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ABSTRACT
This paper is devoted to the existence and uniqueness of
solutions for perturbed sweeping process measure differen-
tial inclusions in infinite dimensional setting. The possibly
unbounded moving set is prox-regular and controlled only
through the truncated Hausdorff-Pompeiu distance. The nor-
mal cone involved is perturbed by a kind of Carathéodory
mapping satisfying a time-dependent hypomonotonicity
assumption on bounded sets. Various properties of the solu-
tion mapping are also provided.
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1. Introduction

Consider aHilbert spaceH and any realT>0. GivenC : [0,T] ⇒ H a nonempty
closed convex valued multimapping and u0 ∈ C(0), Moreau [1] established in
1971 that there is one and only one absolutely continuous mapping u : [0,T] →
H such that

(PAC)

⎧⎪⎨⎪⎩
−u̇(t) ∈ N(C(t); u(t)) a.e. t ∈ [0,T],
u(t) ∈ C(t) for all t ∈ [0,T],
u(0) = u0,

provided that C(·) is absolutely continuous with respect to the Hausdorff-
Pompeiu distance, or equivalently for some absolutely continuous function v :
[0,T] → R+ := [0,+∞[,

ĥaus(C(s),C(t)) := max

{
sup
x∈C(s)

dC(t)(x), sup
x∈C(t)

dC(s)(x)

}
≤ |v(s)− v(t)| , (1)

for every s, t ∈ [0,T]. Here and below, N(·; ·) stands for the normal cone in the
sense of convex analysis. Due to its kinematic interpretation (see for instance the

CONTACT Florent Nacry florent.nacry@insa-rennes.fr Univ Rennes, INSA Rennes, CNRS, IRMAR-UMR
6625, F-35000 Rennes, France
This paper is dedicated to Boris Mordukhovich on the occasion on his 70th birthday.

© 2018 Informa UK Limited, trading as Taylor & Francis Group

http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/02331934.2018.1514039&domain=pdf
http://orcid.org/0000-0001-5369-5246
http://orcid.org/0000-0002-4172-1301
mailto:florent.nacry@insa-rennes.fr


2 F. NACRY AND L. THIBAULT

introduction of [2]) J.J. Moreau called the differential inclusion (PAC) ‘sweeping
process’ (‘processus de rafle’ in French). Later, (PAC) has been transformed by J.J.
Moreau into the following measure differential inclusion (see, Section 4)

(PBV)

⎧⎪⎨⎪⎩
−du ∈ N(C(t); u(t)) a.e. t ∈ [0,T],
u(t) ∈ C(t) for all t ∈ [0,T],
u(0) = u0.

As above, under an appropriate control on themoving set, namely the finite varia-
tion ofC(·), or equivalently the existence of a positive Radonmeasureμ on [0,T]
such that

ĥaus(C(s),C(t)) ≤ μ(]s, t]) for all s, t ∈ [0,T]with s ≤ t, (2)

the problem (PBV) is well-posed (in the sense of existence and uniqueness of a
solution).

The crucial role of generalized Cauchy problems (PAC) and (PBV) in numer-
ous applications of mathematics (see, e.g. [3–7]) has led to the development of
many variants of the so-called ‘Moreau sweeping process’ which have their own
interest: stochastic [8], perturbed [9], nonconvex [10], state-dependent [11], in
Banach spaces [12].

The general study of perturbed sweeping processes probably starts withM.D.P.
Monteiro Marques in [9]. It consists in adding a multi-valued term F(t, u(t))
(which can be seen in a mechanical point of view as external forces to the system
modelized by the considered sweeping process) on the normal cone involved,
that is, (in the bounded variation case)

(PPBV)

⎧⎪⎨⎪⎩
−du ∈ N(C(t); u(t))+ F(t, u(t)) a.e. t ∈ [0,T],
u(t) ∈ C(t) for all t ∈ [0,T],
u(0) = u0.

Over the years, such differential inclusions have been at the heart of a large num-
ber of works. For existence results (depending on the nature of the perturbation
F(·, ·) involved) we refer to [13–15] and the references therein. Besides consid-
ering a perturbation F(·, ·), it is also of interest, for both theoretical and concrete
aspects (see, e.g. [16,17]) to relax the convexity assumption on the moving set
C(·). The first nonconvex study is due to Valadier [10] with a moving subset
C(t) ⊂ R

n such that the multimapping (t, x) �→ NC(C(t); x) has a closed graph,
where NC(·; ·) denotes the Clarke normal cone. The latter property holds in par-
ticular when C(t) := R

n \ intK(t) for a convex K(t) and such a case has been
widely developed in the early nineties (see, e.g. [18,19]). Actually, the existence
of solutions for nonconvex sweeping processes still remains a very well-active
area of research. It involves large classes of sets coming from variational analysis
as prox-regular, subsmooth and α-far (see, e.g. [13,15,20,38] and the references
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therein). It is worth pointing out that the class of prox-regular sets [21] is known
to be the more general ensuring the well-posedness of problem (PPBV) consid-
ered with a mapping F ≡ f . It is also the suitable class for control problems with
sweeping processes (see, e.g. [22–24]).

As mentioned in [25] and in [26], there are many practical situations where
an unbounded moving set is not absolutely continuous or of bounded vari-
ation with respect to the Hausdorff-Pompeiu distance. An efficient way to
weaken the aforementioned control (1) and (2) seems to consist in replacing
the Haudorff-Pompeiu ĥaus(·, ·) by the truncated one [26–29], that is, (in the
bounded variation framework)

ĥausρ(C(s),C(t)) := max

{
sup

x∈C(s)∩ρB

dC(t)(x), sup
x∈C(t)∩ρB

dC(s)(x)

}
≤ μ(]s, t]).

(3)
In [28], it has been proved that (PBV) with C(t) convex has one and only one
solution provided that there are a real ρ0 ≥ ‖u0‖ and an extended real ρ > 0
such that ∥∥∥projC(tk) ◦ · · · ◦ projC(t1)(u0)

∥∥∥ ≤ ρ0 (4)

for each t1 < · · · < tk and provided that C(·) has a bounded retraction along ρ-
truncation (see, e.g. [28]), or equivalently if for some positive Radon measure μ
on [0,T]

êxcρ(C(s),C(t)) := sup
x∈C(s)∩ρB

dC(t)(x) ≤ μ(]s, t]).

We also refer to Adly and Le [27] for another existence result in the context of
perturbed convex second order sweeping process under (3).

The present paper deals with the existence and uniqueness of a solution
for the perturbed sweeping process (PPBV) with F = f : [0,T] × H → H as a
mapping. Here, the moving set C(·) is prox-regular and satisfies (3). The per-
turbation f (·, ·) is measurable in time and uniformly continuous in the state,
satisfies for each bounded subsetB ofH the hypomonotonicity property for some
lB ∈ L1([0,T],R+, λ),〈

f (t, x1)− f (t, x2), x1 − x2
〉 ≥ −lB(t) ‖x1 − x2‖2 for all t ∈ I, x1, x2 ∈ B.

For the unperturbed case (that is, f ≡ 0), we develop another existence and
uniqueness result under the assumption on successive projections (4).

The paper is organized as follows. Section 2 is devoted to recall background
in variational analysis and vector measure theory. Section 3 is concerned with
various preparatory results which are necessary in order to establish existence
and uniqueness of solution for (PPBV) in Section 4 and in Section 5.



4 F. NACRY AND L. THIBAULT

2. Preliminaries

Throughout, I := [T0,T] is an interval of R with T0 < T and λ denotes
the Lebesgue measure on I. The extended real-line is denoted by R := R ∪
{−∞,+∞}, R+ := [0,+∞[ is the set of nonnegative reals and N is the set of
the integers starting from 1.

In all the paper, H is a real Hilbert space whose inner product is denoted by
〈·, ·〉, the associated norm by ‖ · ‖ := √〈·, ·〉 and the closed (resp., open) unit ball
centered at zero by B (resp., U). The closed (resp., open) ball of H centered at
x ∈ H of radius r>0 is denoted by B[x, r] (resp., B(x, r)). For any subset S ofH,
dS(·) (or d(·, S)) is the distance function to S, that is,

dS(x) :=: d(x, S) := inf
y∈S

∥∥x − y
∥∥ for all x ∈ H

and the convex (resp., closed convex) hull of S is denoted by co S (resp., co S). The
multimapping ProjS : H ⇒ H of nearest points on S is defined by

ProjS(x) :=
{
y ∈ S :

∥∥x − y
∥∥ = dS(x)

}
for all x ∈ H.

If ProjS(x) is a singleton for some x ∈ H, we denote by projS(x) or PS(x) the only
element of ProjS(x), i.e.

ProjS(x) = {
projS(x)

} = {PS(x)} .
In such a case, one says that projS(x) or PS(x) is well-defined.

2.1. Normal cones and subdifferentials

We start by recalling the necessary background on proximal and Clarke normal
cones and subdifferentials. In this subsection, f : U → R ∪ {+∞} is a function
defined on a nonempty open subsetU ofH, finite at x ∈ U and S is a closed subset
ofH.

A vector ζ ∈ H is said to be a proximal normal to S at x ∈ S whenever there
exists a real r>0 such that x ∈ ProjS(x + rζ ). The setNP(S; x) (which is a convex
cone containing 0 but not necessarily closed) of all proximal normal vectors to S at
x ∈ S is called the proximal normal cone of S at x. By convention, if x ∈ H \ S, we
putNP(S; x) = ∅. It is worth pointing out that for each u ∈ Hwith ProjS(u) �= ∅,

u − π ∈ NP(S; projS(π)) for all π ∈ ProjS(u). (5)

A vector ζ ∈ H is said to be a proximal subgradient of f at x with f (x) finite,
provided there are a real σ ≥ 0 and a real η > 0 such that〈

ζ , y − x
〉 ≤ f (y)− f (x)+ σ

∥∥y − x
∥∥2 for all y ∈ B(x, η),

which is known to be equivalent to (ζ ,−1) ∈ NP(epi f ; (x, f (x))), where epi f :=
{(x, r) ∈ H × R : x ∈ U, f (x) ≤ r} is the epigraph of f. The set ∂Pf (x) of all such
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proximal subgradients is called the proximal subdifferential of f at x. If f is not
finite at x ∈ U, one sets ∂Pf (x) := ∅.

The Clarke normal cone of S at x ∈ S is defined by

NC(S; x) := co
(

seq Lim sup
S�u→x

NP(S; u)
)
,

where seq Lim supS�u→x N
P(S; u) is the sequential limit superior of NP(S; ·) :

H ⇒ H relative to the set S at x. Recall that the sequential limit superior (or
sequential outer limit) of a multimapping M : X ⇒ Y between two topological
spaces X and Y relative to a subset X0 ⊂ X at x ∈ clX0 (the closure of X0 in X) is
defined as the set

seq Lim sup
X0�x′→x

M(x′) := {
y ∈ Y : ∃X0 � xn → x, yn → y, yn ∈ M(xn) ∀n ∈ N

}
.

It is clear that the Clarke normal cone is a closed convex cone containing 0. With
NC(S; x) := ∅ for every x ∈ H \ S, we see that

NP(S; x) ⊂ NC(S; x) for all x ∈ H.

For f Lipschitz continuous near x, one defines the Clarke subdifferential of f at x
as the set

∂Cf (x) := co
(

seq Lim sup
x′→x

∂Pf (x′)
)

⊃ ∂Pf (x).

If f is not finite at x ∈ U, one sets ∂Cf (x) := ∅. The support function of ∂Cf (x)
(with f Lipschitz continuous near x) is given by the so-called Clarke directional
derivative of f at x, that is, the function f o(x; ·) : H → R defined by

f o(x; h) := lim sup
t↓0,x′→x

t−1(f (x′ + th)− f (x′)) for all h ∈ H.

Recall that the support function σ(·, S) of S is defined by

σ(ζ , S) := sup
x∈S

〈ζ , x〉 for all ζ ∈ H

and such a function satisfies (thanks to the Hahn-Banach separation theorem)
the following equivalence

S1 ⊂ S2 ⇔ σ(·, S1) ≤ σ(·, S2), (6)

for any two closed convex subsets S1, S2 of H. If U is convex and f is Lipschitz
continuous near x and convex on U, then the (standard) directional derivative
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f ′(x; h) := limt↓0 t−1(f (x + th)− f (x)) exists for any direction h ∈ H and

f o(x; h) = f ′(x; h) for all h ∈ H. (7)

If f is convex on some open ball B(x, δ) ⊂ U for a real δ > 0, one observes that

f ′(x; h) = inf
t∈]0,δ[

t−1(f (x + th)− f (x)) for all h ∈ B.

For any real γ ≥ 0 such that f is γ -Lipschitz near x, it is known (and not dif-
ficult to prove) that f (x; ·) is finite, sublinear (that is, convex and positively
homogeneous) and γ -Lipschitz continuous onH, so in particular

∂Cf (x) ⊂ γB.

It is worth pointing out that the following relations hold true for all x ∈ S:

∂PdS(x) = NP(S; x) ∩ B and ∂CdS(x) ⊂ NC(S; x) ∩ B. (8)

For more details on those concepts, we refer to the books [30–32].

2.2. Vectormeasures

In order to define the concept of solutions for sweeping processes with bounded
variation, some preliminaries about positive and vector measures are needed.
Throughout this subsection, ν and ν̂ are positive Radonmeasures on I = [T0,T].
For each t ∈ I, r ∈]0,+∞[, one sets

I(t, r) : = I ∩ [t − r, t + r], I+(t, r) := I ∩ [t, t + r] and

I−(t, r) := I ∩ [t − r, t].

For a subset A of I, we denote by 1A the characteristic function (in the sense of
measure theory) of A relative to I, i.e. for all t ∈ I,

1A(t) :=
{
1 if t ∈ A,
0 otherwise.

For any real p ≥ 1, Lp(I,H, ν) stands for the real space of (classes of) ν-
measurable mappings from I to H for which the pth power of their norm value
is ν-integrable on I.

The derivative of the measure ν̂ with respect to ν is defined as the following limit
(with the convention 0

0 = 0)

dν̂
dν
(t) := lim

r↓0
ν̂(I(t, r))
ν(I(t, r))

(9)

which exists for ν-almost every t ∈ I. It is worth pointing out that (dν̂/dν)(·) is a
nonnegative Borel function. If ν̂ is the Lebesgue measure on I, that is ν̂ = λ, the
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equality (9) gives

dλ
dν
(t) = λ({t})

ν({t}) = 0 for all t ∈ I with ν({t}) > 0, (10)

hence
dλ
dν
(t)ν({t}) = 0 ν−a.e. t ∈ I. (11)

Coming back to a general Radon measure ν̂ on I, it is known that the measure
ν̂ is absolutely continuous with respect to ν if and only if ν̂ = (dν̂/dν)(·)ν (i.e.
(dν̂/dν)(·) is a density relative to ν). If the latter equality holds, a mapping u(·) :
I → H is ν̂-integrable on I if and only if u(·)(dν̂/dν)(·) is ν-integrable on I. In
such a case, one has ∫

I
u(t) dν̂(t) =

∫
I
u(t)

dν̂
dν
(t) dν(t). (12)

If the two Radon measures ν and ν̂ are each one absolutely continuous with
respect to the other one, one says that ν and ν̂ are absolutely continuously
equivalent.

Now, let us consider a Radon vector measure m on I with values in the real
Hilbert spaceH. The variationmeasure |m| ofm is defined for any Borel setA ⊂ I
by

|m| (A) := sup
(Bn)n∈N∈B

+∞∑
n=1

‖m(Bn)‖ ,

where B is the set of all sequences (Bn)n∈N of Borel mutually disjoint subsets of I
such thatA = ⋃

n∈N
Bn. The vector measurem is said to be absolutely continuous

with respect to ν whenever the positive measure |m| is absolutely continuous with
respect to ν. SinceH has the Radon-Nikodým property, under such an absolute
continuity assumption, the vector measurem has a density ζ : I → H relative to
ν, i.e.m = ζ(·)ν (or equivalently, ζ(·) ∈ L1(I,H, ν) and for all Borel sets A ⊂ I,

m(A) =
∫
A
ζ(t) dν(t)).

In the rest of this section, we focus on mappings with bounded variation. Let
u : I → H be a mapping. Any σ = (t0, . . . , tk) ∈ R

k+1 with k ∈ N such that
T0 = t0 < · · · < tk = T is called a subdivision σ of [T0,T] = I and to such a sub-
division σ , one associates the real Sσ := ∑k

i=1 ‖u(ti)− u(ti−1)‖. If S denotes the
set of all subdivisions of I, one defines the variation of u as the extended real

var(u; I) := sup
σ∈S

Sσ .

Themapping u is said to be of bounded variation on I if var(u; I) < +∞. It is well-
known that u(·) has one sided limits at each point of I whenever it is of bounded



8 F. NACRY AND L. THIBAULT

variation on I. In such a case, one sets

u(τ−) := lim
t↑τ

u(t) for all τ ∈]T0,T],

where in the whole paper, t ↑ τ means t → τ with t < τ .
Assume that u is of bounded variation on I and denote by du the differential

measure (also called Stieltjes measure) on I with values inH associated to it (see,
e.g. [33]). If in addition, u is right-continuous on I, it is known that

u(t) = u(s)+
∫
]s,t]

du for all s, t ∈ I with s ≤ t.

Conversely, if there is a ν-integrable mapping û : I → H on I satisfying

u(t) = u(T0)+
∫
]T0,t]

û(τ ) dν(τ) for all t ∈ I,

then u(·) is of bounded variation and right-continuous on I. In such a case, one
has

|du| (]s, t]) =
∫
]s,t]

‖û(τ )‖ dν(τ) for all s, t ∈ I with s ≤ t

and du is absolutely continuous with respect to ν and has û(·) as a density relative
to ν, i.e.

du = û(·) dν.
According to Moreau and Valadier [34], for ν-almost every t ∈ I, the following
limits exists inH,

û(t) = du
dν
(t) := lim

r↓0
du(I(t, r))
ν(I(t, r))

= lim
r↓0

du(I+(t, r))
ν(I+(t, r))

= lim
r↓0

du(I−(t, r))
ν(I−(t, r))

.

From this, it can be checked that

û(t) = du
dν
(t) = lim

r↓0
du(]t − r, t] ∩ I)
ν(]t − r, t] ∩ I)

ν−a.e. t ∈ I. (13)

2.3. Bounded variation along ρ-truncation

Let ρ ∈]0,+∞] be a given positive extended real and let S and S′ be nonempty
subsets ofH.

One defines the ρ-excess excρ(S, S′) and the pseudo ρ-excess êxcρ(S, S′) of
S over S′ (also called the pseudo excess of the ρ-truncation of S over S′) as the
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extended reals

excρ(S, S′) := sup
x∈ρB

(
d(x, S′)− d(x, S)

)+ and êxcρ(S, S′) := sup
x∈S∩ρB

d(x, S′),

so êxcρ(S, S′) ≤ excρ(S, S′). It is also known that for any ρ′ ≥ 2ρ + d(0, S) one
also has excρ(S, S′) ≤ êxcρ′(S, S′), so

êxcρ(S, S′) ≤ excρ(S, S′) ≤ êxcρ′(S, S′). (14)

If ρ = +∞, we set by convention ρB = H, so in this case both ρ-excess and
pseudo ρ-excess of S over S’ coincide with the usual excess of S over S′, that is,

êxc∞(S, S′) = sup
x∈S

d(x, S′) =: exc(S, S′) = sup
x∈X

(
d(x, S′)− d(x, S)

)+
= exc∞(S, S′).

It is clear that the ρ-excess exc(·, ·) enjoys the triangle inequality property. It is
also readily seen that for every x′ ∈ H,

d(x′, S′) ≤ d(x′, x)+ êxcρ(S, S′) for all x ∈ S ∩ ρB,

i.e.

d(x′, S′) ≤ d(x′, S ∩ ρB)+ êxcρ(S, S′) for all x′ ∈ H. (15)

With the above concept at hand, one can define the Hausdorff ρ-distance
hausρ(S, S′) and the Hausdorff pseudo ρ-distance ĥausρ(S, S′) between S and S′
as

hausρ(S, S′) := max
{
excρ(S, S′), excρ(S′, S)

} = sup
x∈ρB

|d(x, S′)− d(x, S)|,

ĥausρ(S, S′) := max
{
êxcρ(S, S′), êxcρ(S′, S)

}
.

Clearly, the triangle inequality holds for hausρ(·, ·) (while it fails for ĥausρ(·, ·)). If
ρ = +∞, both hausρ(S, S′) and ĥausρ(S, S′) coincide with haus(S, S′), the usual
Hausdorff-Pompeiu distance between S and S′, i.e.

haus∞(S, S′) = ĥaus∞(S, S′) = max
{
exc(S, S′), exc(S′, S)

} =: haus(S, S′).

From (14) one sees that for any ρ′ ≥ ρ + 2max{d(0, S), d(0, S′)} one has

ĥausρ(S, S′) ≤ hausρ(S, S′) ≤ ĥausρ′(S, S′).

In this paper, given a moving set C : I ⇒ H, a mapping f : I × H → H and
u0 ∈ C(T0), we are interested in the study of the following (measure) differential
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inclusion

(P)

⎧⎪⎨⎪⎩
−du ∈ N(C(t); u(t))+ f (t, u(t)),
u(t) ∈ C(t) for all t ∈ I,
u(T0) = u0 ∈ C(T0).

In order to develop sufficient conditions to ensure the existence of solutions for
such a problem, we will assume that there are an extended real ρ ∈]‖u0‖,+∞]
and a positive Radon measure μ on I such that

ĥausρ(C(s),C(t)) ≤ μ(]s, t]) for all s, t ∈ I with s ≤ t. (16)

As we will see below, such an assumption is strongly connected to the con-
cept of multimappings with bounded ρ-variation, which is an extension of the
notion of mappings with bounded variation. Let us consider a multimapping
C : I = [T0,T] ⇒ H. To each subdivision σ0 = (t0, . . . , tk) of I (with k ∈ N), one
associates the extended real

hσ0,ρ :=
k−1∑
i=0

hausρ(C(ti),C(ti+1)).

The ρ-variation, or the variation along ρ-truncation, of C(·) on I (with respect to
hausρ(·, ·)) is defined as the extended real

varρ(C; I) := sup
σ∈S

hσ ,ρ ,

where S is the set of all subdivisions of I. When varρ(C; I) < +∞, one says that
C(·) is of bounded ρ-variation, or of bounded variation along ρ-truncation, on I
(with respect to hausρ(·, ·)). It is then readily seen that the existence of a pos-
itive Radon measure μ on I satisfying (16) with hausρ(C(s),C(t)) in place of
ĥausρ(C(s),C(t)) entails that

varρ(C; I) ≤ μ(]T0,T]) < +∞,

so C(·) has a bounded variation along ρ-truncation on I (with respect to
hausρ(·, ·)). Furthermore, the mapping varρ(C; [T0, ·]) is right-continuous, since
for any t ∈ [T0,T[, we have by the triangle inequality for hausρ(·, ·) that

0 ≤ varρ(C; [T0, t])− varρ(C; [T0, t]) ≤ μ(]t, t]) for all t ∈]t,T].

Conversely, assume that C(·) has a bounded variation on I along ρ-truncation
(with respect to hausρ(·, ·)) and that the function varρ(C; [T0, ·]) is right-
continuous on I. Since the latter function is nondecreasing on I, it is of bounded
variation on I, so if we denote by μC,ρ the differential Radon measure associated
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with it, we have

varρ(C; [T0, t])− varρ(C; [T0, s]) = μC,ρ(]s, t]) for all s, t ∈ I with s ≤ t.

It follows thatC(·) satisfies (16)withμ = μC,ρ both for hausρ(·, ·) and ĥausρ(·, ·),
since

ĥausρ(C(s),C(t)) ≤ hausρ(C(s),C(t)) ≤ μC,ρ(]s, t]) for all s, t ∈ I with s ≤ t.

2.4. Prox-regular sets in Hilbert spaces

In addition to the inequality

ĥausρ(C(s),C(t)) ≤ μ(]s, t]) for all s, t ∈ I with s ≤ t

for a given positive Radon measure μ on I and ρ ∈]‖u0‖,+∞], the multimap-
ping C(·) will be assumed to be uniformly prox-regular valued.

Definition 2.1: Let S be a nonempty closed subset of H, r ∈]0,+∞]. One says
that S is r-prox-regular (or uniformly prox-regular with constant r) whenever, for
all x ∈ S, for all v ∈ NP(S; x) ∩ B and for all t ∈]0, r[, one has x ∈ ProjS(x + tv).

The following theorem provides some useful characterizations and properties
of uniform prox-regular sets (see, e.g. [21,35]). Before stating it, recall that for
any extended real r>0, the open r-enlargement of a subset S ofH is defined as

Ur(S) := {x ∈ H : dS(x) < r}.

Theorem 2.1: Let S be a nonempty closed subset ofH, r ∈]0,+∞]. Consider the
following assertions.

(a) The set S is r-prox-regular.
(b) For all x1, x2 ∈ S, for all v ∈ NP(S; x1), one has

〈v, x2 − x1〉 ≤ 1
2r

‖v‖ ‖x1 − x2‖2 .

(c) Themapping projS : Ur(S) → S is well-defined and locally Lipschitz on Ur(S).
(d) For all u ∈ Ur(S) \ S, one has with x = projS(u)

x = projS

(
x + t

u − x
‖u − x‖

)
for all t ∈ [0, r[.

(e) For all x, y ∈ S and all t ∈ [0, 1] such that tx + (1 − t)y ∈ Ur(S), one has

dS(tx + (1 − t)y) ≤ 1
2r
t(1 − t)

∥∥x − y
∥∥2 .
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(f) For any x ∈ S, one has

NP(S; x) = NC(S; x) and ∂PdS(x) = ∂CdS(x).

Then, the assertions (a), (b), (c), (d) and (e) are pairwise equivalent and each
one implies (f).

An r-prox-regular set and its open r-enlargement as well as the property (d) in
Theorem 2.1 are illustrated in Figure 1. This set (represented in grey color) looks
like a ‘tree’.

Theorem 2.1 again allows us to put

N(S; x) := NP(S; x) = NC(S; x) for all x ∈ S,

whenever S is a uniform prox-regular set of the real Hilbert spaceH.
The following proposition provides useful inequalities for proximal subgradi-

ents of the distance function associated to a prox-regular set. We refer to [13] for
the proof.

Proposition 2.1: Let S be a subset of H which is r-prox-regular for some r ∈
]0,+∞]. Let x ∈ S and ζ ∈ ∂PdS(x). Then, for all z ∈ H such that dS(z) < r, one
has

〈ζ , z − x〉 ≤ 1
2r

‖z − x‖2 + 1
2r
d2S(z)+

(
1
r

‖z − x‖ + 1
)
dS(z),

and

〈ζ , z − x〉 ≤ 2
r

‖z − x‖2 + dS(z).

Before stating the last result of this section, let us recall that a function f :
C → R ∪ {+∞} defined on a nonempty convex subset C of H is said to be

Figure 1. An r-prox-regular set and its open r-enlargement.
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σ -semiconvex (on C) for some σ ∈ R+ := [0,+∞[ if

f (tx + (1 − t)y) ≤ tf (x)+ (1 − t)f (y)+ σ

2
t(1 − t)

∥∥x − y
∥∥2 ,

for all x, y ∈ C and for all t ∈]0, 1[, or equivalently if f + (σ/2)‖ · ‖2 is convex on
C.

Theorem 2.2: Let S be an r-prox-regular subset ofH for some r ∈]0,+∞]. Then,
for any s ∈]0, r[, for any nonempty convex set C ⊂ Us(S), the function dS is (r −
s)−1-semiconvex on C.

3. Preparatory results

This section is devoted on the one hand to recall some specific results needed in
the rest of the paper and on the other hand to establish some other ones. We start
with a variant of Gronwall Lemma which is due toM.D.P. MonteiroMarques [9].

Lemma 3.1: Let ν be a positive Radon measure on [T0,T], g,ϕ : [T0,T] → R+
two functions such that:

(i) g ∈ L1([T0,T],R+, ν) and for some fixed θ ∈ R+, one has

0 ≤ g(t)ν({t}) ≤ θ < 1 for all t ∈ ]T0,T] ;

(ii) ϕ ∈ L∞([T0,T],R+, ν) and for some fixed α ∈ R+, one has

ϕ(t) ≤ α +
∫
]T0,t]

g(s)ϕ(s) dν(s) for all t ∈ [T0,T] .

Then, one has

ϕ(t) ≤ α exp
(

1
1 − θ

∫
]T0,t]

g(s) dν(s)
)

for all t ∈ [T0,T].

The following proposition is due to Moreau [36].

Proposition 3.1: Let ν be a positive Radon measure on I = [T0,T], u(·) : I → H
be a right continuous mapping of bounded variation such that the differential mea-
sure du has a density du/dν relative to ν. Then, the function�(·) = ‖u(·)‖2 : I →
R is a right continuous function of bounded variation whose differential measure
d� satisfies, in the sense of the ordering of real measures,

d� ≤ 2
〈
u(·), du

dν
(·)

〉
dν.

Our aim is now to establish the following scalar upper semicontinuity property
for prox-regular sets. It is worth pointing out that it recovers the convex case
developed in [28, Proposition 4.1].
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Proposition3.2: Let C : I = [T0,T] ⇒ H be an r-prox-regular valuedmultimap-
ping for some r ∈]0,+∞]. Assume that there exist a positive measure μ on I and
ρ ∈]0,+∞] such that for all s, t ∈ I with s ≤ t,

êxcρ(C(s),C(t)) ≤ μ(]s, t]). (17)

Let t ∈ I, x ∈ C(t) ∩ ρU, (tn)n∈N be a sequence of [t,T] with μ(]t, tn]) → 0 and
(xn)n∈N be a sequence ofH with xn → x and xn ∈ C(tn) for all n ∈ N. Then, one
has

lim sup
n→+∞

doC(tn)(xn; h) ≤ doC(t)(x; h) for all h ∈ H,

or equivalently

lim sup
n→+∞

σ(h, ∂CdC(tn)(xn)) ≤ σ(h, ∂CdC(t)(x)) for all h ∈ H.

Before giving the proof, we need the following lemmas.

Lemma 3.2: Let U be an open subset of H, x ∈ U and g : U → R be a function.
If there exists a real δ > 0 with B(x, δ) ⊂ U and such that g is σ -semiconvex on
B(x, δ) for a real σ ≥ 0, then one has for all h ∈ B,

go(x; h) = inf
t∈]0,δ[

t−1
(
g(x + th)− g(x)+ σ

2
‖x + th‖2 − σ

2
‖x‖2

)
− σ 〈x, h〉 = g′(x; h).

Proof: Assume that there exists a real δ > 0 such that B(x, δ) ⊂ U and g is σ -
semiconvex on B(x, δ) for a real σ ≥ 0. Fix any h ∈ B. Set f := g + (σ/2)‖ · ‖2
which is convex on B(x, δ) according to the σ -semiconvexity on B(x, δ) of g.
From (7), one observes that

f ′(x; h) = f o(x; h)

= lim sup
t↓0,x′→x

t−1
[
(g(x′ + th)− g(x′))+ σ

2
∥∥x′ + th

∥∥2 − σ

2
∥∥x′∥∥2]

= go(x; h)+ D
(σ
2

‖·‖2
)
(x)(h).

Since f is convex on B(x, δ) and x + th ∈ B(x, δ) for each t ∈]0, δ[, we have

f ′(x; h) = inf
t∈]0,δ[

t−1(f (x + th)− f (x)).

It follows that

go(x; h) = −σ 〈x, h〉 + inf
t∈]0,δ[

t−1(f (x + th)− f (x)),
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so the first equality claimed is established. For the second, it remains to see that

go(x; h) = f ′(x; h)− D(
σ

2
‖·‖2)(x)(h)

= f ′(x; h)−
(σ
2

‖·‖2
)′
(x; h)

=
(
f − σ

2
‖·‖2

)′
(x; h)

= g′(x; h).

The proof is complete. �

Lemma 3.3: Let S be an r-prox-regular subset of H for some r ∈]0,+∞]. Then,
for each s ∈]0, r[, one has for all (x, h) ∈ S × B,

(dS)o(x; h) = lim
t↓0

t−1dS(x + th)

= inf
t∈]0,s[

t−1[dS(x + th)+ 1
2(r − s)

(‖x + th‖2 − ‖x‖2)]

− 1
r − s

〈x, h〉 .

Proof: If r = +∞, we know that S is convex as well as its associated distance
function dS. This justifies the equality claimed. Suppose now r < +∞. Fix any
s ∈]0, r[. Let (x, h) ∈ S × B. It is easy to check that B(x, s) ⊂ Us(S), so we can
apply Theorem 2.2 to get that dS is 1/(r − s)-semiconvex on B(x, s). It remains to
combine Lemma 3.2 with the equality dS(x) = 0. �

Now, we are able to prove Proposition 3.2.

Proof of Proposition 3.2.: Fix any h ∈ B. Let s ∈]0, r[. Since C(t) is r-prox-
regular, themapping projC(t) : Ur(C(t)) → H is well-defined andnorm-to-norm
continuous. In particular, we have

lim
x→x

projC(t)(x) = projC(t)(x) = x ∈ ρU,

so we can find a real α ∈]0, s[ such that for all x ∈ B(x,α),

projC(t)(x) ∈ ρU ⊂ ρB.

From the latter inclusion and the inequality∥∥∥x − projC(t)(x)
∥∥∥ = dC(t)(x) ≤ dC(t)∩ρB

(x) for all x ∈ B(x,α),

it is straightforward to check that

dC(t)(x) = dC(t)∩ρB
(x) for all x ∈ B(x,α).
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Note that for each n ∈ N, B(xn,α) ⊂ B(xn, s) ⊂ Us(C(tn)). According to
Lemma 3.3, for each n ∈ N, we have for all τ ∈]0,α[,

doC(tn)(xn; h) ≤ τ−1dC(tn)(xn + τh)− 1
r − s

〈xn, h〉

+ 1
2(r − s)τ

(‖xn + τh‖2 − ‖xn‖2).

Furthermore, for all n ∈ N, for all τ ∈]0,α[,

τ−1dC(tn)(xn + τh) ≤ τ−1( ‖xn − x‖ + dC(tn)(x + τh)
)

≤ τ−1( ‖xn − x‖ + dC(t)∩ρB
(x + τh)+ μ(]t, tn])

)
≤ τ−1( ‖xn − x‖ + dC(t)(x + τh)+ μ(]t, tn])

)
,

where the second inequality is due to (15) and (17). This entails that for all τ ∈
]0,α[,

lim sup
n→+∞

τ−1dC(tn)(xn + τh) ≤ τ−1dC(t)(x + τh).

On the other hand for all τ ∈]0,α[,

lim sup
n→+∞

[
− 1
r − s

〈xn, h〉 + 1
2(r − s)τ

(‖xn + τh‖2 − ‖xn‖2)
]

= − 1
r − s

〈x, h〉 + 1
2(r − s)τ

(‖x + τh‖2 − ‖x‖2)

= τ

2(r − s)
‖h‖2 .

It follows that for all τ ∈]0,α[,

lim sup
n→+∞

doC(tn)(xn; h) ≤ τ−1dC(t)(x + τh)+ τ

2(r − s)
‖h‖2 .

Since x ∈ C(t), we have

lim sup
τ↓0

τ−1dC(t)(x + τh) ≤ doC(t)(x; h).

As a consequence, we get

lim sup
n→+∞

doC(tn)(xn; h) ≤ doC(t)(x; h).

The latter inequality being true for any h ∈ B, the positive homogeneity of the
Clarke directional derivative guarantees that it holds for all h ∈ H. �
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4. Sweeping process with bounded truncated variation

As mentioned above, the aim of this paper is to provide sufficient conditions
ensuring the existence and uniqueness of solutions for the bounded variation
sweeping process

− du ∈ N(C(t); u(t))+ f (t, u(t)) and u(T0) = u0. (18)

The concept of solution for such measure differential inclusions is developed in
details in [28]. For the convenience of the reader, let us recall the definition. As
already said in the first sentence of Section 2, λ denotes the Lebesgue measure on
I = [T0,T].

Definition 4.1: Let C : I ⇒ H be a uniformly prox-regular valued multimap-
ping, f : I × H → H be a mapping, u0 ∈ C(T0). Let ef = 0 if f ≡ 0 and ef = 1
if f �≡ 0. Assume that there exist an extended real ρ ≥ ‖u0‖ and a finite positive
Radon measure μ on I such that

êxcρ(C(s),C(t)) ≤ μ(]s, t]) for all s, t ∈ I with s ≤ t.

One says that a mapping u(·) : I → H is a solution of the measure differential
inclusion

(P)
{

−du ∈ N(C(t); u(t))+ f (t, u(t))
u(T0) = u0,

whenever:

(a) the mapping u(·) is of bounded variation on I, right-continuous on I and
satisfies u(T0) = u0 and u(t) ∈ C(t) for all t ∈ I;

(b) there exists a positive Radon measure ν on I, absolutely continuously equiv-
alent to μ+ ef λ and with respect to which the differential measure du of u
is absolutely continuous with (du/dν)(·) as an L1(I,H, ν)-density and

du
dν
(t)+ f (t, u(t))

dλ
dν

∈ −N(C(t); u(t)) ν−a.e.t ∈ I. (19)

The concept of solution does not depend on the measure ν in the sense that a
mapping u(·) : I → H satisfying (a) above is a solution of (P) if and only if (19)
holds for any positive Radon measure ν̂ which is absolutely continuously equiv-
alent toμ and with respect to which the differential measure du of u is absolutely
continuous with (du/dν̂)(·) as an L1(I,H, ν̂)-density.

Our first existence result is concerned with the unperturbed case (i.e. f ≡ 0)
of (18).
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Theorem 4.1: Let C : I ⇒ H be a multimapping with r-prox-regular values for
some extended real r ∈]0,+∞], u0 ∈ C(T0). Assume that there exist a posi-
tive Radon measure μ on I with supτ∈]T0,T] μ({τ }) < r/2, a real ρ0 ≥ ‖u0‖, an
extended real ρ > ρ0 and a real η > 0 satisfying:

(i) for every k ∈ N and for every t1, . . . , tk ∈ I with t0 := T0 < t1 < · · · < tk and
μ(]ti, ti+1[) < η for each i ∈ {0, . . . , k − 1}, one has∥∥∥projC(tk) ◦ · · · ◦ projC(t1)(u0)

∥∥∥ ≤ ρ0, (20)

whenever projC(tk) ◦ · · · ◦ projC(t1)(u0) is well-defined;
(ii) for all s, t ∈ I with s ≤ t and μ(]s, t[) < η, one has

ĥausρ(C(s),C(t)) ≤ μ(]s, t]).

Then, there exists one and only one mapping u : I → H solution of the
measure differential inclusion{

−du ∈ N(C(t); u(t))
u(T0) = u0

(21)

and such that

sup
t∈]T0,T]

∥∥u(t)− u(t−)
∥∥ < r

2
. (22)

Furthermore, the solution u(·) : I → H satisfies the inequalities

‖u(t)− u(s)‖ ≤ μ(]s, t]) for all s, t ∈ I with s ≤ t. (23)

‖u(t)‖ ≤ min {ρ0, ‖u0‖ + μ(]T0,T])} for all t ∈ I. (24)

Proof: Uniqueness. According to [28, Proposition 3.6], there exists at most one
mapping u(·) : I → H satisfying (21) and (22).

Existence. We distinguish two cases.
Case 1: μ(]T0,T]) = 0. In such a case, thanks to the fact that C(·) is closed-

valued, we have

C(T0) ∩ ρB ⊂ C(t) for all t ∈ I.

It is then clear (keeping in mind the inclusion u0 ∈ C(T0)) that the mapping u :
[T0,T] → H defined by

u(t) := u0 for all t ∈ I

satisfies (21)–(24).
Case 2: μ(]T0,T]) > 0. We develop that case through 5 steps.
Step 1. Time discretization of I = [T0,T].
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Consider the function v(·) : I → R defined by

v(t) := μ(]T0, t]) for all t ∈ I

and set

V := v(T) = μ(]T0,T]).

Let (εn)n∈N be a sequence of ]0, η[ with εn ↓ 0 such that

εn + sup
s∈]T0,T]

μ({s}) < r
2

for all n ∈ N. (25)

As in [2], choose for each n ∈ N, 0 = Vn
0 < Vn

1 < · · · < Vn
qn = V (with qn ∈ N)

such that

(a) for all j ∈ {0, . . . , qn − 1}, Vn
j+1 − Vn

j ≤ εn;
(b) for all k ∈ N, {Vk

0 , . . . ,V
k
qk} ⊂ {Vk+1

0 , . . . ,Vk+1
qk+1

}.

For each n ∈ N, set Vn
1+qn := V + εn and consider the partition (Jnj )j∈{0,...,qn}

of I where for each j ∈ {0, . . . , qn}
Jnj := v−1

([
Vn
j ,V

n
j+1

[)
= {t ∈ I : Vn

j ≤ μ(]T0, t]) < Vn
j+1}.

Observe that (Jmj )0≤j≤qm is a refinement of (Jnj )0≤j≤qn for all m, n ∈ N with m ≥
n. Using the fact that v(·) is nondecreasing and right-continuous on I, it is not
difficult to see that, for each n ∈ N, j ∈ {0, . . . , qn − 1}, the set Jnj is either empty
or an interval of the form [a, b[ with a<b. For each n ∈ N we also note that Jnqn
is also of the form [a, b[∩I. This gives for each n ∈ N an integer p(n) ∈ N and a
finite sequence

T0 = tn0 < · · · < tnp(n) = T

such that for each integer i with 0 ≤ i ≤ p(n)− 2 there is some j ∈
{0, . . . , qn − 1} satisfying [tni , tni+1[= Jnj and such that for i = p(n)− 1 the inter-
val [tp(n)−1, tp(n)[ is either Jnqn \ {T} (if Jnqn �= {T}) or Jnk for some k ∈ {0, . . . , qn −
1}. For each integer n, including new points tnj if necessary, we may and do
suppose that

max
i∈{0,...,p(n)−1}

(tni+1 − tni ) ≤ 1
n
along with {tn+1

0 , . . . , tn+1
p(n+1)} ⊃ {tn0 , . . . , tnp(n)}.

(26)
Note that (p(n))n∈N is a nondecreasing sequence and that for each n ∈ N, for all
i ∈ {0, . . . , p(n)− 1} and all t ∈ [tni , t

n
i+1[, we have

μ(]tni , t]) = v(t)− v(tni ) ≤ εn < η,

hence

μ(
]
tni , t

n
i+1

[
) ≤ εn < η for all i ∈ {0, . . . , p(n)− 1}. (27)

Step 2. Construction of finite sequences (uni )0≤i≤p(n) (n ∈ N).
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Fix any n ∈ N. Put un0 := u0. By induction, let us construct a sequence
(uni )1≤i≤p(n) such that

uni := projC(tni )(u
n
i−1) for all i ∈ {

1, . . . , p(n)
}
. (28)

According to the assumption (ii), to the inequality ‖u0‖ ≤ ρ and to the rela-
tions (27) and (25), we have

dC(tn1 )(u
n
0) ≤ sup

x∈C(T0)∩ρB

dC(tn1 )(x)

≤ ĥausρ(C(T0),C(tn1 ))

≤ μ(]T0, tn1 ]) ≤ εn + sup
s∈]T0,T]

μ({s}) < r,

and this allows us to set (thanks to the r-prox-regularity of C(tn1 )) un1 :=
projC(tn1 )(u

n
0). Now, suppose without loss of generality that p(n) > 1. Fix any

k ∈ {2, . . . , p(n)} and assume that we have constructed un1, . . . , u
n
k−1 such that

uni = projC(tni )(u
n
i−1) for all i ∈ {1, . . . , k − 1} .

Observe that projC(tnk−1)
◦ · · · ◦ projC(tn1 )(u

n
0) is well-defined, hence by virtue of

assumption (i), we get the following inclusion

unk−1 = projC(tnk−1)
◦ · · · ◦ projC(tn1 )(u

n
0) ∈ ρ0B.

As above, using the assumption (ii), the inequality ‖unk−1‖ ≤ ρ and the rela-
tions (27) and (25), we obtain

dC(tnk )(u
n
k−1) ≤ sup

x∈C(tnk−1)∩ρB

dC(tnk )(x)

≤ ĥausρ(C(tnk−1),C(t
n
k ))

≤ μ(]tnk−1, t
n
k ]) ≤ εn + sup

s∈]T0,T]
μ({s}) < r,

which allows us via the r-prox-regularity of C(tnk ), to put unk := projC(tnk )(u
n
k−1).

The induction is then complete. The definition of (uni )1≤i≤p(n) in (28) along with
assumption (i) give∥∥uni ∥∥ ≤ ρ0 < ρ for all i ∈ {

0, . . . , p(n)
}
. (29)

Again, the definition of (uni )0≤i≤p(n) with assumption (ii) and the latter inequality
furnish∥∥uni+1 − uni

∥∥ = dC(tni+1)
(uni ) ≤ ĥausρ(C(tni ),C(t

n
i+1)) ≤ μ(]tni , t

n
i+1]), (30)

for each i ∈ {0, . . . , p(n)− 1}.
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Step 3. Definition of the sequence (un(·))n∈N.
Fix any integer n ≥ 1. If μ(]tni , t

n
i+1]) = 0 for some i ∈ {0, . . . , p(n)− 1}, then

ĥausρ(C(tni ),C(t
n
i+1)) = 0,

in particular C(tni ) ∩ ρB ⊂ C(tni+1), so u
n
i = uni+1. As inMoreau [2], let us define

the mapping un(·) : I → H by un(T) = unp(n) and for all i ∈ {0, . . . , p(n)− 1},

un(t) = uni for all t ∈ [tni , t
n
i+1[ifμ(]t

n
i , t

n
i+1]) = 0,

and

un(t) = uni + μ(]tni , t])
μ(]tni , t

n
i+1])

(uni+1 − uni ) for all t ∈ [tni , t
n
i+1[ifμ(]t

n
i , t

n
i+1]) > 0.

According to the development above, we can write

un(t) = uni = uni+1 for all t ∈ [tni , t
n
i+1]ifμ(]t

n
i , t

n
i+1]) = 0. (31)

Furthermore, it is not difficult to check that

un(t) = uni + μ(]tni , t])
μ(]tni , t

n
i+1])

(uni+1 − uni ) for all t ∈ [tni , t
n
i+1]ifμ(]t

n
i , t

n
i+1]) > 0.

(32)
On the other hand, by (29), we have

‖un(t)‖ ≤ ρ0 for all t ∈ I. (33)

From (32) and (31), note that

un(t) = un(T0)+
∫
]T0,t]

ζn(s) dμ(s), (34)

where ζn(T0) = 0 and for each i ∈ {0, . . . , p(n)− 1},

ζn(t) = 0 for all t ∈]tni , tni+1]ifμ(]t
n
i , t

n
i+1]) = 0

and

ζn(t) = uni+1 − uni
μ(]tni , t

n
i+1])

for all t ∈]tni , tni+1]ifμ(]t
n
i , t

n
i+1]) > 0.

As a consequence, un(·) is right-continuous and with bounded variation on I.
Moreover, the equality (34) says that ζn(·) is a density of un(·) relative to μ. So, it
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follows that (dun/dμ)(·) exists as a density of un(·) relative to μ and

dun
dμ

(t) = ζn(t) μ−a.e.t ∈ I.

From the definition of ζn(·) and (30), it is readily seen that∥∥∥∥dundμ
(t)

∥∥∥∥ = ‖ζn(t)‖ ≤ 1 μ−a.e.t ∈ I. (35)

Using (35) and the fact that ζn(·) is a density of un relative to μ, we have for all
s, t ∈ I with s ≤ t,

‖un(t)− un(s)‖ =
∥∥∥∥∫

]s,t]

dun
dμ

(w) dμ(w)
∥∥∥∥ ≤ μ(]s, t]). (36)

Now, let us define θn : I → I by θn(T0) = T0 and for all t ∈ I by

θn(t) = tni+1 ift ∈]tni , tni+1] with i ∈ {
0, . . . , p(n)− 1

}
.

Combining (5), the definition of ζn(·), (28), (35) and (8), we have

ζn(t) = dun
dμ

(t) ∈ −NP(C(θn(t)); un(θn(t))) ∩ B = −∂PdC(θn(t))
(
un(θn(t))

)
,

(37)
for μ-almost every t ∈ I.

Step 4. Cauchy property of the sequence (un)n∈N in B(I,H) (the real Banach
space of bounded mappings endowed with the norm of uniform convergence).

From the definition of θn(·) and un(·) (with n ∈ N) and from (28) and (33),
we get

un(θn(t)) ∈ C(θn(t)) ∩ ρ0B for all t ∈ I, all n ∈ N. (38)

Let us set for all t ∈ I, for all n ∈ N,

γn(t) := μ(]t, θn(t)]).

For each t ∈ I, noting that θn(t) ↓ t since 0 ≤ θn(t)− t ≤ tni+1 − tni ≤ 1/n
by (26), we see that

γn(t) → 0 asn → ∞. (39)

Fix for a moment any t ∈ I, any n,m ∈ N. We observe that (see (15))

d
(
um(t),C(θn(t))

) ≤ d
(
um(t),C(θm(t)) ∩ ρB

) + êxcρ
(
C(θm(t)),C(θn(t))

)
≤ d

(
um(θm(t)),C(θm(t)) ∩ ρB

) + ‖um(t)− um(θm(t))‖
+ μ

(
]t, max{θn(t), θm(t)}]

)
.



OPTIMIZATION 23

Using (38), (36), (27) and (25), the latter inequality entails

d
(
um(t),C(θn(t))

) ≤ μ(]t, θm(t)])+ μ(]t, max {θn(t), θm(t)}])
≤ 2γm(t)+ γn(t)

≤ 2max
{
εn,, εm

} + 2 sup
τ∈]T0,T]

μ({τ }) < r. (40)

On the other hand, the inequality (35) entails straightforwardly〈
dun
dμ

(t), un(t)− um(t)
〉

=
〈
dun
dμ

(t), un(t)− un(θn(t))
〉

+
〈
dun
dμ

(t), un(θn(t))− um(t)
〉

≤ ‖un(t)− un(θn(t))‖ +
〈
dun
dμ

(t), un(θn(t))− um(t)
〉
,

for μ-almost every t ∈ I. According to (37), (38) and (40), we can apply Propo-
sition 2.1 to obtain〈

dun
dμ

(t), un
(
θn(t)

) − um(t)
〉

≤ 1
2r

∥∥um(t)− un
(
θn(t)

)∥∥2 + 1
2r
d2C(θn(t))(um(t))

+
(
1
r
∥∥un(θn(t)) − um(t)

∥∥ + 1
)
dC(θn(t))(um(t))

≤ 1
2r

( ‖un(t)− um(t)‖ + ∥∥un(θn(t)) − un(t)
∥∥ )2

+ 1
2r
d2C(θn(t))(um(t))

+
[
1
r
( ∥∥un(θn(t)) − un(t)

∥∥ + ‖un(t)

−um(t)‖
) + 1

]
dC(θn(t))(um(t)).

Hence, coming back to (36) and (40), we get〈
dun
dμ

(t), un
(
θn(t)

) − um(t)
〉

≤ 1
2r

( ‖un(t)− um(t)‖ + γn(t)
)2 + 1

2r
(
γn(t)+ 2γm(t)

)2
+

[
1
r
(
γn(t)+ ‖un(t)− um(t)‖

) + 1
] (
γn(t)+ 2γm(t)

)
.
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We deduce from (35) and (36) that〈
dun
dμ

(t), un(t)− um(t)
〉

=
〈
dun
dμ

(t), un(t)− un(θn(t))
〉

+
〈
dun
dμ

(t), un(θn(t))− um(t)
〉

≤ γn(t)+ 1
2r

( ‖un(t)− um(t)‖ + γn(t)
)2

+ 1
2r

(
γn(t)+ 2γm(t)

)2
+

[
1
r
(
γn(t)+ ‖un(t)− um(t)‖

) + 1
]

(
γn(t)+ 2γm(t)

)
.

Interchanging n andm yields〈
dum
dμ

(t), um(t)− un(t)
〉

≤ γm(t)+ 1
2r

( ‖um(t)− un(t)‖ + γm(t)
)2

+ 1
2r

(
γm(t)+ 2γn(t)

)2
+

[
1
r
(
γm(t)+ ‖um(t)− un(t)‖

) + 1
]

(
γm(t)+ 2γn(t)

)
.

Since the sequences (uk(·))n∈N and (γk(·))k∈N are uniformly bounded, one can
choose a real A ≥ 0 such that for all t ∈ I, for all n,m ∈ N,〈

dun
dμ

(t)− dum
dμ

(t), un(t)− um(t)
〉

≤ 1
r

‖un(t)− um(t)‖2 + A
2
[(γn(t)+ γm(t))2 + γn(t)+ γm(t)]. (41)

Fix anym, n ∈ N. Let us define the function φn,m : I → [0,+∞[ by

φn,m(t) := ‖un(t)− um(t)‖2 for all t ∈ I,

and let us apply Proposition 3.1 to get

dφn,m ≤ 2
〈
dun
dμ

(t)− dum
dμ

(t), un(·)− um(·)
〉
dμ.

Putting the latter inequality, (41) and φn,m(T0) = 0 together, we have

φn,m(t) ≤
∫
]T0,t]

2
r
φn,m(s) dμ(s)+ αn,m,
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where

αn,m := A
∫
]T0,T]

[(γn(s)+ γm(s))2 + γn(s)+ γm(s)] dμ(s).

Applying Lemma 3.1 with a real κ such that

2
r

sup
s∈]T0,T]

μ({s}) ≤ κ < 1

we get

φn,m(t) ≤ αn,m exp
( 2
r(1 − κ)

μ(]T0,T])
)
,

so kepping in mind that φn,m(T0) = 0 it results that

sup
t∈[T0,T]

φn,m(t) = sup
t∈]T0,T]

φn,m(t) ≤ αn,m exp
( 2
r(1 − κ)

μ(]T0,T])
)
.

By the Lebesgue dominated convergence theorem, the fact that (γn(·))n∈N is uni-
formly bounded byμ(]T0,T])with limn→+∞ γn(t) = 0 for each t ∈ I (see (39)),
it ensues that limn,m→+∞ αn,m = 0. As a consequence, (un(·))n∈N is a Cauchy
sequence in B(I,H), so there is some mapping u : I → H such that

un(·) → u(·) uniformly on I.

Thanks to (35), we may suppose that ((dun/dμ)(·))n∈N converges weakly in
L2(I,H,μ) to some mapping g(·) ∈ L2(I,H,μ). Thus, we have for any t ∈ I∫

]T0,t]

dun
dμ

(s) dμ(s) →
∫
]T0,t]

g(s) dμ(s) weakly inH.

Since un(t) → u(t) for each t ∈ I, the weak convergence above gives

u(t) = u0 +
∫
]T0,t]

g(s) dμ(s) for all t ∈ I.

Hence, u(·) is right-continuous with bounded variation on I and du has g(·) ∈
L2(I,H,μ) as a density relative to μ. A direct consequence is that

dun
dμ

(·) → du
dμ
(·) weakly in L2(I,H,μ),

which entails
dun
dμ

(·) → du
dμ
(·) weakly in L1(I,H,μ).

Step 5. The mapping u(·) satisfies (21)–(24).
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First, note that for all t ∈ I and all n ∈ N,

‖un(θn(t))− u(t)‖ ≤ ‖un(θn(t))− un(t)‖ + ‖un(t)− u(t)‖
≤ μ(]t, θn(t)])+ ‖un(t)− u(t)‖ ,

where the second inequality is due to (36). Since un(t) → u(t) and μ(]t, θn(t)])
→ 0 for each t ∈ I (see (39)), the latter inequality entails that

un(θn(t)) → u(t) for all t ∈ I.

From (15) and (38), we have

dC(t)(un(θn(t))) ≤ dC(θn(t))∩ρB(un(θn(t)))+ êxcρ(C(θn(t)),C(t))

≤ ĥausρ(C(t),C(θn(t)))

≤ μ(]t, θn(t)]),

for all n ∈ N and all t ∈ I. Since μ(]t, θn(t)]) → 0 by (39), passing to the limit
and keeping in mind that C(·) is closed-valued, we obtain

u(t) ∈ C(t) for all t ∈ I.

Now, we apply a classical technique due to C. Castaing ([37]). Thanks to Mazur’s
lemma, there exists a sequence (zn(·))n∈N which converges strongly inL1(I,H,μ)
to (du/dμ)(·) with

zn(·) ∈ co
{
duk
dμ

(·) : k ≥ n
}

for all n ∈ N. (42)

Extracting a subsequence if necessary, we may suppose that

zn(t) → du
dμ
(t) μ−a.e. t ∈ I.

Combining the inclusion (42) with the latter convergence, we obtain

du
dμ
(t) ∈

⋂
n∈N

co
{
duk
dμ

(t) : k ≥ n
}

μ−a.e.t ∈ I.

Such an inclusion yields for μ-almost every t ∈ I that〈
ξ ,

du
dμ
(t)

〉
≤ inf

n∈N

sup
k≥n

〈
ξ ,

duk
dμ

(t)
〉

for all ξ ∈ H.

Coming back to (37), it follows that, for μ-almost every t ∈ I,〈
ξ ,

du
dμ
(t)

〉
≤ lim sup

n→+∞
σ
(
ξ ,−∂PdC(θn(t))

(
un(θn(t)))

)
for all ξ ∈ H.
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Through Proposition 3.2, the latter inequality entails for μ-almost every t ∈ I,〈
ξ ,

du
dμ
(t)

〉
≤ σ(ξ ,−∂CdC(t)(u(t))) for all ξ ∈ H.

Thanks to (6) and the fact that the Clarke subdifferential is closed and convex{
du
dμ
(t)

}
⊂ co

(−∂CdC(t)(u(t))) = −∂CdC(t)(u(t)) μ−a.e.t ∈ I

It remains to invoke (8) to obtain

du
dμ
(t) ∈ −N(C(t); u(t)) μ−a.e.t ∈ I.

Consequently, the mapping u : I → H satisfies (21), i.e.{
−du ∈ N(C(t); u(t))
u(T0) = u0.

Now, we are going to show (22)–(24). Taking the limit in (36) gives

‖u(t)− u(s)‖ ≤ μ(]s, t]) for all s, t ∈ I with s ≤ t, (43)

which is the inequality (23). Again, passing to the limit in (33), we have

‖u(t)‖ ≤ ρ0 for all t ∈ I.

The relation (24) is then a direct consequence of the latter inequality and (43).
Using again (43), we have for every s< t

‖u(t)− u(s)‖ ≤ sup
τ∈]T0,T]

μ({τ })+ μ(]s, t[).

Taking the limit as s ↑ t in the latter inequality gives the desired relation (22).
The proof is then complete. �

The case ρ = +∞ in the latter theorem is of a great interest.

Corollary 4.1: Let C : I ⇒ H be a multimapping with r-prox-regular values for
some extended real r ∈]0,+∞], u0 ∈ C(T0). Assume that there exist a positive
Radon measureμ on I with supτ∈]T0,T] μ({τ }) < r/2, a real ρ0 ≥ ‖u0‖ and a real
η > 0 satisfying (i) of Theorem 4.1 and such that for all s, t ∈ I with s ≤ t and
μ(]s, t[) < η, one has

ĥaus(C(s),C(t)) ≤ μ(]s, t]).

Then, there exists one and only one mapping u : I → H satisfying (21)–(24) of
Theorem 4.1.
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Another direct consequence of Theorem 4.1 is the case where the positive
Radon measure μ(]s, t]) = v(t)− v(s) for some nondecreasing absolutely con-
tinuous function v(·) : I → R, that is μ is absolutely continuous with respect
to λ.

Corollary 4.2: Let C : I ⇒ H be a multimapping with r-prox-regular values for
some extended real r ∈]0,+∞], u0 ∈ C(T0). Assume that there exist a nonde-
creasing absolutely continuous function v(·) : I → R on I, a real ρ0 ≥ ‖u0‖, an
extended real ρ > ρ0 and a real η > 0 satisfying:

(i) for every k ∈ N and for every t1, . . . , tk ∈ I with t0 := T0 < t1 < · · · < tk and
v(ti+1)− v(ti) < η for each i ∈ {0, . . . , k − 1}, one has∥∥∥projC(tk) ◦ · · · ◦ projC(t1)(u0)

∥∥∥ ≤ ρ0,

whenever projC(tk) ◦ · · · ◦ projC(t1)(u0) is well-defined;
(ii) for all s, t ∈ I with s ≤ t and v(t)− v(s) < η, one has

ĥausρ(C(s),C(t)) ≤ v(t)− v(s).

Then, there exists one and only one mapping u : I → H satisfying

− u̇(t) ∈ N(C(t); u(t)) λ−a.e. t ∈ I,

u(t) ∈ C(t) for all t ∈ I,

u(T0) = u0,

as well as the inequalities

‖u(t)− u(s)‖ ≤ v(t)− v(s) for all s, t ∈ I with s ≤ t.

and

‖u(t)‖ ≤ min {ρ0, ‖u0‖ + v(T)− v(T0)} for all t ∈ I.

Now, in addition to the convex situations in [28] we provide another situation
where the inequality (20) in Theorem 4.1 holds true.

Proposition 4.1: Let S be an r-prox-regular subset ofH with r ∈]0,+∞[, u0 ∈ S,
ζ : I → H be a right continuous mapping of bounded variation on I with ζ(T0) =
0, var(ζ ; I) < r and sups∈]T0,T] ‖ζ(s)− ζ−(s)‖ < r/2. The following hold:

(a) For all t ∈ I, S + ζ(t) is r-prox-regular.
(b) sups∈]T0,T] |dζ |({s}) < r/2 and for all s, t ∈ I with s < t,

ĥausρ(S + ζ(s), S + ζ(t)) ≤ hausρ(S + ζ(s), S + ζ(t)) ≤ |dζ | (]s, t]).
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(c) For all t1, . . . , tk ∈ I with k ∈ N and t1 < · · · < tk, one has∥∥∥projS+ζ(tk) ◦ · · · ◦ projS+ζ(t1)(u0)
∥∥∥ ≤ var(ζ , I)+ ‖u0‖

whenever projS+ζ(tk) ◦ · · · ◦ projS+ζ(t1)(u0) is well-defined.

Proof: Let C(·) = S + ζ(·) : I ⇒ H.

(a) Fix any t ∈ [T0,T]. Let c1, c2 ∈ C(t) and τ ∈ [0, 1] such that τ c1 + (1 −
τ)c2 ∈ Ur(C(t)). There are s1, s2 ∈ S such that

c1 = s1 + ζ(t) and c2 = s2 + ζ(t).

It is readily seen that

d(τ c1 + (1 − τ)c2,C(t)) = d(τ s1 + (1 − τ)s2, S),

so τ s1 + (1 − τ)s2 ∈ Ur(S). Combining the r-prox-regularity of S with
Theorem 2.1(e), we get

d(τ c1 + (1 − τ)c2),C(t)) = d(τ s1 + (1 − τ)s2, S) ≤ 1
2r
τ(1 − τ) ‖s1 − s2‖2

= 1
2r
τ(1 − τ) ‖c1 − c2‖2 .

Applying Theorem 2.1(e) again, we obtain the r-prox-regularity of C(t).
(b) According to the inequality sups∈]T0,T] ‖ζ(s)− ζ−(s)‖ < r/2, we have

sup
s∈]T0,T]

|dζ | ({s}) = sup
s∈]T0,T]

‖dζ({s})‖ < r
2
.

On the other hand, we observe that

hausρ(C(s),C(t)) ≤ ‖ζ(s)− ζ(t)‖ = ‖(dζ )(]s, t])‖ ≤ |dζ | (]s, t]),
for all s, t ∈ I with s ≤ t.

(c) Fix any k ∈ N, t1, . . . , tk ∈ I with t1 < · · · < tk such that projC(tk) ◦ · · · ◦
projC(t1) is well-defined. Set t0 := T0 and ρ0 := var(ζ ; I)+ ‖u0‖. Let us set
for each i ∈ {1, . . . , k},

ui := projC(ti)(ui−1)

and let us show by induction that

‖ui − ui−1‖ ≤ ‖ζ(ti)− ζ(ti−1)‖ for all i ∈ {1, . . . , k} .
From the inclusion u0 ∈ S and the equality ζ(T0) = 0, we observe that

dC(t1)(u0) ≤ ‖ζ(t1)‖ = ‖ζ(t1)− ζ(T0)‖ ≤ var(ζ ; I) < r,
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so we have

‖u1 − u0‖ ≤ ‖ζ(t1)− ζ(t0)‖ .

If k=1, the proof is complete. Hence, we may assume that k>1. Fix any
n ∈ {1, . . . , k − 1} and assume that

‖ui − ui−1‖ ≤ ‖ζ(ti)− ζ(ti−1)‖ for all i ∈ {1, . . . , n} .

According to the inclusion un − ζ(tn)+ ζ(tn+1) ∈ C(tn+1), we have

dC(tn+1)(un) ≤ ‖ζ(tn+1)− ζ(tn)‖ ≤ var(ζ ; I) < r,

and then we obtain

‖un+1 − un‖ ≤ ‖ζ(tn+1)− ζ(tn)‖ .

Consequently, the induction is complete. It remains to see that∥∥uk+1
∥∥ ≤ ∥∥uk+1 − uk

∥∥ + ‖uk‖
≤ ∥∥ζ(tk+1)− ζ(tk)

∥∥ + ∥∥uk − uk−1
∥∥ + ∥∥uk−1

∥∥
≤ ∥∥ζ(tk+1)− ζ(tk)

∥∥ + ∥∥ζ(tk)− ζ(tk−1)
∥∥ + ∥∥uk−1

∥∥
≤

k∑
i=0

‖ζ(ti+1)− ζ(ti)‖ + ‖u0‖ .

≤ var(ζ ; I)+ ‖u0‖ = ρ0

to finish the proof
�

The following result is related to the jumps of the solution of (21).

Proposition 4.2: Under the assumptions of Theorem 4.1, the solution u(·) : I →
H of the sweeping process satisfies the following properties∥∥u(t)− u(t−)

∥∥ ≤ μ({t}) and u(t) = projC(t)(u(t
−)) for all t ∈]T0,T].

Proof: Fix any t ∈]T0,T]. The first inequality is a direct consequence of the
inequality (23) of Theorem 4.1. Then, if μ({t}) = 0, we have u(t) = u(t−), so
u(t) = projC(t)(u(t

−)). This justifies that we may assume μ({t}) > 0. From (13),
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we get

du
dμ
(t) = lim

ε↓0
du(]t − ε, t] ∩ I)
μ(]t − ε, t] ∩ I)

= u(t)− u(t−)
μ({t}) .

Combining the latter equality with the fact that u(·) satisfies (21), we obtain
du
dμ
(t) = u(t)− u(t−)

μ({t}) ∈ −N(C(t); u(t))

or equivalently (keeping in mind that N(·; ·) is a cone)
u(t−)− u(t) ∈ N(C(t); u(t)).

On the other hand, thanks to the inequality∥∥u(t)− u(t−)
∥∥ ≤ sup

s∈]T0,T]
μ({s}) < r

2
,

we can apply [14, Proposition 3.5] to get

u(t) = projC(t)(u(t
−)).

The proof is then complete. �

5. Perturbed sweeping process

Requiring a stronger inequality on ρ0 in Theorem 4.1, namely ρ0 > ‖u0‖ +
μ(]T0,T]), one can remove the assumption (20) and consider a perturbation
f (·, ·) of the normal cone involved as in (18), that is, the perturbed sweeping
process

−du ∈ N(C(t); u(t))+ f (t, u(t)) and u(T0) = u0.

The main result of this section is the following:

Theorem 5.1: Let C : I ⇒ H be an r-prox-regular valued multimapping for some
extended real r ∈]0,+∞] and u0 ∈ C(T0). Let also f : I × H → H be a mapping
with f �≡ 0, μ be a positive Radon measure on I with supτ∈]T0,T] μ({τ }) < r/2.
Assume:

(i) the mapping f (·, x) is measurable for every x ∈ ⋃
t∈I C(t), and for each

bounded subset B of H the mapping f (t, ·) is uniformly continuous on B for
every t ∈ I and there exists a function lB ∈ L1(I,R+, λ) such that〈
f (t, x1)− f (t, x2), x1 − x2

〉 ≥ −lB(t) ‖x1 − x2‖2 for all t ∈ I, x1, x2 ∈ B;

(ii) there exists α(·) ∈ L1(I,R+, λ) with 1 − 2
∫ T
T0 α(s) dλ(s) > 0 such that∥∥f (t, x)∥∥ ≤ α(t)(1 + ‖x‖) for all t ∈ I, x ∈ H;
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(iii) there exist a real ρ0 > ‖u0‖ + μ(]T0,T]), an extended real ρ ≥ (ρ0
+ 2

∫ T
T0 α(s) dλ(s))/(1 − 2

∫ T
T0 α(s) dλ(s)) and a real η > 0 such that

ĥausρ(C(s),C(t)) ≤ μ(]s, t]),

for all s, t ∈ I with s ≤ t and μ(]s, t[) < η.

Then, there exists one and only one mapping u : I → H satisfying

{
−du ∈ N(C(t); u(t))+ f (t, u(t))
u(T0) = u0

(44)

and

sup
t∈]T0,T]

∥∥u(t)− u(t−)
∥∥ < r

2
. (45)

Proof: The proof is quite similar to that of Theorem 4.1. Let us focus only on the
differences.

Uniqueness. It is a direct consequence of [28, Proposition 3.16].
Existence. Choose any real ω ∈]0, 1] such that

(2 + ω) sup
τ∈]T0,T]

μ({τ }) < r (46)

and define the constant

κ :=
‖u0‖ + μ(]T0,T])+ 2

∫ T
T0 α(s) dλ(s)

1 − 2
∫ T
T0 α(s) dλ(s)

and the positive Radonmeasure ν := μ+ ω−1(1 + (2 + κ)α(·))λ on I. The con-
stant κ is well-defined and non-negative, and we note by the above inequalities
that

κ <
ρ0 + 2

∫ T
T0 α(s) dλ(s)

1 − 2
∫ T
T0 α(s) dλ(s)

≤ ρ. (47)

As in the proof of the previous theorem, we proceed in 5 steps.
Step 1. Time discretization of I = [T0,T].
Consider any sequence (εn)n∈N of ]0, η[ with εn ↓ 0 and construct (as in the

proof of Theorem 4.1) for each n ∈ N an integer p(n) ≥ 1 and a discretization
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(tni )0≤i≤p(n) of I = [T0,T] such that

T0 = tn0 < · · · < tnp(n) = T

and

ν(]tni , t
n
i+1[) ≤ εn < η for each i ∈ {0, . . . , p(n)− 1}. (48)

In particular, note that for each n ∈ N,

μ(]tni , t
n
i+1[)+ tni+1 − tni ≤ εn for each i ∈ {0, . . . , p(n)− 1}.

Noting that
∫
Q α(s) dλ(s) → 0 as λ(Q) → 0 and setting for every n ∈ N

αni :=
∫ tni+1

tni
α(s) dλ(s) for each i ∈ {0, . . . , p(n)− 1},

we can choose by inequality (46) some N ∈ N such that for every integer n ≥ N,

(
2 + ω

2

)
εn + (

1 + ω

2
)

sup
s∈]T0,T]

μ({s}) < r
2

and 2(1 + κ) max
0≤i≤p(n)−1

αni < 1.

(49)
Step 2. Construction of finite sequences (uni )0≤i≤p(n) (n ≥ N).

Fix any n ∈ N with n ≥ N and set un0 := u0. We proceed to construct by
induction a sequence (uni )1≤i≤p(n) ofH such that for each i ∈ {1, . . . , p(n)},

uni := projC(tni )
(
uni−1 −

∫ tni

tni−1

f (s, uni−1) dλ(s)
)
, (50)

‖uni ‖(1 − 2
∫ T

T0
α(s) dλ(s)) ≤ ‖un0‖ + μ(]T0,T])+ 2

∫ T

T0
α(s) dλ(s)

and∥∥∥∥∥uni −
(
uni−1 −

∫ tni

tni−1

f (s, uni−1) dλ(s)
)∥∥∥∥∥ ≤ μ(]tni−1, t

n
i ])+ (1 + ∥∥uni−1

∥∥)αni−1.

(51)
Using the assumption (ii), the inequality ‖un0‖ ≤ ρ, the assumption (iii), the
inequalities ω−1 ≥ 1 and κ ≥ ‖un0‖, the definition of ν, (48) and (49), we see
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that

dC(tn1 )
(
un0 −

∫ tn1

tn0
f (s, un0) dλ(s)

)
≤ dC(tn1 )(u

n
0)+ (1 + ∥∥un0∥∥) ∫ tn1

tn0
α(s) dλ(s)

≤ êxcρ(C(tn0 ),C(t
n
1 ))+ (1 + ∥∥un0∥∥)αn0

≤ μ(]tn0 , t
n
1 ])+ (1 + ∥∥un0∥∥)αn0

≤ μ(]tn0 , t
n
1 [)+ sup

s∈]T0,T]
μ({s})+ (1 + ∥∥un0∥∥)αn0

≤ μ(]tn0 , t
n
1 [)+ sup

s∈]T0,T]
μ({s})+ ω−1(1 + κ)αn0

≤ ν(]tn0 , t
n
1 [)+ sup

s∈]T0,T]
μ({s})

≤ εn + sup
s∈]T0,T]

μ({s}) < r. (52)

The latter inequality along with the r-prox-regularity of C(tn1 ) allows us to set

un1 := projC(tn1 )
(
un0 −

∫ tn1

tn0
f (s, un0) dλ(s)

)
.

Then, coming back to (52), we obtain that∥∥∥∥∥un1 −
(
un0 −

∫ tn1

tn0
f (s, un0) dλ(s)

)∥∥∥∥∥ ≤ μ(]tn0 , t
n
1 ])+ (1 + ∥∥un0∥∥)αn0 .

The latter inequality entails through the assumption (ii)

∥∥un1∥∥ ≤ ∥∥un0∥∥ +
∫ tn1

tn0

∥∥f (s, un0)∥∥ dλ(s)+ μ(]tn0 , t
n
1 ])+ (1 + ∥∥un0∥∥)αn0

≤ ∥∥un0∥∥ + μ(]tn0 , t
n
1 ])+ 2(1 + ∥∥un0∥∥)αn0

≤ ∥∥un0∥∥ + μ(]T0,T])+ 2(1 + ∥∥un0∥∥) ∫ T

T0
α(s) dλ(s),

which gives

max
{∥∥un0∥∥ , ∥∥un1∥∥}
≤ ‖un0‖ + μ(]T0,T])+ 2

∫ T

T0
α(s) dλ(s)+ 2‖un0‖

∫ T

T0
α(s) dλ(s)

≤ ‖un0‖ + μ(]T0,T])+ 2
∫ T

T0
α(s) dλ(s)

+ 2max{‖un0‖, ‖un1‖}
∫ T

T0
α(s) dλ(s),
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and hence

max
{∥∥un0∥∥ , ∥∥un1∥∥} (1 − 2

∫ T

T0
α(s) dλ(s)) ≤ ∥∥un0∥∥ + μ(]T0,T])

+ 2
∫ T

T0
α(s) dλ(s).

Assume that p(n) > 1 (otherwise, there is nothing to prove). Fix any k ∈
{2, . . . , p(n)}. Suppose that we have constructed un1, . . . , u

n
k−1 ∈ H such that for

each i ∈ {1, . . . , k − 1},

uni := projC(tni )
(
uni−1 −

∫ tni

tni−1

f (s, uni−1) dλ(s)
)
,

‖uni ‖(1 − 2
∫ T

T0
α(s) dλ(s)) ≤ ‖un0‖ + μ(]T0,T])+ 2

∫ T

T0
α(s) dλ(s) (53)

and∥∥∥∥∥uni − (
uni−1 −

∫ tni

tni−1

f (s, uni−1) dλ(s)
)∥∥∥∥∥ ≤ μ(]tni−1, t

n
i ])+ (1 + ∥∥uni−1

∥∥)αni−1.

(54)
From (53) we note that ‖uni ‖ ≤ κ for each i ∈ {1, . . . , k − 1}. As above, according
to the assumption (ii), the inequality ‖unk−1‖ ≤ κ ≤ ρ, the assumption (iii), the
definition of ν, (48) and (49), we have

dC(tnk )

(
unk−1 −

∫ tnk

tnk−1

f (s, unk−1) dλ(s)

)

≤ dC(tnk )(u
n
k−1)+ (1 + ∥∥unk−1

∥∥) ∫ tnk

tnk−1

α(s) dλ(s)

≤ êxcρ(C(tnk−1),C(t
n
k ))+ (1 + ∥∥unk−1

∥∥)αnk−1

≤ μ(]tnk−1, t
n
k ])+ (1 + ∥∥unk−1

∥∥)αnk−1

≤ μ(]tnk−1, t
n
k [)+ sup

s∈]T0,T]
μ({s})+ (1 + κ)αnk−1

≤ ν(]tnk−1, t
n
k [)+ sup

s∈]T0,T]
μ({s})

≤ εn + sup
s∈]T0,T]

μ({s}) < r. (55)

Thanks to the r-prox-regularity of C(tnk ), we can set

unk := projC(tnk )

(
unk−1 −

∫ tnk

tnk−1

f (s, unk−1) dλ(s)

)
.
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From the definition of unk and (55), it is clear that∥∥∥∥∥unk −
(
unk−1 −

∫ tnk

tnk−1

f (s, unk−1) dλ(s)

)∥∥∥∥∥ ≤ μ(]tnk−1, t
n
k ])+ (1 + ∥∥unk−1

∥∥)αnk−1.

It is straightforward from the latter inequality and (54) that for each i ∈ {1, . . . , k},∥∥uni ∥∥ ≤ ∥∥uni−1
∥∥ + μ(]tni−1, t

n
i ])+ 2(1 + ∥∥uni−1

∥∥)αni−1.

It follows that∥∥unk∥∥ ≤ ∥∥unk−1
∥∥ + μ(]tnk−1, t

n
k ])+ 2

(
1 + max

0≤i≤k−1

∥∥uni ∥∥)αnk−1

≤ ∥∥unk−2
∥∥ + μ(]tnk−2, t

n
k ])+ 2

(
1 + max

0≤i≤k−1

∥∥uni ∥∥) (αnk−2 + αnk−1)

...

≤ ∥∥un0∥∥ + μ(]T0,T])+ 2
(
1 + max

0≤i≤k−1

∥∥uni ∥∥) k−1∑
j=0

αnj ,

thus ‖unk‖ ≤ ‖un0‖ + μ(]T0,T])+ 2
∫ T
T0 α(s) dλ(s)+ 2max0≤i≤k ‖uni ‖

∫ T
T0 α(s)

dλ(s). This and the induction assumption (53) for every i ∈ {1, . . . , k − 1} ensure
that

max
0≤i≤k

‖uni ‖ ≤ ‖un0‖ + μ(]T0,T])+ 2
∫ T

T0
α(s) dλ(s)

+ 2 max
0≤i≤k

‖uni ‖
∫ T

T0
α(s) dλ(s),

or equivalently

max
0≤i≤k

∥∥uni ∥∥(
1 − 2

∫ T

T0
α(s) dλ(s)

)
≤ ∥∥un0∥∥ + μ(]T0,T])+ 2

∫ T

T0
α(s) dλ(s).

The induction is then complete.
From the inequality ‖u0‖ ≤ κ and from (53) we note that

‖uni ‖ ≤ κ for all i ∈ {0, 1, . . . , p(n)}. (56)

From the latter inequality, from (51) and from the definition of ν we also note
that ∥∥∥∥∥uni −

(
uni−1 −

∫ tni

tni−1

f (s, uni−1) dλ(s)

)∥∥∥∥∥ ≤ μ(]tni−1, t
n
i ])

+ (1 + κ)αni−1 ≤ ν(]tni−1, t
n
i ]). (57)

Step 3. Definition of the sequence (un(·))n≥N .
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Fix any integern ≥ N. Let us define themappingun : I → H byun(T) = unp(n)
and

un(t) = uni + ν(]tni , t])
ν(]tni , t

n
i+1])

(
uni+1 − uni +

∫ tni+1

tni
f (s, uni ) dλ(s)

)
−

∫ t

tni
f (s, uni ) dλ(s),

for all t ∈ [tni , t
n
i+1[ with i ∈ {0, . . . , p(n)− 1}. It is not difficult to check that

un(t) = uni + ν(]tni , t])
ν(]tni , t

n
i+1])

(
uni+1 − uni +

∫ tni+1

tni
f (s, uni ) dλ(s)

)
−

∫ t

tni
f (s, uni ) dλ(s),

for all t ∈ [tni , t
n
i+1] with i ∈ {0, . . . , p(n)− 1}. Further, rewriting un(t) for each

t ∈ [tni , t
n
i+1] (i ∈ {0, . . . , p(n)− 1}) in the form

un(t) =
(
1 − ν(]tni , t])

ν(]tni , t
n
i+1])

)
uni + ν(]tni , t])

ν(]tni , t
n
i+1])

uni+1

+ ν(]tni , t])
ν(]tni , t

n
i+1])

∫ tni+1

tni
f (s, uni ) dλ(s)−

∫ t

tni
f (s, uni ) dλ(s),

we see from (56), from assumption (ii) and from the second inequality in (49)
that for all t ∈ I

‖un(t)‖ ≤ κ + 2(1 + κ) max
0≤j≤p(n)−1

αnj < κ + 1. (58)

Now, define δn(·) : I → I by δn(T) = T and

δn(t) := tni ift ∈ [tni , t
n
i+1[with i ∈ {

0, . . . , p(n)− 1
}
,

and define also ζn(·) : I → H by ζn(T0) = 0 and

ζn(t) :=
uni+1 − uni + ∫ tni+1

tni
f (s, uni ) dλ(s)

ν(]tni , t
n
i+1])

for all t ∈]tni , tni+1]. (59)

By the very definition of un(·), δn(·) and ζn(·), we have

un(t) = un(T0)+
∫
]T0,t]

ζn(s) dν(s)−
∫
]T0,t]

f
(
s, un(δn(s))

)
dλ(s).

Using the definition of ν we see that λ is absolutely continuous with respect to
ν an it has dλ/dν as a density in L∞(I,R+, ν) relative to ν. Then we can write
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(see (12))

un(t) = un(T0)+
∫
]T0,t]

(
ζn(s)− f

(
s, un(δn(s))

)dλ
dν
(s)

)
dν(s),

and hence un(·) is right-continuous and with bounded variation on I. Moreover,
the latter equality says that ζn(·)− f (·, un(δn(·)))(dλ/dν)(·) is a density of un(·)
relative to ν. So, it follows that (dun/dν)(·) exists as a density of un(·) relative to
ν and

dun
dν
(t)+ f

(
t, un(δn(t))

)dλ
dν
(t) = ζn(t) ν−a.e.t ∈ I. (60)

We deduce from this equality, the definition of ζn(·) and (57) that∥∥∥∥dundν
(t)+ f

(
t, un(δn(t))

)dλ
dν
(t)

∥∥∥∥ = ‖ζn(t)‖ ≤ 1 ν−a.e.t ∈ I. (61)

Since the measure κα(·)λ is absolutely continuous with respect to ν, it has
d(κα(·)λ)/dν a density relative to ν and then we have by the definition of ν

0 ≤ (2 + κ)α(t)
dλ
dν
(t) = d((2 + κ)α(·)λ)

dν
(t) ≤ ω ν−a.e.t ∈ I.

Putting the latter inequality, (61), assumption (ii) and (58) together, we get∥∥∥∥dundν
(t)

∥∥∥∥ ≤ 1 +
∥∥∥∥f (t, un(δn(t)))dλdν (t)

∥∥∥∥ ≤ 1 + (2 + κ)α(t)
dλ
dν
(t) ≤ 1 + ω,

(62)
and this ensures that for all s, t ∈ I with s ≤ t,

‖un(t)− un(s)‖ =
∥∥∥∥∫

]s,t]

dun
dν
(w) dν(w)

∥∥∥∥ ≤ (1 + ω)ν(]s, t]) ≤ 2ν(]s, t]).

(63)
Besides δn(·), let us define θn : I → I by θn(T0) = T0 and for all t ∈ I by

θn(t) = tni+1 if t ∈]tni , tni+1]with i ∈ {
0, . . . , p(n)− 1

}
.

Combining (5) and the definition of ζn, we see that

ζn(t) ∈ −NP(C(θn(t); un(θn(t))) ν−a.e. t ∈ I.

With (8) and (61), this entails that

ζn(t) ∈ −∂PdC(θn(t))(un(θn(t))) ν−a.e. t ∈ I. (64)

Step 4. The sequence (un)n≥N of B(I,H) (the real Banach space of bounded
mappings endowed with the norm of uniform convergence) has the Cauchy
property.
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Set for every n ∈ N and every t ∈ I,

γn(t) := 2ν(]t, θn(t)]).

Observe first from (50) and (56) (keeping in mind (47)) that

un(θn(t)) ∈ C(θn(t)) ∩ ρB for all n ∈ N, t ∈ I. (65)

Fix anym, n ∈ N withm, n ≥ N, t ∈ I. As in the proof of Theorem 4.1, we have

d
(
um(t),C(θn(t))

) ≤ d
(
um(t),C(θm(t)) ∩ ρB

) + êxcρ
(
C(θm(t)),C(θn(t))

)
≤ d

(
um(θm(t)),C(θm(t)) ∩ ρB

) + ‖um(t)− um(θm(t))‖
+ μ

(
]t, max{θn(t), θm(t)}]

)
.

By virtue of (65), (63), (48) and (49), we observe that

d
(
um(t),C(θn(t))

) ≤ (1 + ω)ν(]t, θm(t)])+ ν(]t, max {θn(t), θm(t)}]) (66)

≤ (2 + ω)ν(]t, max {θn(t), θm(t)}])
≤ (2 + ω)max{εm, εn} + (2 + ω) sup

τ∈]T0,T]
μ({τ }) < r. (67)

Further, (66) also ensures that

d
(
um(t),C(θn(t))

) ≤ 2max{γm(t), γn(t)}. (68)

Now, for all t ∈ I, all n,m ∈ N with n,m ≥ N set γm,n(t) := max{γm(t), γn(t)},
Fn(t) : = f

(
t, un(δn(t))

)
and

ϕn,m(t) : =
∥∥Fn(t)− f

(
t, un(t)

)∥∥ ‖un(t)− um(t)‖ . (69)

Fix any integers n ≥ N and m ≥ N. Using (64), (65), (67), Proposition 2.1, (63)
and (68), we have for ν-almost every t ∈ I,〈

ζn(t), un
(
θn(t)

) − um(t)
〉

≤ 1
2r

∥∥um(t)− un
(
θn(t)

)∥∥2 + 1
2r
d2C(θn(t))(um(t))

+
(
1
r
∥∥un(θn(t)) − um(t)

∥∥ + 1
)
dC(θn(t))(um(t))

≤ 1
2r

( ‖un(t)− um(t)‖ + ∥∥un(θn(t)) − un(t)
∥∥ )2 + 1

2r
d2C(θn(t))(um(t))

+
[
1
r
( ∥∥un(θn(t)) − un(t)

∥∥ + ‖un(t)− um(t)‖
) + 1

]
dC(θn(t))(um(t))

≤ 1
2r

( ‖un(t)− um(t)‖ + γn(t)
)2 + 2

r
(γm,n(t))2

+
[
1
r
(
γn(t)+ ‖un(t)− um(t)‖

) + 1
] (

2γm,n(t)
)
.
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The latter inequality gives through (61) and (63)

〈ζn(t), un(t)− um(t)〉
= 〈
ζn(t), un(t)− un

(
θn(t)

)〉 + 〈
ζn(t), un

(
θn(t)

) − um(t)
〉

≤ ∥∥un(t)− un
(
θn(t)

)∥∥ + 1
2r

( ‖um(t)− un(t)‖ + γn(t)
)2 + 2

r
(
γm,n(t)

)2
+

[
1
r
(
γn(t)+ ‖un(t)− um(t)‖

) + 1
] (

2γm,n(t)
)

≤ 2ν
(
]t, θn(t)]

) + 1
2r

( ‖um(t)− un(t)‖ + γn(t)
)2 + 2

r
(
γm,n(t)

)2
+

[
1
r
(
γn(t)+ ‖un(t)− um(t)‖

) + 1
] (

2γm,n(t)
)
,

for ν-almost every t ∈ I. On the other hand, the definition of Fn(·) and (60)
ensure that for ν-almost every t ∈ I,〈
dun
dν
(t), un(t)− um(t)

〉
≤

〈
Fn(t)

dλ
dν
(t), um(t)− un(t)

〉
+ 2ν

(
]t, θn(t)]

) + 1
2r

( ‖um(t)− un(t)‖ + γn(t)
)2

+
[
1
r
(
γn(t)+ ‖un(t)− um(t)‖

) + 1
] (

2γm,n(t)
)

+ 2
r
(
γm,n(t)

)2.
Sincem and n are arbitrarily chosen, we also have for ν-almost every t ∈ I〈

dum
dν

(t), um(t)− un(t)
〉

≤
〈
Fm(t)

dλ
dν
(t), un(t)− um(t)

〉
+ 2ν

(
]t, θm(t)]

)
+ 1

2r
( ‖un(t)− um(t)‖ + γm(t)

)2
+

[
1
r
(
γm(t)+ ‖um(t)− un(t)‖

) + 1
] (

2γm,n(t)
)

+ 2
r
(
γm,n(t)

)2.
Hence, by adding both latter inequalities, we deduce that for ν-almost every t ∈ I,〈

dun
dν
(t)− dum

dν
(t), un(t)− um(t)

〉
≤ dλ

dν
(t) 〈Fn(t)− Fm(t), um(t)− un(t)〉 + 2ν

(
]t, θn(t)]

)
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+ 2ν
(
]t, θm(t)]

) + 1
2r

( ‖um(t)− un(t)‖ + γn(t)
)2

+ 1
2r

( ‖un(t)− um(t)‖ + γm(t)
)2 + 4

r
(
γm,n(t)

)2
+

[
1
r
(
γn(t)+ ‖un(t)− um(t)‖

) + 1
] (

2γm,n(t)
)

+
[
1
r
(
γm(t)+ ‖um(t)− un(t)‖

) + 1
] (

2γm,n(t)
)
. (70)

Writing for all t ∈ I,

〈Fn(t)− Fm(t), um(t)− un(t)〉
= 〈

f (t, un(t))− f (t, um(t)), um(t)− un(t)
〉

+ 〈
Fn(t)− f (t, un(t)), um(t)− un(t)

〉
+ 〈

f (t, um(t))− Fm(t), um(t)− un(t)
〉
,

we can apply assumption (i) with B := (1 + κ)B (see (58)) to get

〈Fn(t)− Fm(t), um(t)− un(t)〉 ≤ ϕm,n(t)+ ϕn,m(t)+ lB(t) ‖um(t)− un(t)‖2 .
(71)

Combining (70) and (71), we obtain for ν-almost every t ∈ I, and for all integers
n,m ≥ N 〈

dun
dν
(t)− dum

dν
(t), un(t)− um(t)

〉
≤ dλ

dν
(t)

(
lB(t) ‖un(t)− um(t)‖2 + ϕn,m(t)+ ϕm,n(t)

)
+ 2ν

(
]t, θn(t)]

) + 2ν
(
]t, θm(t)]

)
+ 1

2r
( ‖um(t)− un(t)‖ + γn(t)

)2
+ 1

2r
( ‖un(t)− um(t)‖ + γm(t)

)2 + 4
r
(
γm,n(t)

)2
+

[
1
r
(
γn(t)+ ‖un(t)− um(t)‖

) + 1
]
(2γm,n(t))

+
[
1
r
(
γm(t)+ ‖um(t)− un(t)‖

) + 1
]
(2γm,n(t)).

Consequently, for ν-almost every t ∈ I, for all n,m ≥ N (with β := 1 + κ)〈
dun
dν
(t)− dum

dν
(t), un(t)− um(t)

〉
≤

(
lB(t)

dλ
dν
(t)+ 1

r

)
‖un(t)− um(t)‖2
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+ dλ
dν
(t)ϕn,m(t)+ dλ

dν
(t)ϕm,n(t)+ 4

r
(
γm,n(t)

)2
+ 2ν

(
]t, θn(t)]

) + 2ν
(
]t, θm(t)]

)
+ 1

2r
(
γ 2
n (t)+ 4βγn(t)+ γ 2

m(t)+ 4βγm(t)
)

+
[
1
r
(
γn(t)+ 2β

) + 1
]
(2γm,n(t))+

[
1
r
(
γm(t)+ 2β

) + 1
]
(2γm,n(t)).

(72)

Now denote by Nν the complement in I of the set of points t ∈ I where
(dλ/dν)(t) exists in H as in (9), so ν(Nν) = 0. Let us show that for every t ∈
I \ Nν

lim
n→+∞

(
Fn(t)− f

(
t, un(t)

))dλ
dν
(t) = 0. (73)

Fix any t ∈ I \ Nν and consider two cases.
Case 1: ν({t}) > 0.
In this case, we know (see (10)) that (dλ/dν)(t) = 0, so the desired above limit

property is evident.
Case 2: ν({t}) = 0.
Then, the inequality ‖un(t)− un(δn(t))‖ ≤ 2ν(]δn(t), t]) by (63) and the

convergence δn(t) → t imply un(δn(t))− un(t) → 0. It follows that Fn(t)−
f (t, un(t)) → 0 according to the uniform continuity of f (t, ·) over B, which again
confirms (73).

For each t ∈ I \ Nν , it results from (73) and from the definition of ϕn,m in (69)
that (dλ/dν)(t)ϕn,m(t) → 0 as n,m → +∞, since the sequence (un(t))n∈N is
bounded by (58). By the assumption (ii) and the boundedness of (un(·))n in the
space B(I,H) (due to (58) again), the Lebesgue dominated convergence theorem
ensures that ∫

]T0,T]

dλ
dν
(t)ϕn,m(t) dν(t) → 0asn,m → +∞.

Note also that ν(]t, θn(t)]) → 0 as n → +∞. For all n,m ∈ N, setting

An,m := 1
2

∫
]T0,T]

{
dλ
dν
(t)ϕn,m(t)+ dλ

dν
(t)ϕm,n(t)

+ 2ν
(
]t, θn(t)]

) + 2ν
(
]t, θm(t)]

)
+ 1

2r
(
γ 2
n (t)+ 4βγn(t)+ γ 2

m(t)+ 4βγm(t)
) + 4

r
(
γm,n(t)

)2
+

[
1
r
(
γn(t)+ 2β

) + 1
]
(2γm,n(t))

+
[
1
r
(
γm(t)+ 2β

) + 1
]
(2γm,n(t))

}
dν(t)
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we see that An,m → 0 as n,m → +∞. On the other hand, Proposition 3.1 says
that

d(‖un(·)− um(·)‖2) ≤ 2
〈
dun
dν
(·)− dum

dν
(·), un(·)− um(·)

〉
dν

for all n,m ∈ N. (74)

Fix for a moment n,m ∈ N with n,m ≥ N. Putting for all t ∈ I, ψn,m(t) =
‖un(t)− um(t)‖2 and noting that un(T0) = um(T0), we deduce from (72) that,
for all t ∈ I

ψn,m(t) ≤
∫
]T0,t]

2
(
lB(s)

dλ
dν
(s)+ 1

r

)
ψn,m(s) dν(s)+ An,m.

According to (11), we have lB(s)(dλ/dν)(s)ν({s}) = 0 for ν-almost every s ∈ I. It
follows that, for ν-almost every t ∈]T0,T]

2
(
lB(t)

dλ
dν
(t)+ 1

r

)
ν({t}) = 2

r
ν({t}) = 2

r
μ({t}) ≤ 2

r
sup

s∈]T0,T]
μ({s}) < 1,

where the last inequality is due to the assumption sups∈]T0,T] μ({s}) < r/2. We
can apply Lemma 3.1, and this yields, for all t ∈]T0,T]

ψn,m(t) ≤ An,m exp
(

1
1 − θ

∫
]T0,t]

2
(
lB(s)

dλ
dν
(s)+ 1

r

)
dν(s)

)
≤ An,m exp

(
1

1 − θ

(∫
]T0,T]

2lB(s) dλ(s)+ 2
r
ν(]T0,T]

))
where θ = (2/r) sups∈]T0,T] μ({s}). Hence, the sequence (un(·))n≥N satisfies the
Cauchy property with respect to the norm of uniform convergence on the
real Banach space of all bounded mappings from I into H. Consequently, the
sequence (un(·))n≥N converges uniformly on I to some mapping u(·). By virtue
of (62), extracting a subsequence if necessary, we assume without loss of gen-
erality that ((dun/dν)(·))n≥N converges weakly in L2(I,H, ν) to some mapping
h(·) ∈ L2(I,H, ν), so, for every t ∈ I,∫

]T0,t]

dun
dν
(s) dν(s) −→

n→+∞

∫
]T0,t]

h(s) dν(s) weakly inH.

Since (dun/dν)(·) is a density of dun relative to ν for all n ∈ N, we have for
all n ∈ N, for all t ∈ I, un(t) = u0 + ∫

]T0,t](dun/dν)(s) dν(s). Thus, for all t ∈ I,
u(t) = u0 + ∫

]T0,t] h(s) dν(s) and this ensures that u(·) is right-continuous with
bounded variation on I and the vector measure du has h(·) ∈ L2(I,H, ν) as a
density relative to ν and (du/dν)(·) = h(·) ν-almost everywhere. We also obtain
that

dun
dν
(·) −→

n→+∞
du
dν
(·) weakly in L2(I,H, ν).

Step 5. The mapping u(·) satisfies (44) and (45).
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As in the proof of Theorem 4.1, we show that

u(t) ∈ C(t) for all t ∈ I.

Now, let us establish that

du
dν
(t)+ f (t, u(t))

dλ
dν
(t) ∈ −N(C(t); u(t)) ν−a.e.t ∈ I.

First, from (73) we notice that, for ν-almost every t ∈ I

en(t) := f
(
t, un(δn(t))

)dλ
dν
(t) −→

n→+∞ f
(
t, u(t)

)dλ
dν
(t) =: e(t).

By this, assumption (ii) and the fact that (un(·))n is uniformly bounded, the
Lebesgue dominated convergence theorem yields that (en(·))n≥N converges
strongly to e(·) in L2(I,H, ν). It ensues (recalling the definition of ζn(·) in (59))
that

ζn(·) = dun
dν
(·)+ en(·) → du

dν
(·)+ f (·, u(·))dλ

dν
(·) weakly in L2(I,H, ν).

Since ζn(t) ∈ ∂CdC(θn(t))(un(θn(t))) for ν-almost every t ∈ I by (64), applying
Castaing’s technique as in the proof of Theorem 4.1, we arrive to

du
dν
(t)+ f (t, u(t))

dλ
dν
(t) ∈ −NC(C(t); u(t)) ν−a.e.t ∈ I,

that is, u(·) is a solution of (44). On the other hand, from (63) we see for s< t in
I that ‖u(t)− u(s)‖ ≤ ν(]s, t]), hence making s ↑ t gives

‖u(t)− u(t−)‖ ≤ ν({t}) = μ({t}).

Then using the assumption supτ∈]T0,T] μ({τ }) < r/2, we arrive to the desired
inequality (45). The proof is then complete. �

The mapping u(·) satisfying (44) and (45) also satisfies Proposition 4.2.

Proposition 5.1: Under the assumptions of Theorem 5.1, the solution u(·) : I →
H of the sweeping process of the theorem satisfies the following properties∥∥u(t)− u(t−)

∥∥ ≤ μ({t}) and u(t) = projC(t)(u(t
−)) for all t ∈]T0,T].

Proof: It is similar to the proof of Proposition 4.2. �

Finally, under the convexity of sets C(t) we directly derive the following
corollary from Theorem 5.1 and Proposition 5.1. It is partially a slight extension
of [14, Theorem 5.1].
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Corollary 5.1: Let C : I ⇒ H be a closed convex valued multimapping and u0 ∈
C(T0). Let also f : I × H → H be amapping with f �≡ 0 andμ be a positive Radon
measure on I. Assume:

(i) the mapping f (·, x) is measurable for every x ∈ ⋃
t∈I C(t), and for each

bounded subset B of H the mapping f (t, ·) is uniformly continuous on B for
every t ∈ I and there exists a function lB ∈ L1(I,R+, λ) such that〈
f (t, x1)− f (t, x2), x1 − x2

〉 ≥ −lB(t) ‖x1 − x2‖2 for all t ∈ I, x1, x2 ∈ B;

(ii) there exists α(·) ∈ L1(I,R+, λ) with 1 − 2
∫ T
T0 α(s) dλ(s) > 0 such that∥∥f (t, x)∥∥ ≤ α(t)(1 + ‖x‖) for all t ∈ I, x ∈ H;

(iii) there exist a real ρ0 > ‖u0‖ + μ(]T0,T]), an extended real ρ ≥ (ρ0
+ 2

∫ T
T0 α(s) dλ(s))/(1 − 2

∫ T
T0 α(s) dλ(s)) and a real η > 0 such that

ĥausρ(C(s),C(t)) ≤ μ(]s, t]),

for all s, t ∈ I with s ≤ t and μ(]s, t]) < η.

Then, there exists one and only one mapping u : I → H satisfying{
−du ∈ N(C(t); u(t))+ f (t, u(t))
u(T0) = u0.

Further, the solution u(·) satisfies the following properties∥∥u(t)− u(t−)
∥∥ ≤ μ({t}) and u(t) = projC(t)(u(t

−)) for all t ∈]T0,T].
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