisfying

sup
s∈]T0,T ]

∥∥u(s) − u(s−)
∥∥ < r

2
·

Further, this solution has the properties:

u(t) = PC(t)

(
u(t−)

)
for all t ∈]T0, T ],∥∥∥∥du

dν
(t) + f(t, u(t))

dλ
dν

(t)
∥∥∥∥ ≤ dμ

dν
(t) + ‖f(t, u(t))‖ dλ

dν
(t) ν-a.e. t ∈ [T0, T ].

Proof. Fix any u0 ∈ C(T0).

Existence. Using Theorem 5.1 and Corollary 5.2, (P) has a solution u(·) satisfying∥∥u(t) − u(t−)
∥∥ ≤ μ({t}) for all t ∈]T0, T ],

as well as the property u(t) = PC(t)

(
u(t−)

)
for all t ∈]T0, T ] and the inequality∥∥∥∥du

dν
(t) + f(t, u(t))

dλ
dν

(t)
∥∥∥∥ ≤ dμ

dν
(t) + ‖f(t, u(t))‖ dλ

dν
(t) for ν-a.e. t ∈ I,

where ν = μ+ λ. Combining the inequality above and sup
s∈]T0,T ]

μ({s}) < r
2 , we get

sup
s∈]T0,T ]

∥∥u(s) − u(s−)
∥∥ < r

2
.

Uniqueness. To prove the uniqueness, consider two solutions u1(·), u2(·) : I −→ H of (P) (with the same initial
condition u0) such that for each i ∈ {1, 2},

sup
s∈]T0,T ]

∥∥ui(s) − ui(s−)
∥∥ < r

2
·
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Let ν := μ + λ. Since the concept of solution does not depend on the Radon measure absolutely continuously
equivalent to μ+ λ, one has for each i ∈ {1, 2},

Ai(t) :=
dui

dν
(t) + f(t, ui(t))

dλ
dν

(t) ∈ −N(C(t);ui(t)) ν-a.e. t ∈ I.

By the r-prox-regularity of the sets C(t), the latter inclusion and Theorem 2.2, it ensues that for ν-almost every
t ∈ I,

〈A1(t) −A2(t), u1(t) − u2(t)〉 ≤ 1
2r

‖u1(t) − u2(t)‖2

(
2∑

i=1

(∥∥∥∥dui

dν
(t)

∥∥∥∥ + ‖f(t, ui(t))‖ dλ
dν

(t)
))

·

Since the BV mappings u1(·) and u2(·) are in particular bounded on I = [T0, T ], we can choose some real α > 0
such that, for each i ∈ {1, 2}, ‖ui(t)‖ ≤ α for all t ∈ I. We then obtain, for ν-almost every t ∈ I,

〈
du1

dν
(t) − du2

dν
(t), u1(t) − u2(t)

〉

≤ dλ
dν

(t) 〈f(t, u2(t)) − f(t, u1(t)), u1(t) − u2(t)〉

+
1
2r

‖u1(t) − u2(t)‖2

(
2∑

i=1

(∥∥∥∥dui

dν
(t)

∥∥∥∥ + ‖f(t, ui(t))‖ dλ
dν

(t)
))

≤ dλ
dν

(t)Lα(t) ‖u1(t) − u2(t)‖2 +
1
2r

‖u1(t) − u2(t)‖2

(
2∑

i=1

(∥∥∥∥dui

dν
(t)

∥∥∥∥ + ‖f(t, ui(t))‖ dλ
dν

(t)
))

·

Using Proposition 3.2, we deduce that, for all t ∈ I,

‖u1(t) − u2(t)‖2 ≤
∫

]T0,t]

g(s) ‖u1(s) − u2(s)‖2 dν(s),

where g(t) := 2[dλ
dν (t)Lα(t) + 1

2r (
2∑

i=1

(
∥∥dui

dν (t)
∥∥+ ‖f(t, ui(t))‖ dλ

dν (t)))] for ν-almost every t ∈ I. Observe also that

(see (2.10)), for ν-almost every t ∈ I, dλ
dν (t)ν({t}) = 0. Furthermore, for each i ∈ {1, 2}, since du

dν is a density of
du relative to ν, with γ := 2 max

1≤i≤2
sup

s∈]T0,T ]

‖ui(s) − ui(s−)‖ < r one also has, for ν-almost every t ∈ I,

∥∥∥∥dui

dν
(t)

∥∥∥∥ ν({t}) =
∥∥ui(t) − ui(t−)

∥∥ ≤ sup
s∈]T0,T ]

∥∥ui(s) − ui(s−)
∥∥ ≤ γ

2
·

It ensues that

0 ≤ g(t)ν({t}) =
1
r

2∑
i=1

∥∥∥∥dui

dν
(t)

∥∥∥∥ ν({t}) ≤ γ

r
< 1,

and this allows us to use Lemma 3.1 to obtain for all t ∈ I, ‖u1(t) − u2(t)‖2 ≤ 0. This proves the uniqueness. �

7. Existence and uniqueness on a non-compact interval

Now, we investigate the case where I is a non-compact interval [T0, τ [ of R with τ ∈]T0,+∞].
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Theorem 7.1. Let τ ∈ R ∪ {+∞} and let T0 ∈ R with T0 < τ . Let r ∈]0,+∞] and let C(·) : I := [T0, τ [⇒ H
be a set-valued mapping from I into the r-prox-regular subsets of the real Hilbert space H for which there exists
a positive Radon measure μ on I such that,

|d(y, C(t)) − d(y, C(s))| ≤ μ (]s, t]) for all y ∈ H, for all s, t ∈ I with s ≤ t.

Assume that, one has sup
s∈]T0,τ [

μ({s}) < r
2 . Let f : I ×H −→ H be a mapping such that:

(i) the mapping f(·, x) is Lebesgue measurable for each x ∈ H and there exists a nonnegative function β : I −→
R with β ∈ L1

loc(I,R, λ) such that, for all t ∈ I, x ∈ ⋃
τ∈I

C(τ),

‖f(t, x)‖ ≤ β(t)(1 + ‖x‖);

(ii) for each real α ≥ 0, there exists some nonnegative function Lα : I −→ R with Lα ∈ L1
loc(I,R, λ) such that,

for all t ∈ I, for all x, y ∈ αBH,

‖f(t, x) − f(t, y)‖ ≤ Lα(t) ‖x− y‖ .

Then, for each u0 ∈ C(T0), the following measure differential inclusion sweeping process on [T0, τ [

(P)

{
−du ∈ N(C(t);u(t)) + f(t, u(t))
u(T0) = u0

has a unique solution satisfying
sup

s∈]T0,τ [

∥∥u(s) − u(s−)
∥∥ < r

2
·

Further, one has u(t) = PC(t)

(
u(t−)

)
for all t ∈]T0, τ [ and with ν := μ+ λ∥∥∥∥du

dν
(t) + f(t, u(t))

dλ
dν

(t)
∥∥∥∥ ≤ dμ

dν
(t) + ‖f(t, u(t))‖ dλ

dν
(t) ν-a.e. t ∈ I.

Proof. Fix any u0 ∈ C(T0).

Existence. Let us adjoin to T0 an increasing sequence (Ti)i≥1 in ]T0, τ [ tending to τ . For each integer i ≥ 0
denote by μi (resp. λi) the measure induced by μ (resp. λ) on [Ti, Ti+1]. Put also νi = μi + λi and notice that,
for all y ∈ H,

|d(y, C(t)) − d(y, C(s))| ≤ μi(]s, t]) for all s, t ∈ [Ti, Ti+1] with s < t.

Using Theorem 5.1, there exists a solution U0 : [T0, T1] −→ H of the sweeping process

(P0)

{
−dU0 ∈ N(C(t);U0(t)) + f(t, U0(t))
U0(T0) = u0

which satisfies∥∥U0(t) − U0(t−)
∥∥ ≤ μ0({t}) = μ({t}) and U0(t) = PC(t)

(
U0(t−)

)
for all t ∈]T0, T1],

and also ∥∥∥∥dU0

dν0
(t) + f(t, U0(t))

dλ
dν0

(t)
∥∥∥∥ ≤ dμ

dν0
(t) + ‖f(t, U0(t))‖ dλ

dν0
(t) for ν0-a.e. t ∈ [T0, T1].
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Besides U0 we construct by induction (thanks to Thm. 5.1) a sequence (Uj)j≥1 of mappings such that, for all
integer j ≥ 1, Uj : [Tj, Tj+1] −→ H is a solution of

(Pj)

{
−dUj ∈ N(C(t);Uj(t)) + f(t, Uj(t))
Uj(Tj) = Uj−1(Tj)

and satisfies ∥∥Uj(t) − Uj(t−)
∥∥ < μj({t}) = μ({t}) and Uj(t) = PC(t)

(
Uj(t−)

)
for all t ∈]Tj , Tj+1]

as well as ∥∥∥∥dUj

dνj
(t) + f(t, Uj(t))

dλ
dνj

(t)
∥∥∥∥ ≤ dμ

dνj
(t) + ‖f(t, Uj(t))‖ dλ

dνj
(t) for νj-a.e. t ∈ [Tj , Tj+1].

Let us define u : [T0, τ [−→ H with u(t) := Uj(t) if t ∈ [Tj, Tj+1] for some j ≥ 0. Proceeding as in the proof of
Theorem 5.1 Case 2 with the function g defined for ν-almost every t ∈ I (where ν := μ+ λ) by

g(t) := 1[T0,T1]
dU0

dν0
(t) +

+∞∑
j=1

1]Tj,Tj+1](t)
dUj

dνj
(t),

we see that u is a solution of (P). Moreover, we have∥∥u(t) − u(t−)
∥∥ ≤ μ({t}) and u(t) = PC(t)

(
u(t−)

)
for all t ∈]T0, τ [,

hence in particular sup
s∈]T0,τ [

‖u(s) − u(s−)‖ < r
2 . Further, we also have

∥∥∥∥du
dν

(t) + f(t, u(t))
dλ
dν

(t)
∥∥∥∥ ≤ dμ

dν
(t) + ‖f(t, u(t))‖ dλ

dν
(t) for ν-a.e. t ∈ [T0, T ].

This finishes the proof of the existence of a solution with the desired properties.

Uniqueness. Let u1, u2 be two solutions of (P) such that, for each i ∈ {1, 2}

sup
s∈]T0,τ [

∥∥ui(s) − ui(s−)
∥∥ < r

2
·

For each i ∈ {1, 2}, for all integer j ≥ 0, we have

sup
s∈]Tj ,Tj+1]

∥∥ui|[Tj ,Tj+1](s) − ui|[Tj,Tj+1](s−)
∥∥ < r

2
·

Applying Theorem 6.1, we get by induction on j that, for every integer j ≥ 0,

u1|[Tj,Tj+1](t) = u2|[Tj,Tj+1](t), for all t ∈]Tj, Tj+1].

It results that u1 = u2, which finishes the proof. �

In the case when the sets C(t) are convex for all t ∈ I, the condition supμ({s}) < r
2 holds automatically

because in such a case, for all t ∈ I, C(t) is r-prox-regular with r = +∞. So, we retreive the existence part of
([1], Thm. 4.1).

Even for f ≡ 0, the problem (P) may have more than one solution. For this fact, we refer to Remark 3.1(2)
of [12].
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8. Absolutely continuous sweeping process

In this section, we deal with the case where the measure μ is absolutely continuous relative to λ.

Proposition 8.1. Let T ∈ R (resp. τ ∈ R ∪ {+∞}) and I = [T0, T ] with T0 ∈ R and T0 < T (resp. I = [T0, τ [
with T0 ∈ R and T0 < τ). Let C : I ⇒ H be a set-valued mapping from I into the real Hilbert space H such that,
for some r ∈]0,+∞], C(t) is r-prox-regular for every t ∈ I. Assume that there exists a nondecreasing locally
absolutely continuous function v(·) on I such that

|d(y, C(s)) − d(y, C(t))| ≤ v(t) − v(s) for all y ∈ H, for all s, t ∈ I with s ≤ t.

Assume also that the mapping f satisfies conditions (i) and (ii) in Theorem 5.1.
Then, considering the Radon measure μ with μ(]s, t]) = v(t) − v(s) for s < t, a solution of the measure

differential sweeping process

(P)

{
−du ∈ N(C(t);u(t)) + f(t, u(t))
u(T0) = u0 ∈ C(T0)

is a solution in the classical sense, that is:

(a) u is absolutely continuous on I (resp. locally absolutely continuous on I);
(b) −du

dt (t) ∈ N(C(t);u(t)) + f(t, u(t)) λ-a.e. t ∈ I;
(c) u(T0) = u0 and u(t) ∈ C(t) for all t ∈ I.

So, (P) admits one and only one absolutely (resp. locally absolutely) continuous solution u(·) on I, and further∥∥∥∥du
dt

(t) + f(t, u(t))
∥∥∥∥ ≤ dv

dt
(t) + ‖f(t, u(t))‖ λ-a.e. t ∈ I.

Proof. Let u(·) : I −→ H be a solution of (P) in the measure differential sense. Set ν = μ + λ and observe
that the restriction of the measure ν to any compact interval of I is absolutely continuously equivalent to the
restriction of the Lebesgue measure λ to that compact interval. Then, there exists a mapping h : I −→ [0,+∞[
λ-integrable (resp. locally λ-integrable) on I such that ν = h(·)λ. Thanks to the equalities (λ-a.e.) h(·) = dν

dλ(·)
and dν

dλ(·)du
dν (·) = du

dλ(·), we have

u(t) = u0 +
∫

]T0,t]

h(s)
du
dν

(s)dλ(s) for all t ∈ I.

As a consequence, the mapping u(·) is absolutely (resp. locally absolutely) continuous on I and there exists a
Borel set B1 of I with λ(B1) = 0 such that

du
dt

(t) = h(t)
du
dν

(t) for all t ∈ I \B1.

Since u(·) is a solution of (P) in the measure differential sense, there exists a Borel set B2 in I with ν(B2) = 0
such that

du
dν

(t) + f(t, u(t))
dλ
dν

(t) ∈ −N(C(t);u(t)) for all t ∈ I \B2.

Setting B = B1 ∪B2, we see that λ(B) = 0 and, for all t ∈ I \B,

h(t)
du
dν

(t) + f(t, u(t))h(t)
dλ
dν

(t) ∈ −N(C(t);u(t)).

On the other hand, for all s, t ∈ I with s < t,∫
]s,t]

h(θ)
dλ
dν

(θ)dλ(θ) =
∫

]s,t]

dλ
dν

(θ)h(θ)dλ(θ) =
∫

]s,t]

dλ
dν

(θ)dν(θ) =
∫

]s,t]

dλ(θ).
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It follows that
du
dt

(t) + f(t, u(t)) ∈ −N(C(t);u(t)) λ-a.e. t ∈ I,

and this finishes the proof. �

9. Application to nonlinear differential complementarity systems

In view of application to nonlinear differential complementarity systems, we will start with a subsection
devoted to the prox-regularity of sublevel sets.

9.1. Prox-regularity of the moving set described by inequality constraints

The theorem of this subsection providing sufficient conditions for the uniform prox-regularity of a set of
sublevel constraints is the following:

Theorem 9.1. Let I be a nonempty set, H be a real Hilbert space, and gk : I × H → R with k = 1, . . . ,m be
functions such that, for each t ∈ I, the set

C(t) = {x ∈ H : g1(t, x) ≤ 0, . . . , gm(t, x) ≤ 0}

is nonempty. Assume that there exists some ρ ∈]0,+∞] such that:

(i) for all t ∈ I, for all k ∈ {1, . . . ,m}, gk(t, ·) is of class C1 on Uρ(C(t));

(ii) there exists a real γ > 0 such that, for all t ∈ I, for all x ∈ bdry C(t), for all y ∈ Uρ(C(t)), for all
k ∈ {1, . . . ,m} with gk(t, x) = 0,

〈∇gk(t, ·)(y) −∇gk(t, ·)(x), y − x〉 ≥ −γ ‖y − x‖2
.

Assume also that there is a real δ > 0 such that, for any (t, x) ∈ I × H with x ∈ bdry C(t) and any ζ ∈
co{∇gk(t, ·)(x) : k ∈ K(t, x)} where K(t, x) := {k ∈ {1, . . . ,m} : gk(t, x) = 0}, there exists v(t, x, ζ) ∈ BH
satisfying 〈ζ, v(t, x, ζ)〉 ≤ −δ.

Then, for all t ∈ I, the set C(t) is r-prox-regular with r = min
{
ρ, δ

γ

}
.

Proof. All the sets C(t) are clearly closed according to the continuity of the functions gk(t, ·) over Uρ(C(t)). Set
K := {1, . . . ,m} and

g(t, x) := max
k∈K

gk(t, x) for all (t, x) ∈ I ×H.

Put also, for all x ∈ H, for all t ∈ I, K(t, x) = {k ∈ K : gk(t, x) = 0}. Fix now any t ∈ I. One observes
that C(t) = {x ∈ H : g(t, x) ≤ 0}. By assumption (i), for all k ∈ K, the function gk(t, ·) is locally Lipschitz
continuous on Uρ(C(t)). Using (ii) and ([8], Cor. 10.23), one has

∂Cg(t, ·)(x) ⊂ co {∇gk(t, ·)(x) : k ∈ K(t, x)} (9.1)

for all x ∈ bdry C(t). It is straighforward by the assumption involving v(t, x, ζ) and (9.1) that 0 /∈ ∂Cg(t, ·)(x)
for all x ∈ bdry C(t). So, by ([8], Thm. 10.42) we obtain that, for all x ∈ bdry C(t)

NC(C(t);x) =
⋃
α≥0

α∂Cg(t, ·)(x). (9.2)
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Fix any x, y ∈ C(t) with ‖y − x‖ < 2ρ and x ∈ bdry C(t) (hence g(t, x) = 0). For all s ∈ [0, 1], one has

dC(t)(x+ s(y − x)) ≤ min {‖x+ s(y − x) − x‖ , ‖x+ s(y − x) − y‖}
= min {s, 1 − s} ‖y − x‖
≤ 1

2
‖y − x‖ < ρ,

i.e., x+ s(y − x) ∈ Uρ(C(t)). For all s ∈ ]0, 1], for all k ∈ K(t, x), one has

〈∇gk(t, ·)(x + s(y − x)) −∇gk(t, ·)(x), y − x〉 =
1
s
〈∇gk(t, ·)(x + s(y − x)) −∇gk(t, ·)(x), s(y − x)〉

≥ −1
s
γ ‖s(y − x)‖2 = −γs ‖x− y‖2 .

Then, for every k ∈ K(t, x)

0 ≥ gk(t, y) − gk(t, x) =
∫ 1

0

〈∇gk(t, ·)(x + s(y − x)), y − x〉ds

= 〈∇gk(t, ·)(x), y − x〉 +
∫ 1

0

〈∇gk(t, ·)(x + s(y − x)) −∇(gk(t, ·)(x), y − x〉ds

≥ 〈∇gk(t, ·)(x), y − x〉 − γ‖y − x‖2

∫ 1

0

s ds,

hence 〈∇gk(t, ·)(x), y − x〉 ≤ γ
2‖y − x‖2. This and the equality (9.1) imply

〈ζ, y − x〉 ≤ γ

2
‖y − x‖2 for all ζ ∈ ∂Cg(t, ·)(x).

Further, for any ζ ∈ ∂g(x), the relation (9.1) again ensure that 〈ζ,−v(t, x, ζ)〉 ≥ δ. Since ‖ − v(t, x, ζ)‖ ≤ 1, for
every ζ ∈ ∂Cg(t, ·)(x) it follows that ‖ζ‖ ≥ δ, thus

〈ζ, y − x〉 ≤ γ

2δ
‖ζ‖ ‖y − x‖2.

It ensues that, for any x, y ∈ C(t) with x ∈ bdryC(t) and ‖y − x‖ < 2r,

〈ζ, y − x〉 ≤ 1
2r

‖ζ‖ ‖y − x‖2 for all ζ ∈ ∂Cg(t, ·)(x),

or equivalently according to (9.2)

〈ζ, y − x〉 ≤ 1
2r

‖ζ‖ ‖y − x‖2 for all ζ ∈ NC(C(t);x).

This and Proposition 2.4 justify the r-prox-regularity of the set C(t). �

Given a nonempty open convex subset U of a real Hilbert space H, a C1-function g : U −→ R is known to
be γ-prox-regular on U for some real γ ≥ 0 if and only if

〈∇g(x), y − x〉 ≤ γ ‖y − x‖2 for all x, y ∈ U,

that is, the function g + γ
2 ‖·‖2 is convex on U .

As a consequence, we get the following result.
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Corollary 9.2. Let I be a nonempty set, H be a real Hilbert space, and gk : I ×H → R with k = 1, . . . ,m be
functions such that, for each t ∈ I, the set

C(t) = {x ∈ H : g1(t, x) ≤ 0, . . . , gm(t, x) ≤ 0}

is nonempty. Assume that there exists some ρ ∈]0,+∞] such that:

(i) for all t ∈ I, for all k ∈ {1, . . . ,m}, gk(t, ·) is C1 on Uρ(C(t));
(ii) for some real γ ≥ 0, the functions gk(t, ·) are γ-prox-regular on an open convex set containing Uρ(C(t)) for

all t ∈ I and all k ∈ {1, . . . ,m}.

Assume also that there is a real δ > 0 such that, for any (t, x) ∈ I × H with x ∈ bdry C(t) and any ζ ∈
co{∇gk(t, ·)(x) : k ∈ K(t, x)} where K(t, x) := {k ∈ {1, . . . ,m} : gk(t, x) = 0}, there exists v(t, x, ζ) ∈ BH
satisfying 〈ζ, v(t, x, ζ)〉 ≤ −δ.

Then, for all t ∈ I, the set C(t) is r-prox-regular with r = min
{
ρ, δ

2γ

}
.

A previous result has been established by Vial ([35], Prop. 4.10) for the prox-regularity (called therein weak
convexity) of a set in the form {x ∈ R

n : ϕ(x) ≤ 0}, with a single function ϕ : R
n → R which is weakly convex

on R
n; that result is encompassed by Corollary 9.2 in the context of differentiable functions. More general

results on operations with (uniform) prox-regular sets will appear in a forthcoming paper. We also cite Venel
([34], Prop. 2.9) for a result with H = R

n under some boundedness assumptions related to the first and second
derivatives of the constraints functions gk(t, ·). Our statement, approach and proof of Theorem 9.1 are general
and different from those of the aforementioned results in [34, 35].

9.2. Nonlinear differential complementarity systems

For a matrix M ∈ R
m × R

n, MT stands for the transpose matrix of M .
Nonlinear Complementarity Systems (NCS) is an important class of nonsmooth dynamical systems with

a wide range of applications in mechanical and electrical engineering. It consists of an ordinary differential
equation coupled with a nonlinear complementarity problem in the constraint. The novelty is that time-varying
inequality constraints are allowed to take into account the constraints evolution with respect to time. NDCS
belongs to the large class of hybrid dynamical system defined generally by a finite number of smooth modes
described by an ordinary differential inclusion with transition between the modes through a switching surface.
NCS plays a fundamental role in nonsmooth mechanics (multibody dynamics with contact, friction and impact),
in nonregular electrical circuits (switched electrical networks, relay systems, circuit breakers), in control systems
as well as in dynamical games. In this paragraph, we will show how to transform a NDCS involving inequality
constraints to a sweeping process of the form (1.1).

Let T > 0 be a real, I = [0, T ], n,m ∈ N, f : I × R
n → R

n and g : I × R
n → R

m two given mappings.
Assuming that g(t, ·) is differentiable for each t ∈ I, the NDCS (associated with f and g) can be described as

(NDCS)
{−du = f(t, u(t)) + ∇g(t, ·)(u(t))T z(t)

0 ≤ z(t) ⊥ g(t, x) ≤ 0,

where z : I → R
m is unknown mapping. The term ∇g(t, ·)(u(t))T z(t) can be seen as the generalized reactions

due to the constraints in mechanics.
Of course, the behaviour of a solution with respect to t is connected to the variation with respect to t of the

set constraint
C(t) := {x ∈ R

n : g1(t, x) ≤ 0, . . . , gm(t, x) ≤ 0}
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where we set g(t, ·) = (g1(t, ·), . . . , gm(t, ·)) for each t ∈ I. Generally, absolute continuity is required for the
solution. Here jumps will be allowed. So, we assume that:

(H1) There exists a positive Radon measure μ on I such that

|d(y, C(t)) − d(y, C(s))| ≤ μ (]s, t]) for all y ∈ R
n, for all s, t ∈ I with s ≤ t.

In this context, a mapping u : I → R
n is a solution of (NDCS) whenever:

(a) u(·) is of bounded variation and right-continuous on I, and there is a Borel-measurable mapping
z : I → R

m with z(I) ⊂ R
m
+ (where R+ := [0,+∞[) and

〈z(t), g(t, u(t))〉 = 0 for all t ∈ I;

(b) with ν := μ + λ, the differential measure du is absolutely continuous with respect to ν, and for
ν-almost every t ∈ I,

du
dν

(t) + f(t, u(t))
dλ
dν

(t) = −∇g(t, ·)(u(t))T z(t).

If the variation of the set constraint is absolutely continuous, then the measure ν = μ+ λ is absolutely
continuously equivalent to the Lebesgue measure λ, so the above definition is reduced to the classical
concept of absolutely continuous solution for (NDCS).
For each t ∈ I, assume that g(t, ·) is differentiable on the open enlargement Uρ(C(t)) := {x ∈ R

n :
d(x,C(t)) < ρ} and that ∇g(t, ·) is γ−Lipschitz continuous on Uρ(C(t)), for some reals ρ, γ > 0. For any
x ∈ R

n, assume that g(·, x) : I → R
m is a Borel function. Assume also that:

(H2) There is a real δ > 0 such that, for any (t, x) ∈ [0, T ] × R
n with x ∈ bdry C(t), there exists v ∈ B

satisfying for all k ∈ {1, . . . ,m}
∇gk(t, ·)(x) vT ≤ −δ;

(H3) For each t ∈ I, x ∈ C(t), ∇g(t, ·)(x) is of rank m.

It is straightforward that Theorem 9.1 ensures the r-prox-regularity of the set C(t) with r := min{ρ, δ
γ }.

Clearly, recalling that ψS denotes the indicator function of a set S (see Sect. 2.2), the following equality
ψC(t) = ψRm

− ◦ g(t, ·) holds true, where R− :=] −∞, 0]. Let u : I −→ R
n be a mapping.

Note that for any mapping z : I −→ R
m, we have for each t ∈ I,

z(t) ∈ R
m
+ and z(t) g(t, u(t))T = 0 ⇐⇒ z(t) ∈ N(Rm

− ; g(t, u(t))). (9.3)

Therefore, (NDCS) reduces to

−du ∈ f(t, u(t)) + ∇gt(u(t))T
(
N(Rm

− ; g(t, u(t)))
)
. (9.4)

Further, invoking a chain rule of Clarke subdifferential (see [29], p. 428), we have

∂CψC(t)(x) = ∇g(t, ·)(x)T
(
N(Rm

− ; g(t, u(t)))
)

for all t ∈ I, x ∈ C(t). (9.5)

Hence, u is a solution to the following sweeping process

−du ∈ f(t, u(t)) +N
(
C(t);u(t)

)
. (9.6)

whenever it is a solution of (NDCS).
Now, we show the converse implication. Assume that u(·) is a solution of (9.6). Let us note that g(·, u(·)) is

Borel measurable. Hence, from ([29], Thm. 14.26) we deduce that N(Rm
− ; g(·, u(·))) is a Borel-measurable closed-

valued set-valued mapping. As a consequence (see, e.g., [29], Cor. 14.6), there is a Borel-measurable mapping
z : [0, T ] −→ R

m such that z(t) ∈ N
(
R

m
− ; g(t, u(t))

)
for all t ∈ I. Using (9.5) and (9.3), u(·) is a solution of

(NDCS).
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All together say, according to Theorems 5.1 and 6.1, that we have proved the following theorem:

Theorem 9.3. Assume that H1−H3 and conditions (i) and (ii), for the mapping f , in Theorem 5.1 are
satisfied, and assume also that sup

t∈]0,T ]

μ({t}) < r
2 . Then, for every initial data u0 with g(0, u0) ≤ 0, problem

(NDCS) has one and only one solution u(·) such that

sup
s∈]0,T ]

‖u(t) − u(t−)‖ < r

2
.

10. Concluding remarks

In this paper, we studied the existence and the uniqueness of solution to a discontinuous sweeping process
where the state trajectories are constrained to evolve in a prox-regular moving set having a variation given by
a positive Radon measure. Various properties and estimates of jumps of the solution are also provided. This
kind of problem arises in unilateral mechanics, in elastoplasticity, in mathematical economics as well as in the
simulation of crowd motion. A sufficient condition ensuring the prox-regularity of the moving set, when it is
described by inequality constraints, is given. An application to nonlinear differential complementarity system is
also discussed in detail. The cornerstone of the existence proof is Moreau’s catching-up algorithm adapted to
prox-regular moving sets. This leads naturally to the numerical treatment of discontinuous nonconvex sweeping
processes. It will be interesting to perform some numerical experiments on concrete examples. In nonsmooth
mechanics, some constraints could be nondifferentiable. A natural question would be to generalize the conditions
in Theorem 9.1. We contented ourselves with studying the single-valued perturbation f . Adding a set-valued
one F is of a great interest in economical problems (see, e.g., [10, 13, 15]). This and the study of preservation
of prox-regularity under various operations are out of the scope of this manuscript. Both studies will be the
subject of forthcoming research projects.
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pellier (1975) Exposé 17.
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