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Abstract In this paper, we study the existence of solutions for a time and state-
dependent discontinuousnonconvex secondorder sweepingprocesswith amultivalued
perturbation. The moving set is assumed to be prox-regular, relatively ball-compact
with a bounded variation. The perturbation of the normal cone is a scalarly upper semi-
continuous convex valued multimapping satisfying a linear growth condition possibly
time-dependent. As an application of the theoretical results, we investigate the theory
of evolution quasi-variational inequalities.
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1 Introduction

In 1988, Castaing [9] introduced in the famous “Travaux du Séminaire d’Analyse
Convexe de Montpellier” the concept of second order sweeping process. Given a real
T > 0, a Hilbert space H and a multimapping C : [0, T ] × H ⇒ H closed-valued,
consider the second order sweeping process written in the form
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⎧
⎪⎨

⎪⎩

−ü(t) ∈ N (C(t, u(t)); u̇(t)) + F(t, u(t), u̇(t)) λ-a.e. t ∈ [0, T ],
u̇(t) ∈ C(t, u(t)) for all t ∈ [0, T ],
u(0) = b, u̇(0) ∈ C(0, b),

(1.1)

where N (·, ·) is a general notion of normal cone in H and F : [0, T ] × H ⇒ H is a
multimapping. The term “sweeping process” refers to the first order evolution problem
initiated by Moreau in 1971 [25] with C(t, u(t)) = C(t) (state independent) namely

⎧
⎪⎨

⎪⎩

−u̇(t) ∈ N (C(t); u(t)) + F(t, u(t)) λ-a.e. t ∈ [0, T ],
u(t) ∈ C(t) for all t ∈ [0, T ],
u(0) ∈ C(0).

(1.2)

It has been well-recognized that (1.2) plays an important role in eslastoplasticity, qua-
sistatics and dynamics (see, e.g., [24,28]) while the second order differential inclusion
has applications in dry friction [29].

The unperturbed case of (1.1) (i.e., F ≡ 0) has been first developed by Castaing in
[9] (see also the book [22]) for an anti-monotone continuous bounded convex moving
set independent of the timeC(·) of an infinite dimensional Hilbert space. Replacing the
assumption of an anti-monotone multimapping with a fixed open ball contained in any
C(t) for each t ∈ [0, T ], Castaing et al. in [10] show in the finite dimensional setting
the existence of solutions for (1.1) based on a technique of Lipschitz approximations of
multimappings. To the best of our knowledge, the first study with F �≡ 0 is due to Duc
Ha and Monteiro Marques [16]. The authors deal with a memory problem involving
a compact convex Lipchitz moving set C(·) in R

n with a continuous compact-valued
perturbation F(·, ·) of the normal cone which does not depend on the velocity u̇(t).
Using the ideas of M. Valadier for the first order, they also investigate the case of the
complement of a convex moving set.

It seems that prox-regular sets [31] are a suitable class of moving sets to handle
first order nonconvex sweeping process in the infinite dimensional framework (see,
e.g., [2,18] and the references therein). Such sets are also of great interest in the
second order theory. This is the case in [6], where the authors developed an existence
result for a compact prox-regular moving set of Rn with an upper semicontinuous
convex-valued perturbation depending both on time and velocity. For a perturbation
F depending on time, state and velocity, we refer to the work [5]. In [11], Castaing et
al. studied the problem (1.1) in a separable Hilbert space when C(t, x) is prox-regular
and relatively ball-compact. The authors established in [11] the existence of a solution
of (1.1) provided that the multimapping C(·, ·) is Lipschitz, that is, for some real
L > 0

|d(u,C(t1, x1)) − d(v,C(t2, x2))| ≤ ‖u − v‖ + L(|t1 − t2| + ‖x1 − x2‖), (1.3)

for any u, v, x1, x2 ∈ H and any t1, t2 ∈ [0, T ], and provided that the closed convex-
valued multimapping F is scalarly upper semicontinuous and satisfies

F(t, u, v) ⊂ (1 + ‖u‖ + ‖v‖)B for all t ∈ [0, T ], (u, v) ∈ H2.
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As pointed out by Tolstonogov [33], it is difficult for an unbounded moving set C(·, ·)
to satisfy the inequality (1.3) because the Pompeiu-Hausdorff distance may take the
value ∞ for unbounded sets. To avoid such a difficulty, he introduced the concept
of multimappings uniformly lower semicontinuous from the right and provided an
existence result for first order sweeping process without the classical assumption (1.3).
In [1], the authors assume a control on the Pompeiu-Hausdorff distance, not on the
whole moving set C(·, ·) but only on a bounded truncation of the form C(·, ·) ∩ ρB

for some real ρ > 0 depending on the initial data. Thanks to a careful adaptation of
the catching-up algorithm of J.J. Moreau for the first order sweeping process, they
showed the existence of solution for the problem (1.1) with a convex moving set of
a Hilbert space satisfying a slightly weaker compactness condition than the relative
ball-compacity.

In [9], Castaing also considered the discontinuous order sweeping process

⎧
⎨

⎩

− du̇
|du̇| (t) ∈ N (C(u(t)); u̇(t)) |du̇| -a.e. t ∈ [0, T ],

u(0) = b, u̇(0) ∈ C(b).
(1.4)

Unlike the problem (1.1), very few studies have been achieved for such differential
inclusions [9,10,21,22]. In [9] (see also the book [22]), the existence of solutions is
ensured in infinite dimensional setting whenever the moving set C(·) is closed convex
with nonempty interior, continuous for the Pompeiu-Hausdorff and anti-monotone.
For another result without the latter assumption but in the finite dimensional setting,
we refer the reader to [10]. Still in the finite dimensional framework, Kunze and
Monteiro Marques in [21] proved that (1.4) has solutions whenever C(·) is convex
with nonempty interior and Holder continuous with exponent α ∈ [ 12 , 1].

The aim of the present paper is to analyze the existence of solutions for the differ-
ential inclusion

{−du̇(t) ∈ N (C(t, u(t)); u̇(t)) + F(t, u(t), u̇(t)),

u(0) = b, u̇(0) ∈ C(0, b).
(1.5)

Following the work of Edmond and Thibault [18] for the first order sweeping process,
we begin here with the developement of a general concept of solutions for such a
differential inclusion which justifies the writing (1.5) without the variation measure
|du̇|. Then, we give sufficient conditions to ensure that such a problem has at least
one solution. Doing so, we assume that C(·, ·) is prox-regular, relatively ball-compact
and moves in a bounded variation way with respect to the time and in a Lipschitz way
with respect to the state, that is for any u, x1, x2 ∈ H and t1, t2 ∈ [0, T ] with t1 < t2,

|d(u,C(t1, x1)) − d(u,C(t2, x2))| ≤ μ(]t1, t2]) + L ‖x1 − x2‖ ,

where L > 0 and whereμ is a Radon measure on [0, T ]. As in [1,11], the perturbation
F is scalarly upper semicontinuouswith closed convexvalues butwith aweaker growth
condition
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F(t, u, v) ⊂ α(t)(1 + ‖u‖ + ‖v‖)B for all t ∈ [0, T ], (u, v) ∈ H2,

withα(·) ∈ L1([0, T ],R+, λ). Such a time dependancewill play a crucial role in order
to apply our existence result to the theory of quasi-variational evolution inequalities.

The paper is organized as follows. In Sect. 2, we introduce notation and we give
the preliminaries needed throughout the paper. In the next section, we develop the
concept of solutions for the discontinuous perturbed second order sweeping process
(1.5). Various basic properties of the solutions of such a differential inclusion are also
given. Section 4 is devoted to the study of the existence of solutions for (1.5). In
the last section, we provide an application of our results to the theory of evolution
quasi-variational inequalities.

2 Preliminaries

In the whole paper, N is the set of positive integers (1, . . .), R+ := [0,+∞[ is the set
of nonnegative reals, R := R ∪ {−∞,+∞} is the extended real-line, T0, T are two
reals with T0 < T and λ is the Lebesgue measure on I := [T0, T ]. Throughout, H is
a real Hilbert space whose inner product is denoted by 〈·, ·〉, the associated norm by
‖·‖ and the closed unit ball by B. For a set A ⊂ I , 1A stands for the characteristic
function in the sense of measure theory of A relative to I , i.e., for all x ∈ R,

1A(x) :=
{
1 if x ∈ A

0 otherwise.

Let ν be a positive measure on I , p ≥ 1 a real. We denote by L p(I,H, ν) the real
space of (classes of) Bochner measurable mappings from I to H for which the p-th
power of their norm value is integrable with respect to the measure ν.
Let S be a subset of H. The distance function to S is denoted by dS(·) or d(·, S) and
is defined by

dS(x) :=: d(x, S) := inf
s∈S ‖x − s‖ for all x ∈ H.

One denotes by co S (resp., co S) the convex (resp., closed convex) hull of S. For any
x ∈ H, the possibly empty set of all nearest points of x in S is defined by

ProjS(x) := {y ∈ S : dS(x) = ‖x − y‖} .

When ProjS(x) contains one and only one point ȳ, we will denote by projS(x) the
unique element, that is, projS(x) := ȳ. The set S is said to be ball-compact (resp.,
relatively ball-compact) if the intersection of S with any closed ball of H is compact
(resp., relatively compact). If S is nonempty and ball-compact, it is obviously closed
and it satisfies

ProjS(x) �= ∅ for all x ∈ H.
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2.1 Proximal and Clarke Normal Cones and Subdifferentials

In this subsection, S is a nonempty closed subset of the real Hilbert space H and
f : U → R is a function defined on a nonempty open subset U of H.

For any x ∈ S, the set

N P (S; x) := {
ζ ∈ H : ∃r > 0, x ∈ ProjS(x + rζ )

}
,

which is obviously a convex (not necessarily closed) cone containing 0 is called the
proximal normal coneof S at x . By convention, for any x ∈ H\S, one sets N P (S; x) :=
∅. For v ∈ H such that ProjS(v) �= ∅, it is readily seen that for all w ∈ ProjS(v), one
has

v − w ∈ N P (S;w). (2.1)

A vector ζ ∈ H is said to be a proximal subgradient of f at x ∈ U with | f (x)| < +∞
provided there are a real σ ≥ 0 and a real η > 0 such that

〈ζ, y − x〉 ≤ f (y) − f (x) + σ ‖y − x‖2 for all y ∈ B(x, η).

The set ∂P f (x) of all such proximal subgradients is called the proximal subdifferential
of f at x . If f is not finite at x ∈ U , one sets ∂P f (x) := ∅.

Before definingClarke normal cone andClarke subdifferential,wehave to introduce
the concept of sequential limit for multimappings. The sequential limit superior (or
sequential outer limit) of a multimappingM : X ⇒ Y between two topological spaces
X and Y relative to a subset X0 ⊂ X at x ∈ cl X0 is defined as the set

seq Lim sup
X0�x→x

M(x) := {y ∈ Y : ∃X0 � xn → x, yn → y, yn ∈ M(xn) ∀n ∈ N} .

In other words, for any y ∈ Y , one has y ∈ seq Lim sup
X0�x→x

M(x) if and only if there exist

a sequence (xn)n∈N of X0 converging to x and a sequence (yn)n∈N of Y converging
to y with yn ∈ M(xn) for all n ∈ N.

With the above concept at hand, one defines the Clarke normal cone of S at x by

NC (S; x) := cow( seq Lim sup
S�u→x

N P (S; u)).

Here and below, cow stands for the weakly closed convex hull. It is readily seen that
this set is a closed convex cone containing 0 which satisfies NC (S; x) = ∅ for any
x ∈ H \ S and

N P (S; x) ⊂ NC (S; x) for all x ∈ H.
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If S is a convex set, it is known (and not difficult to check) that

N P (S; x) = NC (S; x) = {ζ ∈ H : 〈ζ, a − x〉 ≤ 0,∀a ∈ S} for all x ∈ H.

(2.2)
Similarly, if f is Lipschitz continuous near x ∈ U , one defines the Clarke subdiffer-
ential of f at x ∈ U with f (x) ∈ R as the set

∂C f (x) := cow( seq Lim sup
u→x

∂P f (u)).

For any x ∈ U with | f (x)| = +∞, one can see that ∂C f (x) = ∅, so the following
inclusion holds true

∂P f (x) ⊂ ∂C f (x) for all x ∈ H.

For any real γ ≥ 0 such that f is γ -Lipschitz near x ∈ U , it is well-known that
∂C f (x) ⊂ γB. It is worth pointing out that the following relations hold true for all
x ∈ S:

∂PdS(x) = N P (S; x) ∩ B and ∂CdS(x) ⊂ NC (S; x) ∩ B. (2.3)

For more details on those concepts, we refer to the books [12,23,32].

2.2 Uniformly Prox-Regular Sets

The concept of uniformly prox-regular sets [31] in the Hilbert setting is fundamental
in the paper. In this subsection, r is an extended real of ]0,+∞] and Ur (S) denotes
the r -open enlargement of S, that is

Ur (S) := {x ∈ H : dS(x) < r}.

Note that we will use the classical convention 1
r := 0 whenever r = +∞.

We start with the definition of uniformly prox-regular sets.

Definition 2.1 Let S be a nonempty closed subset of H. One says that S is r -prox-
regular whenever, for all x ∈ S, for all ζ ∈ N P (S; x) (or NC (S; x)) with ‖ζ‖ ≤ 1
and for all t ∈]0, r [, one has x ∈ ProjS(x + tζ ).

The following theorem provides fundamental facts about prox-regular sets. For
more details, we refer for instance to the survey of Colombo and Thibault [13].

Theorem 2.1 Let S be a nonempty closed subset ofH. Consider the following asser-
tions.

(a) The set S is r-prox-regular.
(b) For all x1, x2 ∈ S, for all ζ ∈ N P (S; x1) (or NC (S; x1)), one has

〈ζ, x2 − x1〉 ≤ 1

2r
‖ζ‖ ‖x1 − x2‖2 .

123



Appl Math Optim

(c) For all x1, x2 ∈ S, for all i ∈ {1, 2}, for all ζi ∈ N P (S; xi ) (or NC (S; xi )), one
has

〈ζ1 − ζ2, x1 − x2〉 ≥ −1

2

(‖ζ1‖
r

+ ‖ζ2‖
r

)

‖x1 − x2‖2 .

(d) For any x ∈ S, one has

N P (S; x) = NC (S; x) and ∂PdS(x) = ∂CdS(x).

(e) For any x ∈ Ur (S), ProjS(x) is a singleton;
( f ) The mapping PS : Ur (S) → S defined by

PS(x) := projS(x) for all x ∈ Ur (S)

is locally Lipschitz on Ur (S).

Then, the assertions (a), (b) and (c) are pairwise equivalent, each one implies (d),
(e) and ( f ).

As in [2], according to (d) of Theorem 2.1, we put

N (S; x) := N P (S; x) = NC (S; x) for all x ∈ S,

whenever S is a uniform prox-regular set of the real Hilbert spaceH.

The next result deals with nearest points of prox-regular sets. We refer to [2] for
the proof.

Proposition 2.1 Let S be an r-prox-regular set of H and let x, x ′ ∈ H. If x − x ′ ∈
N (S; x ′) and

∥
∥x − x ′∥∥ ≤ r (resp.,

∥
∥x − x ′∥∥ < r) then x ′ ∈ ProjS(x) (resp., {x ′} =

ProjS(x)).

2.3 Scalar Upper Semicontinuity

For any nonempty subset S of the real Hilbert space H, its support function σ(·, S) :
H → R is defined by

σ(ζ, S) := sup
x∈S

〈ζ, x〉 for all ζ ∈ H.

A classical consequence of Hahn–Banach separation theorem is that for any two
nonempty closed convex subsets S1, S2 of H, one has

S1 ⊂ S2 ⇔ σ(·, S1) ≤ σ(·, S2). (2.4)

A multimapping F : X ⇒ H from a topological space X to the real Hilbert space
H is said to be scalarly upper semicontinuous whenever, for any ξ ∈ H, the extended
real-valued function σ(ξ, F(·)) : X → R is upper semicontinuous.
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Adaptating the proof of [2, Proposition 3.2], it is not difficult to show the following
result.

Proposition 2.2 Let C : I × H ⇒ H be a multimapping satisfying:

(i) there exists an extended real r ∈]0,+∞] such that for all (t, x) ∈ I ×H, C(t, x)
is r-prox-regular;

(ii) there exist a positive measure μ on I and a real L > 0 such that for all s1, s2 ∈ I
with s1 ≤ s2, for all x1, x2 ∈ H, for all u ∈ H,

d(u,C(s1, x1)) − d(u,C(s2, x2)) ≤ L ‖x1 − x2‖ + μ(]s1, s2]).

Let (tn)n∈N be a sequence of I converging to some t ∈ I with tn ≥ t for all n ∈ N,
(vn)n∈N be a sequence of H converging to v ∈ H and (xn)n∈N be a sequence of
H converging to some x ∈ C(t, v) with xn ∈ C(tn, vn) for all n ∈ N.

If there exists N ∈ N with μ(]t, tN ]) < +∞, then for any z ∈ H, one has

lim sup
n→+∞

σ(z, ∂PdC(tn ,vn)(xn)) ≤ σ(z, ∂PdC(t,v)(x)).

2.4 Vector Measures and BV Mappings

This section is devoted to recall some preliminaries about vector measure theory. For
more details, one can see [15].

Let us start with mappings of bounded variation. Consider a mapping u : I →
H. A subdivision σ of I = [T0, T ] being a finite sequence (t0, . . . , tk) ∈ R

k+1

with k ∈ N such that T0 = t0 < . . . < tk = T . One associates with σ , the real

Sσ :=
k∑

i=1
‖u(ti ) − u(ti−1)‖ . One calls the variation of u on I , the extended real

V (u; I ) := sup
σ∈S

Sσ , where S is the set of all subdivisions of I . The mapping u is said

to be with bounded variation on I provided V (u; I ) < +∞. It is known (see, e.g.,
[15]) that a mapping u has one-sided limit whenever it is of bounded variation; in such
a case one sets

u(τ−) := lim
t↑τ

u(t).

Before introducing the concept of differential measure, we give the following result
which states that a sequence of uniformly bounded in norm and in variation mappings
has a pointwise weakly convergent subsequence. We refer to the book of Monteiro
Marques [22] for the proof.

Theorem 2.2 Let (gn)n∈N be a sequence of mappings from I toH. Assume that:

(a) there exists a real M > 0 such that

‖gn(t)‖ ≤ M for all n ∈ N, t ∈ I ;
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(b) there exists a real L > 0 such that

V (gn; I ) ≤ L for all n ∈ N.

Then, there exist a mapping g : I → H with bounded variation on I and a
subsequence (gs(n))n∈N of (gn)n∈N such that

gs(n)(t)
w→ g(t) for all t ∈ I.

Let u(·) : I → H be a mapping of bounded variation on I . Then, there exists a
vector measure du on I , called differential measure (or Stieltjes measure) with values
in H associated with u(·) (see, e.g., [15]). If, in addition, u(·) is assumed to be right
continuous on I , its differential measure du satisfies

u(t) = u(s) +
∫

]s,t]
du for all s, t ∈ I with s ≤ t.

Let ν be a positive Radon measure on I , u(·) : I → H a mapping and ũ(·) ∈
L1(I,H, ν). If the following equality

u(t) = u(T0) +
∫

]T0,t]
ũ dν,

holds true for all t ∈ I , then the mapping u(·) is right continuous with bounded
variation on I and

du = ũdν.

In such a case, one says that ũ(·) is a density of the measure du relative to ν. Then,
putting I (t, r) := I ∩ [t − r, t + r ], I−(t, r) := [t − r, t] ∩ I and I+(t, r) :=
[t, t + r ] ∩ I for each real r > 0, by Moreau and Valadier [30] for ν-almost every
t ∈ I , the strong limits below exist in H and

ũ(t) = du

dν
(t) := lim

r↓0
du(I (t, r))

ν(I (t, r))
= lim

r↓0
du(I+(t, r))

ν(I+(t, r))
= lim

r↓0
du(I−(t, r))

ν(I−(t, r))
.

(2.5)
Besides the differential measure, the concept of solutions above will involve the

notion of derivative of a measure relative to another one. Let ν and ν̂ be two positive
Radon measures on I . We recall that the limit

d ν̂

dν
(t) := lim

r↓0
ν̂(I (t, r))

ν(I (t, r))
(2.6)

(with the convention 0
0 = 0) exists for ν-almost every t ∈ I . The nonnegative (class of)

function d ν̂
dν

(·) is called derivative of themeasure ν̂ with respect to ν. It isworth pointing

out that d ν̂
dν

(·) is a Borel function. Further, the measure ν̂ is absolutely continuous with
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respect to ν if and only if d ν̂
dν

(·) is a density relative to ν, i.e., if and only if the

equality ν = d ν̂
dν

(·)ν holds. Under such an absolute continuity assumption, a mapping

u(·) : I → H is ν̂-integrable on I if and only if the mapping u(·) d ν̂
dν

(·) is ν-integrable
on I . In such a case, one has

∫

I
u(t)d ν̂(t) =

∫

I
u(t)

d ν̂

dν
(t)dν(t).

When the two Radon measures ν and ν̂ are each one absolutely continuous with
respect to the other one, we will say that they are absolutely continuously equivalent.

On the other hand, according to (2.6),

dλ

dν
(t) = λ({t})

ν({t}) = 0 for all t ∈ I with ν({t}) > 0,

so for ν-almost every t ∈ I ,
dλ

dν
(t)ν({t}) = 0. (2.7)

3 Concept of Solutions

Our concept of solutions follows thework [18] for a first order discontinuous perturbed
sweeping process. For the absolutely continuous case in the second order framework,
one can see [11].

Definition 3.1 LetC : I ×H ⇒ H be a uniformly prox-regular valued multimapping
and F : I ×H×H ⇒ H be a multimapping. Assume that there exist a positive Radon
measure μ on I and a real L > 0 such that for all x1, x2 ∈ H, for all u ∈ H, for all
t1, t2 ∈ I ,

|d(u,C(t1, x1)) − d(u,C(t2, x2))| ≤ μ(]t1, t2]) + L ‖x1 − x2‖ . (3.1)

Given a ∈ H and b ∈ C(T0, a), a mapping u : [T0, T ] → H is a solution of the
following discontinuous second order sweeping process (associated to μ)

(P)

{
−du̇(t) ∈ N (C(t, u(t)); u̇(t)) + F(t, u(t), u̇(t))

u(T0) = a, u̇(T0) = b

whenever:

(a) u is absolutely continuous on [T0, T ] and u(T0) = a;
(b) there exists a mapping v : [T0, T ] → H right continuous with bounded variation

such that v(T0) = b, v(t) ∈ C(t, u(t)) for all t ∈ [T0, T ] and v(t) = u̇(t)
λ-a.e.t ∈ [T0, T ];
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(c) there exists a positive Radon measure ν on I absolutely continuously equivalent
to μ+λ with respect to which dv admits a density in L1(I,H, ν) and there exists
a mapping z : [T0, T ] → H λ-integrable on [T0, T ] such that

z(t) ∈ F(t, u(t), v(t)) λ-a.e. t ∈ I

and

dv

dν
(t) + z(t)

dλ

dν
(t) ∈ −N (C(t, u(t)); v(t)) ν-a.e. t ∈ I.

Sometimes, it will be convenient for us to say that the mapping v(·) is a derivative
of u(·) for (P).

As in [18], the concept of solution does not depend on the Radon measure ν abso-
lutely continuously equivalent to μ + λ given by (c). Indeed, let u(·) : I → H be a
solution of (P). Let v (resp., ν and z) given by (b) (resp., (c)) above. In particular, we
have

dv

dν
(t) + z(t)

dλ

dν
(t) ∈ −N (C(t, u(t)); v(t)) ν-a.e. t ∈ I. (3.2)

Fix any other Radon measure ν̂ absolutely continuously equivalent to λ + μ. Then,
the measures ν and ν̂ are absolutely continuously equivalent. Consequently, dν

d ν̂
(·) and

d ν̂
dν

(·) exist as densities and for dv
d ν̂

(·) and the derivative dλ
d ν̂

(·) the following equalities
hold

dv

d ν̂
(t) = dv

dν
(t)

dν

d ν̂
(t),

dλ

d ν̂
(t) = dλ

dν
(t)

dν

d ν̂
(t) ν̂-a.e. t ∈ I.

According to (3.2), this yields (keeping in mind that N (·; ·) is a cone)

dv

d ν̂
(t) + z(t)

dλ

d ν̂
(t) ∈ −N (C(t, u(t)); v(t)) ν̂-a.e. t ∈ I.

It is of great interest to consider the case where F and C are independent of the
state.

Proposition 3.1 Assume that there exist C̃ : I ⇒ H and F̃ : I × H ⇒ H such that

C(t, u) = C̃(t) and F(t, u, v) = F̃(t, v),

for all t ∈ I , for all (u, v) ∈ H2. If u(·) : I → H is a solution of the sweeping
process (P) above, then there exists a mapping v : I → H satisfying the first order
discontinuous sweeping process associated to μ

{
−dv(t) ∈ N (C̃(t); v(t)) + F̃(t, v(t))

v(T0) = b.
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in the sense of [18]. Moreover, one has

u(t) = a +
∫

[T0,T ]
v(s)dλ(s) for all t ∈ I.

Proof According to (3.1), we have

∣
∣
∣dC̃(t1)

(y) − dC̃(t2)
(y)

∣
∣
∣ ≤ μ(]t1, t2]),

for all y ∈ H, for all t1, t2 ∈ I with t1 < t2. Fix u : I → H a solution of (P). Let v, z
and ν given by Definition 3.1. It is readily seen that

z(t) ∈ F̃(t, v(t)) λ-a.e. t ∈ I

v(t) ∈ C̃(t) for all t ∈ I

and

dv

dν
(t) + z(t)

dλ

dν
(t) ∈ −N (C̃(t); v(t)) ν-a.e. t ∈ I.

Since v(T0) = b, the mapping v obviously satisfies

{
−dv(t) ∈ N (C̃(t); v(t)) + F̃(t, v(t))

v(T0) = b.

On the other hand, the equality v = u̇ λ-a.e. gives

u(t) = a +
∫

[T0,t]
u̇(s)dλ(s) = a +

∫

[T0,t]
v(s)dλ(s).

The proof is then complete. ��
Now, following [2,34], we focus on the particular case where the measure μ is

absolutely continuous relative to λ.

Proposition 3.2 Let C : I ⇒ H be a uniformly prox-regular valued multimapping
and F : I ×H×H ⇒ H be a multimapping. Assume that there exist a nondecreasing
absolutely continuous function ζ : I → R and a real L > 0 such that for all
u, x, y ∈ H, for all s, t ∈ I with s ≤ t ,

|d(u,C(t, x)) − d(u,C(s, y))| ≤ ζ(t) − ζ(s) + L ‖x − y‖ .

Let a ∈ H, b ∈ C(T0, a) and μ be the Radon measure on I such that μ(]s, t]) =
ζ(t) − ζ(s) for all s, t ∈ I with s < t .
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If a mapping u : I → H is a solution of the discontinuous second order sweeping
process (associated to μ)

(P)

{
−du̇(t) ∈ N (C(t, u(t)); u̇(t)) + F(t, u(t), u̇(t))

u(T0) = a, u̇(T0) = b,

then u is a solution of the classical second order sweeping process

{
−ü(t) ∈ N (C(t, u(t)); u̇(t)) + F(t, u(t), u̇(t))

u(T0) = a, u̇(T0) = b

that is,

(a) u is absolutely continuous on I and u(T0) = a;
(b) there exists amapping v : I → H absolutely continuous on I such that v(T0) = b,

v(t) ∈ C(t, u(t)) for all t ∈ I and v(t) = u̇(t) λ-a.e. t ∈ I ;
(c) there exists a mapping z : I → H λ-integrable on I such that

z(t) ∈ F(t, u(t), v(t)) λ-a.e. t ∈ I

and

v̇(t) + z(t) ∈ −N (C(t, u(t)); v(t)) λ-a.e. t ∈ I.

Proof Let u : I → H be a mapping satisfying (P). Set ν = μ + λ which is a
positive Radon measure on I , absolutely continuously equivalent to λ. Let v : I → H
be a mapping right continuous with bounded variation such that v(T0) = b, v(t) ∈
C(t, u(t)) for all t ∈ I , v(t) = u̇(t) λ-a.e. t ∈ I and dv has a density g ∈ L1(I,H, ν)
relative to ν. Denotes by z : I → H a mapping λ-integrable on I such that

z(t) ∈ F(t, u(t), v(t)) λ-a.e. t ∈ I

and
dv

dν
(t) + z(t)

dλ

dν
(t) ∈ −N (C(t, u(t)); v(t)) ν-a.e. t ∈ I. (3.3)

According to the equality

u(t) = a +
∫

]T0,t]
u̇(s)dλ(s) for all t ∈ I,

we know that u̇(t) = du
dλ

(t) λ-a.e. t ∈ I . On the other hand, thanks to the definition of
g, we have

v(t) = b +
∫

]T0,t]
g(s)dν(s) for all t ∈ I
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and g(t) = dv
dν

(t) ν-a.e. t ∈ I . Since g(·) is ν-integrable, g(·) dν
dλ

(·) is λ-integrable and

∫

]T0,t]
g(s)

dν

dλ
(s)dλ(s) =

∫

]T0,t]
g(s)dν(s) for all t ∈ I,

thus v(·) is absolutely continuous and v̇(t) = g(t) dν
dλ

(t) λ-a.e. t ∈ I . By (3.3), we get

dν

dλ
(t)

dv

dν
(t) + z(t)

dν

dλ
(t)

dλ

dν
(t) ∈ −N (C(t, u(t)); v(t)) ν-a.e. t ∈ I.

It follows that (since λ and ν are absolutely continuously equivalent)

−v̇(t) ∈ N (C(t, u(t)); v(t)) + z(t) ν-a.e. t ∈ I.

Thanks to the fact that λ is absolutely continuous with respect to ν, the latter inclusion
entails that

−v̇(t) ∈ N (C(t, u(t)); v(t)) + z(t) λ-a.e. t ∈ I.

As a consequence, the mapping u : I → H is a solution of the classical second order
sweeping process. ��

4 Existence Result

As mentioned above, the existence of solutions for problem (P) in the absolute con-
tinuous framework, that is

{
−ü(t) ∈ N (C(t, u(t)); u̇(t)) + F(t, u(t), u̇(t))

u(T0) = a, u̇(T0) = b

was investigated in [11] for a prox-regular moving set C(·, ·) of a separable Hilbert
space, controlled in a Lipschitzian way, i.e., for some L > 0, the following inequality
holds

|d(u,C(t1, x1)) − d(u,C(t2, x2))| ≤ |t1 − t2| + L ‖x1 − x2‖ . (4.1)

Such a differential inclusion is also considered in [1] for a convex moving set but with
a finer control given by

(t, x, s, y) ≤ L(|t − s| + ‖x − y‖),

for some L > 0 and a suitable multimapping  depending on the truncated Pompeiu-
Hausdorff excess of the form (with M > 0)

exc(C(t, x) ∩ MB,C(s, y)) := sup
u∈C(t,x)∩MB

d(u,C(s, y)).
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One of the novelty provided in the present paper is to allow the velocity u̇(t) of a
trajectory u(·) of (P) to jump since it is only required to be of bounded variation (see
Sect. 3) and no longer (absolutely) continuous. At a discontinuity point t , we will see
(under the prox-regularity of the moving setC(·, ·)) that the behavior of u̇(t) is known
via the formula

u̇(t) = projC(t,u(t))(u̇(t−)).

It is worth noting that such an equality can be seen as an extension of a previous result
due to Moreau [27] (see also [2]). The classical Arzela-Ascoli theorem, which is a
cornerstone of convergence arguments for [1,11], is then no longer applicable in our
context and will be replaced by Theorem 2.2. As said above, our moving set will be
prox-regular in any Hilbert space, controlled in a Lipschitz way in state but only in a
bounded variation way in time, more precisely

|d(u,C(t1, x1)) − d(u,C(t2, x2))| ≤ μ(]t1, t2]) + L ‖x1 − x2‖ , (4.2)

for a given real L > 0 and a positive Radon measure on I = [T0, T ]. It is clear that
(4.1) is a particular case of (4.2) with μ := λ. Further, one of the interest of such a
general assumption can be seen through Proposition 3.1, where we link the existence
of solutions for (P) to a discontinuous perturbed first order sweeping process which
is known to play an important role in many applications of mathematics (see, e.g.,
[18,22] and the references therein).

Concerning the perturbation F(·, ·) both mentionned papers [1,11] assume the
convexity of its values and a growth condition

F(t, u, v) ⊂ α(1 + ‖u‖ + ‖v‖)B,

for someα > 0. Leading by the study of state-dependent evolution variational inequal-
ities (see, Sect. 5) we keep the convexity assumption on values of F(·, ·) but we weak
the latter inclusion through a mapping α(·) ∈ L1(I,R+, λ) and merely assume that

F(t, u, v) ⊂ α(t)(1 + ‖u‖ + ‖v‖)B.

Besides the difference in convergence arguments with papers [1,11], an adaptation of
their algorithm scheme is also necessary to take into account this new time dependence.

Let us state and prove the following existence result.

Theorem 4.1 Let C : I ×H ⇒ H be a r-prox-regular valued multimapping for some
extended real r ∈]0,+∞], F : I ×H×H ⇒ H be a scalarly upper-semicontinuous
multimapping with nonempty closed convex values. Assume that:

(i) there exist μ a positive Radon measure of I and a real L > 0 such that for all
u ∈ H, for all (x1, x2) ∈ H2, for all t1, t2 ∈ I with t1 < t2,

|d(u,C(t1, x1)) − d(u,C(t2, x2))| ≤ L ‖x1 − x2‖ + μ(]t1, t2]); (4.3)
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(ii) for each real γ > 0, the set C(I × γB) is relatively ball-compact;
(iii) there exists a function α : I → R+ with α ∈ L1(I,R, λ) such that for all t ∈ I ,

for all u ∈ H, for all v ∈ ⋃

(τ,x)∈I×H
C(τ, x),

F(t, u, v) ⊂ α(t)(1 + ‖u‖ + ‖v‖)B. (4.4)

Let a ∈ H and b ∈ C(T0, a). Then, there exists a mapping u : I → H satisfying

(P)

{
−du̇(t) ∈ N (C(t, u(t)); u̇(t)) + F(t, u(t), u̇(t))

u(T0) = a, u̇(T0) = b

with a derivative v : I → H for (P) such that

∥
∥v(t) − v(t−)

∥
∥ ≤ 2μ({t}) for all t ∈]T0, T ].

If in addition sup
s∈]T0,T ]

μ({s}) < r
2 , then one has

v(t) = projC(t,u(t))(v(t−)) for all t ∈]T0, T ]. (4.5)

Proof Set
σ := 1 − L(T − T0) − 2A(T − T0 + 1), (4.6)

with A := ∫

[T0,T ](α(s) + 1)dλ(s).
Case 1 Assume that σ > 0.
Let us set

δ := 1

σ

( ‖b‖ + μ(]T0, T ]) + 2A(1 + ‖a‖)) (4.7)

and
β := 1 + ‖a‖ + δ(1 + T − T0). (4.8)

Consider on I the positive Radon measure

ν := μ + (δL + β(α(·) + 1))λ. (4.9)

Let (εn)n∈N be a sequence of positive real numbers with εn ↓ 0. For each n ∈ N,
choose, as in Moreau [27], 0 = Mn

0 < Mn
1 < . . . < Mn

qn = M := ν(]T0, T ]) (with
qn ∈ N) such that

(a) qn < qn+1;
(b) for all j ∈ {0, . . . , qn − 1}, Mn

j+1 − Mn
j ≤ εn ;

(c)
{
Mn

0 , . . . , Mn
qn

}
⊂

{
Mn+1

0 , . . . , Mn+1
qn+1

}
.

For every n ∈ N, set Mn
1+qn

:= M + εn . For each n ∈ N, consider the partition of I
associated with the subsets ( j ∈ {0, . . . , qn})

Jnj := {t ∈ [T0, T ] : Mn
j ≤ ν(]T0, t]) < Mn

j+1}
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and note that (Jmj )0≤ j≤qm is a refinement of (Jnj )0≤ j≤qn for all m, n ∈ N with m ≥ n.
Since ν(]T0, ·]) is nondecreasing and right continuous on I , it is easy to see that, for
each n ∈ N, j ∈ {0, . . . , qn − 1}, the set Jnj is either empty or an interval of the form
[a, b[ with a < b. Furthermore, we have Jnqn = {T } for all n ∈ N. This produces for
each n ∈ N, an integer p(n) ∈ N and a finite sequence

T0 = tn0 < . . . < tnp(n) = T

such that for each i ∈ {0, . . . , p(n) − 1}, there is some jn(i) ∈ {0, . . . , qn − 1}
satisfying Jnjn(i) = [tni , tni+1[. Observe that (p(n))n∈N is an increasing sequence. Fix
for a moment any n ∈ N. For all i ∈ {0, . . . , p(n) − 1}, put

ηni := tni+1 − tni and αn
i :=

∫

[tni ,tni+1]
(α(s) + 1)dλ(s).

Put also

�n := max
0≤i≤p(n)−1

(tni+1 − tni ).

For every i ∈ {0, . . . , p(n) − 1} and every t ∈ [tni , tni+1[, one has

ν(]tni , t]) = ν(]T0, t]) − ν(]T0, tni ]) ≤ Mn
jn(i)+1 − Mn

jn(i)
≤ εn .

Keeping in mind λ ≤ ν, the inequality above gives

ηni = tni+1 − tni ≤ ν(]tni , tni+1[) ≤ εn for all i ∈ {0, . . . , p(n) − 1}. (4.10)

Then, one observes that

lim
k→+∞ �k = 0.

Now, if p(n) = 1, we choose sn0 ∈ [T0, T ] such that

α(sn0 ) ≤ inf
s∈[T0,T ] α(s) + 1

and if p(n) > 1, we choose for each i ∈ {0, . . . , p(n) − 2}, sni ∈ [tni , tni+1[ satisfying

α(sni ) ≤ inf
s∈[tni ,tni+1[

α(s) + 1,

and some snp(n)−1 ∈ [tnp(n)−1, t
n
p(n)] such that

α(snp(n)−1) ≤ inf
s∈[tnp(n)−1,t

n
p(n)

]
α(s) + 1.
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Define also κn : I → I by

{
sni if t ∈ [tni , tni+1[ with i ∈ {0, . . . , p(n) − 1}
snp(n)−1 if t = T .

Set un0 := a ∈ C(T0, b), vn0 := b and take zn0 ∈ F(κn(tn0 ), un0, v
n
0 ) �= ∅. With

un1 := un0 + (tn1 − tn0 )vn0 = un0 + ηn0v
n
0

and according to the ball-compacity ofC(tn1 , un1) (thanks to (i i) and the fact thatC(·, ·)
is closed-valued), we can choose

vn1 ∈ ProjC(tn1 ,un1)
(vn0 − ηn0 z

n
0) �= ∅.

By induction, we construct (zk)0≤k≤p(n)−1, (vk)0≤k≤p(n) and (uk)0≤k≤p(n) satisfying

znk ∈ F(κn(t
n
k ), unk , v

n
k ) for all k ∈ {0, . . . , p(n) − 1}, (4.11)

unk = unk−1 + ηnk−1v
n
k−1 for all k ∈ {1, . . . , p(n)} (4.12)

and
vnk ∈ ProjC(tnk ,unk )

(vnk−1 − ηnk−1z
n
k−1) for all k ∈ {1, . . . , p(n)}. (4.13)

Fix for a moment any i ∈ {1, . . . , p(n)}. Using (4.12), we get
∥
∥uni

∥
∥ ≤ ∥

∥uni−1

∥
∥ + ηni−1

∥
∥vni−1

∥
∥

and then it is not difficult to see that

∥
∥uni

∥
∥ ≤ ∥

∥un0
∥
∥ +

i−1∑

k=0

ηnk

∥
∥vnk

∥
∥

≤ ∥
∥un0

∥
∥ + max

0≤ j≤p(n)−1

∥
∥
∥vnj

∥
∥
∥

i−1∑

k=0

ηnk

≤ ∥
∥un0

∥
∥ + (T − T0) max

0≤ j≤p(n)−1

∥
∥
∥vnj

∥
∥
∥ . (4.14)

On the other hand, from (4.13), (4.3) and (4.12), we have

∥
∥vni − vni−1 + ηni−1z

n
i−1

∥
∥ = dC(tni ,uni )

(vni−1 − ηni−1z
n
i−1)

≤ dC(tni ,uni )
(vni−1) + ∥

∥vni−1 − vni−1 + ηni−1z
n
i−1

∥
∥

≤ dC(tni ,uni )
(vni−1) − dC(tni−1,u

n
i−1)

(vni−1) + ηni−1

∥
∥zni−1

∥
∥

≤ μ(]tni−1, t
n
i ]) + L

∥
∥uni−1 − uni

∥
∥ + ηni−1

∥
∥zni−1

∥
∥

≤ μ(]tni−1, t
n
i ]) + Lηni−1

∥
∥vni−1

∥
∥ + ηni−1

∥
∥zni−1

∥
∥ .

(4.15)
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It follows that

∥
∥vni

∥
∥ ≤ ∥

∥vni−1

∥
∥ + μ(]tni−1, t

n
i ]) + Lηni−1

∥
∥vni−1

∥
∥ + 2ηni−1

∥
∥zni−1

∥
∥

and then we deduce

∥
∥vni

∥
∥ ≤ ∥

∥vn0

∥
∥ +

i−1∑

k=0

[μ(]tnk , tnk+1]) + ηnk (L
∥
∥vnk

∥
∥ + 2

∥
∥znk

∥
∥)]

≤ ∥
∥vn0

∥
∥ + μ(]T0, T ]) + L(T − T0) max

0≤ j≤p(n)−1

∥
∥
∥vnj

∥
∥
∥ + 2

i−1∑

k=0

ηnk

∥
∥znk

∥
∥ .

(4.16)

From (4.4), (4.11), the definition of κn , we obtain for all k ∈ {0, . . . , p(n) − 1},

ηnk

∥
∥znk

∥
∥ =

∫

[tnk ,tnk+1]
∥
∥znk

∥
∥ dλ(s)

≤
∫

[tnk ,tnk+1]
α(κn(t

n
k ))(1 + ∥

∥unk
∥
∥ + ∥

∥vnk

∥
∥)dλ(s)

≤ (1 + ∥
∥unk

∥
∥ + ∥

∥vnk

∥
∥)αn

k

≤ (1 + max
0≤ j≤p(n)−1

∥
∥
∥unj

∥
∥
∥ + max

0≤ j≤p(n)−1

∥
∥
∥vnj

∥
∥
∥)αn

k . (4.17)

Combining (4.16), (4.17) and (4.14), it results that for all k ∈ {0, . . . , p(n)},
∥
∥vnk

∥
∥ ≤ ∥

∥vn0

∥
∥ + μ(]T0, T ]) + max

0≤ j≤p(n)−1

∥
∥
∥vnj

∥
∥
∥ [L(T − T0) + 2A(T − T0 + 1)]

+2A(1 + ∥
∥un0

∥
∥).

According to the definition of σ in (4.6), the latter inequality entails

σ max
0≤ j≤p(n)

∥
∥
∥vnj

∥
∥
∥ ≤ ∥

∥vn0

∥
∥ + μ(]T0, T ]) + 2A(1 + ∥

∥un0
∥
∥).

From the definition of δ in (4.7) and the equalities un0 = a and vn0 = b, we get

max
0≤ j≤p(n)

∥
∥
∥vnj

∥
∥
∥ ≤ δ. (4.18)

Keeping in mind (4.14), the latter inequality gives

max
0≤ j≤p(n)

∥
∥
∥unj

∥
∥
∥ ≤ ‖a‖ + (T − T0)δ. (4.19)
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Thanks to (4.17), (4.18), (4.19) and (4.8), we have

ηnk

∥
∥znk

∥
∥ ≤ (1 + ‖a‖ + δ(1 + T − T0))α

n
k = βαn

k (4.20)

for all k ∈ {0, . . . , p(n) − 1}. Coming back to (4.15) and using (4.18), (4.20) and the
definition of ν in (4.9), we have for all k ∈ {1, . . . , p(n)},

∥
∥vnk − vnk−1 + ηnk−1z

n
k−1

∥
∥ ≤ μ(]tnk−1, t

n
k ]) + Lηnk−1

∥
∥vnk−1

∥
∥ + ηnk−1

∥
∥znk−1

∥
∥

≤ μ(]tnk−1, t
n
k ]) + ηnk−1δL + βαn

k−1

≤ ν(]tnk−1, t
n
k ]). (4.21)

On the other hand, using (4.11), the assumption (i i i), (4.19) and (4.18), we obtain

znk ∈ F(κn(t
n
k ), unk , v

n
k ) ⊂ α(κn(t

n
k ))(1 + ∥

∥unk
∥
∥ + ∥

∥vnk

∥
∥)B

⊂ α(κn(t
n
k ))(1 + ‖a‖ + (1 + T − T0)δ)B

= α(κn(t
n
k ))βB, (4.22)

for all k ∈ {0, . . . , p(n) − 1}.
Step 1 Construction of the sequences (un)n∈N, (vn)n∈N and (zn)n∈N.
Fix any n ∈ N. Define the mappings un, vn : I → H by putting, for all i ∈

{0, . . . , p(n) − 1}, for all t ∈ [tni , tni+1],

un(t) = uni + (t − tni )vni

and

vn(t) = vni + ν(]tni , t])
ν(]tni , tni+1])

(vni+1 − vni + ηni z
n
i ) − (t − tni )zni .

Note thatun, vn(·) arewell-defined on I and that vn(·) is right continuouswith bounded
variation on I . By definition of vn(·), we have for all t ∈ I ,

vn(t) = vn0 +
∫

]T0,t]
�n(s)dν(s) −

∫

]T0,t]
zn(s)dλ(s) (4.23)

where for all t ∈ I ,

�n(t) =
p(n)−1∑

i=0

vni+1 − vni + ηni z
n
i

ν(]tni , tni+1])
1]tni ,tni+1](t)

and

zn(t) =
{
zni if t ∈ [tni , tni+1[ for some i ∈ {0, . . . , p(n) − 1}
znp(n)−1 if t = T .
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Since the measure λ is absolutely continuous with respect to ν, it has dλ
dν

(·) as a density
in L∞(I, [0,+∞[, ν) relative to ν and then by (4.23), for all t ∈ I ,

vn(t) = vn0 +
∫

]T0,t]
(
�n(s) − zn(s)

dλ

dν
(s)

)
dν(s).

The latter equality says that dvn has �n(·) − zn(·) dλ
dν

(·) as a density in L1(I,H, ν)

relative to ν. So, the derivative dvn
dν

(·) is a density of dvn relative to ν and

dvn

dν
(t) + zn(t)

dλ

dν
(t) = �n(t) for ν-a.e. t ∈ I. (4.24)

Furthermore, thanks to (4.24), the definition of �n(·) and (4.21), we have

∥
∥
∥
∥
dvn

dν
(t) + zn(t)

dλ

dν
(t)

∥
∥
∥
∥ ≤ 1 for ν-a.e. t ∈ I. (4.25)

Since the measure β(1 + α(·))λ is absolutely continuous with respect to ν, it has
d(β(1+α(·))λ)

dν
as a density and this yields that

0 ≤ β(1 + α(t))
dλ

dν
(t) = d(β(1 + α(·))λ)

dν
(t) ≤ 1. (4.26)

From (4.22), the definitions of κn and of the sequence (sni )0≤i≤p(n)−1, it is not difficult
to check that for all t ∈ I ,

‖zn(t)‖ ≤ β(1 + α(t)). (4.27)

Combining (4.25), (4.27) and (4.26), we get for ν-almost every t ∈ I ,

∥
∥
∥
∥
dvn

dν
(t)

∥
∥
∥
∥ ≤ 1 +

∥
∥
∥
∥zn(t)

dλ

dν
(t)

∥
∥
∥
∥ ≤ 1 + β(1 + α(t))

dλ

dν
(t) ≤ 2. (4.28)

From (4.28) and the fact that dvn
dν

is a density of dvn relative to ν, we deduce

‖vn(τ2) − vn(τ1)‖ ≤ 2ν(]τ1, τ2]), (4.29)

for all τ1, τ2 ∈ I with τ1 ≤ τ2. It follows that for all t ∈ I ,

‖vn(t)‖ ≤ 2ν(]T0, t]) + ‖vn(T0)‖ ≤ 2ν(I ) + ‖b‖ . (4.30)

According to (2.1) and (4.13), we have for all i ∈ {0, . . . , p(n) − 1},

vni+1 − vni + ηni z
n
i

ν(]tni , tni+1])
∈ −N P (C(tni+1, u

n
i+1); vni+1). (4.31)
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Define the function θn : I → I where for all t ∈ I ,

θn(t) =
{
tni+1 if t ∈]tni , tni+1] for some i ∈ {0, . . . , p(n) − 1}
tn1 if t = T0.

By construction, it is obvious that

vn(θn(t)) ∈ C(θn(t), un(θn(t))) for all t ∈ I. (4.32)

Using (4.31), (4.24) and the definitions of θn(·) and �n(·), we obtain
dvn

dν
(t) + zn(t)

dλ

dν
(t) ∈ −N P (C(θn(t), un(θn(t))); vn(θn(t))) for ν-a.e. t ∈ I.

By (2.3), we know that (4.25) and the latter inclusion entail that

dvn

dν
(t) + zn(t)

dλ

dν
(t) ∈ −∂PdC(θn(t),un(θn(t)))(vn(θn(t))) for ν-a.e. t ∈ I. (4.33)

With δn : I → I the function defined for all t ∈ I by

δn(t) =
{
tni if t ∈ [tni , tni+1[ for some i ∈ {0, . . . , p(n) − 1}
tnp(n)−1 if t = T,

it is not difficult to check that

un(t) = a +
∫

[T0,t]
vn(δn(s))dλ(s) for all t ∈ I (4.34)

and
zn(t) ∈ F

(
κn(δn(t)), un(δn(t)), vn(δn(t))

)
for all t ∈ I. (4.35)

Step 2 Convergence of (un(·))n∈N and (vn(·))n∈N up to a subsequence.
For each n ∈ N, set gn(·) = vn(θn(·)) and note that [thanks to (4.21) and (4.20)]

V (gn; I ) =
p(n)−1∑

i=0

∥
∥vni+1 − vni

∥
∥

≤
p(n)−1∑

i=0

(ν(]tni , tni+1]) + ηni

∥
∥zni

∥
∥)

≤ ν(I ) + β

p(n)−1∑

i=0

αn
i

= ν(I ) + βA. (4.36)
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According to (4.30) and (4.36), we can apply Theorem 2.2. Doing so, we assume
without loss of generality that there is a mapping v : I → H with bounded variation
on I such that

gn(t)
w→ v(t) for all t ∈ I. (4.37)

Put ρ = 2ν(I ) + ‖b‖ and observe by (4.32) and (4.30) that

gn(t) ∈ C
(
θn(t), un(θn(t))

) ∩ ρB

⊂
(

⋃

k∈N
C

(
θk(t), uk(θk(t))

)
)

∩ ρB =: D(t),

for all n ∈ N, for all t ∈ I . From the definitions of un, θn (n ∈ N) and (4.19), it is
straightforward to check that

‖un(θn(t))‖ ≤ ‖a‖ + (T − T0)δ,

for all n ∈ N, all t ∈ I . On the other hand, from (4.10), we get

θn(t) → t for all t ∈ I. (4.38)

Note that the assumption (i i) says that
⋃

k∈N
C(τk, xk) is relatively ball-compact for each

bounded sequence (τk, xk)k∈N of [T0, T ]×H. Thus, we can apply the assumption (i i)
which entails that the set D(t) is relatively compact for each t ∈ I . Hence, the weakly
pointwise convergence in (4.37) holds with respect to the strong topology onH, i.e.,

gn(t) → v(t) for all t ∈ [T0, T ].

Thanks to (4.29) and (4.10), we have

‖vn(t) − gn(t)‖ ≤ 2ν(]t, θn(t)]) and ‖vn(t) − vn(δn(t))‖ ≤ 2ν(]δn(t), t]) ≤ 2εn,

for all t ∈ I , for all n ∈ N, so it follows (keeping in mind (4.38)) that

vn(t) → v(t) and vn(δn(t)) → v(t) for all t ∈ I.

Combining the convergence above with (4.29), we get

‖v(τ1) − v(τ2)‖ ≤ 2ν(]τ1, τ2]), (4.39)

for all τ1, τ2 ∈ I with τ1 ≤ τ2. Coming back to (4.34) and using Lebesgue dominated
convergence theorem, v ∈ L1(I,H, λ) and

un(t) = a +
∫

[T0,t]
vn(δn(s))dλ(s) → a +

∫

[T0,t]
v(s)dλ(s) =: u(t) for all t ∈ I.
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As a consequence, u is absolutely continuous on I and

u̇(t) = v(t) λ-a.e. t ∈ I.

On the other hand, according to (4.28), extracting a subsequence if necessary, we
may suppose that ( dvn

dν
(·))n∈N converges weakly in L2(I,H, ν) to some mapping

ϕ(·) ∈ L2(I,H, ν). So, for any t ∈ I ,

∫

]T0,t]
dvn

dν
(s)dν(s) →

∫

]T0,t]
ϕ(s)dν(s) weakly inH.

As vn(t) → v(t) for all t ∈ I , it results that

v(t) = b +
∫

]T0,t]
ϕ(s)dν(s) for all t ∈ I,

hence v(·) is right continuous with bounded variation on I and dv has ϕ(·) ∈
L2(I,H, ν) as a density relative to ν. As a result, ϕ(·) = dv

dν
(·) ν-a.e. and

dvn

dν
(·) → dv

dν
(·) weakly in L2(I,H, ν),

and this yields

dvn

dν
(·) → dv

dν
(·) weakly in L1(I,H, ν).

Thanks to the relation (4.39), we have

∥
∥v(t) − v(t−)

∥
∥ ≤ 2ν({t}) = 2μ({t}) for all t ∈ I. (4.40)

Step 3 Let us prove that u(·) is a solution of (P).
According to the definition of un(·) and the inequality (4.18), it is readily seen that

‖u̇n(t)‖ ≤ δ λ-a.e. t ∈ I.

Since θn(t) → t , the latter inequality entails that

un(θn(t)) − un(t) → 0,

so un(θn(t)) → u(t). Fix for a moment any t ∈ I , any n ∈ N. Using (4.32) and the
variation assumption on C(·, ·) in (4.3), we get

dC(t,u(t))(vn(θn(t))) = ∣
∣dC(t,u(t))(vn(θn(t))) − dC(θn(t),un(θn(t)))(vn(θn(t)))

∣
∣

≤ μ(]t, θn(t)]) + L ‖u(t) − un(θn(t))‖
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and this entails that

lim
k→+∞ dC(t,u(t))(vk(θk(t))) = dC(t,u(t))(v(t)) = 0.

Thanks to the closedness of C(t, u(t)), we get

v(t) ∈ C(t, u(t)). (4.41)

According to (4.27), we may suppose that (zn(·))n∈N converges weakly in
L1(I,H, λ) to some mapping z(·) ∈ L1(I,H, λ). Since dλ

dν
(·) ∈ L∞(I,R, ν), we

have

zn(·)dλ

dν
(·) → z(·)dλ

dν
(·) weakly in L1(I,H, ν).

Now, we follow an usual technique due to C. Castaing ([8]). ApplyingMazur’s lemma,
there exists a sequence (ζn(·))n∈N which converges strongly in L1(I,H, ν) to dv

dν
(·)+

z(·) dλ
dν

(·) with

ζn(·) ∈ co

{
dvk

dν
(·) + zk(·)dλ

dν
(·) : k ≥ n

}

for all n ∈ N.

Extracting a subsequence if necessary, we may suppose that

ζn(t) → dv

dν
(t) + z(t)

dλ

dν
(t) ν-a.e. t ∈ I.

Then, we have

dv

dν
(t) + z(t)

dλ

dν
(t) ∈

⋂

n∈N
co

{
dvk

dν
(t) + zk(t)

dλ

dν
(t) : k ≥ n

}

,

for ν-almost every t ∈ I . This inclusion yields for ν-almost every t ∈ I , for all ξ ∈ H,

〈

ξ,
dv

dν
(t) + z(t)

dλ

dν
(t)

〉

≤ inf
n∈N supk≥n

〈

ξ,
dvk

dν
(t) + zk(t)

dλ

dν
(t)

〉

.

Coming back to (4.33), it follows that, for ν-almost every t ∈ I , for all ξ ∈ H,

〈

ξ,
dv

dν
(t) + z(t)

dλ

dν
(t)

〉

≤ lim sup
n→+∞

σ(ξ,−∂PdC(θn(t),un(θn(t)))(vn(θn(t)))).

Hence, for ν-almost every t ∈ I , for all ξ ∈ H, according to Proposition 2.2 and
(4.41)

〈

ξ,
dv

dν
(t) + z(t)

dλ

dν
(t)

〉

≤ σ(ξ,−∂PdC(t,u(t))(v(t))).
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From Theorem 2.1(d), we have

∂PdC(t,u(t))(v(t)) = ∂CdC(t,u(t))(v(t)) for all t ∈ I.

In particular, for each t ∈ I , the proximal subdifferential ∂PdC(t,u(t))(v(t)) is here
closed and convex. Then, the latter inequality and (2.4) give that

dv

dν
(t) + z(t)

dλ

dν
(t) ∈ −∂PdC(t,u(t))(v(t)) ν-a.e. t ∈ I,

or equivalently [see (2.3)]

dv

dν
(t) + z(t)

dλ

dν
(t) ∈ −N P (C(t, u(t)); v(t)) = −N (C(t, u(t)); v(t)) ν-a.e. t ∈ I.

Let us show that z(t) ∈ F(t, u(t), v(t)) for λ-almost every t ∈ I . Thanks to the fact
that (zk(·))k∈N converges to z(·) weakly in L1(I,H, λ), via Mazur’s lemma again,
extracting a subsequence if necessary, we may write

z(t) ∈
⋂

n∈N
co {zk(t) : k ≥ n} λ-a.e. t ∈ I.

Combining this inclusion with (4.35), we get for λ-almost every t ∈ I , for all ξ ∈ H,

〈ξ, z(t)〉 ≤ lim sup
n→+∞

σ
(
ξ, F

(
κn(δn(t)), un(δn(t)), vn(δn(t))

))
.

Using the fact that F is scalarly upper-semicontinuous and the convergence
κn(δn(t)) → t for all t ∈ I , we get for λ-almost every t ∈ I , for all ξ ∈ H,

〈ξ, z(t)〉 ≤ σ(ξ, F(t, u(t), v(t))).

Since F(t, u(t), v(t)) is closed and convex for all t ∈ I , we have (thanks to (2.4))

z(t) ∈ F(t, u(t), v(t)) λ-a.e. t ∈ I.

As u(T0) = a and v(T0) = b, u(·) is a solution of (P) with derivative v for (P)

satisfying (4.40).
Case 2 Assume that σ ≤ 0.
There are p ∈ N, T1, . . . , Tp ∈ R such that

T0 < T1 < . . . < Tp = T

and

1 − L(Ti+1 − Ti ) − 2(Ti+1 − Ti + 1)
∫

[Ti ,Ti+1]
(α(s) + 1)dλ(s) > 0

for all i ∈ {0, . . . , p − 1} .
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For each i ∈ {0, . . . , p − 1}, let us denote byμi (resp., λi ) the Radonmeasure induced
on [Ti , Ti+1] byμ (resp., λ) and set νi := μi+λi . From the case 1, we get an absolutely
continuous mapping u1 : [T0, T1] → H, a right continuous mapping with bounded
variation v1 : [T0, T1] → H and a mapping z1 : [T0, T1] → H λ1-integrable on
[T0, T1] such that

u1(T0) = a and v1(T0) = b,

v1(t) ∈ C(t, u1(t)) for all t ∈ [T0, T1],
∥
∥v1(t) − v1(t

−)
∥
∥ ≤ 2μ1({t}) for all t ∈]T0, T1],

v1(t) = u̇1(t) and z1(t) ∈ F(t, u1(t), v1(t)) λ1-a.e. t ∈ [T0, T1],

dv1 has
dv1
dν1

in L1([T0, T1],H, ν1) as a density relative to ν1 and

dv1

dν1
(t) + z1(t)

dλ1

dν1
(t) ∈ −N (C(t, u1(t)); v1(t)) ν1-a.e. t ∈ [T0, T1].

By finite induction, we have for each i ∈ {2, . . . , p} an absolutely continuous map-
ping ui : [Ti−1, Ti ] → H, a right continuous mapping with bounded variation
vi : [Ti−1, Ti ] → H and a mapping zi : [Ti−1, Ti ] → H λi -integrable on [Ti−1, Ti ]
such that

ui (Ti−1) = ui−1(Ti−1) and vi (Ti−1) = vi−1(Ti−1),

vi (t) ∈ C(t, ui (t)) for all t ∈ [Ti−1, Ti ],
∥
∥vi (t) − vi (t

−)
∥
∥ ≤ 2μi ({t}) for all t ∈]Ti−1, Ti ],

vi (t) = u̇i (t) and zi (t) ∈ F(t, ui (t), vi (t)) λi -a.e. t ∈ [Ti−1, Ti ],

dvi has
dvi
dνi

in L1([Ti−1, Ti ],H, νi ) as a density relative to νi and

dvi

dνi
(t) + zi (t)

dλi

dνi
(t) ∈ −N (C(t, ui (t)); vi (t)) νi -a.e. t ∈ [Ti−1, Ti ].

Let us define u, v : [T0, T ] → H with u(t) := ui (t) (resp., v(t) := vi (t)) if t ∈
[Ti−1, Ti ] for some i ∈ {1, . . . , p}. Define also z, h : [T0, T ] → H by

{
z1(t) if t ∈ [T0, T1]
zi (t) if t ∈]Ti−1, Ti ] for some i ∈ {2, . . . , p}

and

h(t) := 1[T0,T1](t)
dv1

dν1
(t) +

p∑

i=2

1]Ti−1,Ti ](t)
dvi

dνi
(t) for all t ∈ [T0, T ].
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With ν′ := μ + λ, it is clear that

v(t) = b +
∫

]T0,t]
h(s)dν′(s) for all t ∈ [T0, T ]

and

∥
∥v(t) − v(t−)

∥
∥ ≤ 2μ({t}) for all t ∈]T0, T ].

Thus, h(·) is an L1([T0, T ],H, ν′)-density of v(·) relative to ν′. It remains to see that

dv

dν′ (t) + z(t)
dλ

dν′ (t) ∈ −N (C(t, u(t)); v(t)) ν′-a.e. t ∈ [T0, T ].

As a consequence, u(·) is a solution of (P). Now, we show the equality claimed by
(4.5). Doing so, we follow [2,34]. Assume that sup

s∈]T0,T ]
μ({s}) < r

2 . According to the

development there is a solution u(·) of (P) with derivative v(·) for (P) satisfying

∥
∥v(t) − v(t−)

∥
∥ ≤ 2μ({t}) for all t ∈]T0, T ].

Fix any t ∈]T0, T ]. If μ({t}) = 0, the latter inequality says in particular that v(t) =
projC(t,u(t))(v(t−)). Now, assume that μ({t}) > 0. In this second case, we have

∥
∥u(t) − u(t−)

∥
∥ ≤ 2μ({t}) ≤ 2 sup

s∈]T0,T ]
μ({s}) < r. (4.42)

The inequality μ({t}) > 0 entails straightforwardly ν′({t}) > 0. Combining the
definition of a solution and the equality dλ

dν′ (t) = 0 [thanks to (2.7)], we get

dv

dν′ (t) ∈ −N (C(t, u(t)); v(t)).

This inclusion with (2.5) give us

dv

dν′ (t) = lim
s↑t

dv(]s, t])
ν′(]s, t]) = lim

s↑t
v(t) − v(s)

ν′(]s, t]) = v(t) − v(t−)

ν′({t}) ∈ −N (C(t, u(t)); v(t)),

Since N (C(t, u(t)); v(t)) is a cone, the latter inclusion is equivalent to

v(t−) − v(t) ∈ N (C(t, u(t)); v(t)). (4.43)

Using (4.42), (4.43) and Proposition 2.1, we get

v(t) = projC(t,u(t))(v(t−)).

This completes the proof. ��
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Remark 4.1 Very recently,Haddad et al. proved in [20] an existence result for the prob-
lem (1.2) with a subsmooth [4] moving set depending on the state. It is straightforward
to check that replacing Proposition 2.2 by a suitable adaptation of [20, Proposition
2.8] allows to assume merely that the family {C(t, x) : (t, x) ∈ [T0, T ] ×H} is equi-
uniformly subsmooth in Theorem 4.1.
Still concerning the moving set C(·, ·), let us also pointing out (as noted in [19]) that
the need (or not) of compacity to get solution to a state-dependent sweeping process
(even of first order) remains an open question in the infinite dimensional setting.
About the perturbation F(·, ·) of the normal cone, let us mention that in [3], it is
considered with nonconvex values in the framework of a second order sweeping pro-
cess with a prox-regular moving set of Rk but depending only in the state, that is,
C(t, x) = C(x). In our development, the convexity assumption on the values of
F(·, ·) is crucial in order to get (through (2.4)) the selection z(·) of F(·, ·) satisfying
(3.2). Weakening such an hypothese on F(·, ·) is definitely an interesting and not easy
task and would be the subject of further investigations. ��

5 Application to State-Dependent Evolution Variational Inequalities

In this section, we give an application of our existence result to the theory of evolution
quasi-variational inequalities.

Let C : [T0, T ] ⇒ H be a multimapping with nonempty closed convex values,
A : H2 → H and f : [T0, T ] → H be mappings. Assume that there exist a positive
Radon measure on I and a real L > 0 such that for all x1, x2 ∈ H, for all u1, u2 ∈ H,
for all t1, t2 ∈ I ,

|d(u1,C(t1, x1)) − d(u2,C(t2, x2))| ≤ μ(]t1, t2]) + L ‖x1 − x2‖ + ‖u1 − u2‖ .

One says that a mapping u : [T0, T ] → H satisfies the following second order
evolution quasi variational inequality (EQVI for short) associated to μ

〈du̇(t) + A(u(t), u̇(t)), z − u̇(t)〉 ≥ 〈 f (t), z − u̇(t)〉 ∀z ∈ C(t, u(t)),

whenever:

(a) u is absolutely continuous on I ;
(b) there exists a mapping v : I → H right continuous with bounded variation on I

such that for all t ∈ I , v(t) ∈ C(t, u(t)) and v(·) = u̇(·) λ-a.e.;
(c) there exist ν a positive Radon measure on I absolutely continuously equivalent

to μ + λ with respect to which dv admits a density in L1(I,H, ν) such that

〈
dv

dν
(t) + A(u(t), v(t))

dλ

dν
(t), z − v(t)

〉

≥
〈

f (t)
dλ

dν
(t), z − v(t)

〉

,

for ν-a.e. t ∈ I , for all z ∈ C(t, u(t)).

We derive from Theorem 4.1 the existence of solutions for (EQVI).
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Proposition 5.1 Assume that (i i) of Theorem 4.1 holds and that there exist A1, A2 :
H → H continuous linear mapping such that

A(u, v) = A1(u) + A2(v) for all (u, v) ∈ H2.

Assume also that f is continuous. Then, there exists at least one solution for (EQVI)
associated to μ.

Proof Let us define F : I × H2 ⇒ H by

F(t, u, v) = {A(u, v) − f (t)} for all (t, u, v) ∈ I × H2.

Define also α : I → R by

α(t) = max {‖ f (t)‖ , ‖A1‖ , ‖A2‖} for all t ∈ I.

It is straightforward that α(·) ∈ L1(I,R, λ). Moreover, observe that

F(t, u, v) ⊂ α(t)(1 + ‖u‖ + ‖v‖)B,

for all t ∈ I , u, v ∈ H. Thanks to the continuity of f , F is scalarly upper semicontin-
uous. Fix any a ∈ H and b ∈ C(T0, a). According to Theorem 4.1, there is a mapping
u(·) : [T0, T ] → H satisfying the following discontinuous second order sweeping
process

{
−du̇(t) ∈ N (C(t, u(t)); u̇(t)) + F(t, u(t), u̇(t))

u(T0) = a, u̇(T0) = b.

Since C(·, ·) is convex valued, it is not difficult to check [keeping in mind (2.2)] that
u(·) is also a solution of (EQVI). ��
Remark 5.1 For examples of evolution quasi-variational inequalities of second order
type models, we refer the reader to [17, Problem 5.5] with a moving set C(t, u(t)) =
U(t) ⊂ H1(�) (here, � is an open subset of Rn) independent of the state. An other
example is given in [21, Example 3] with a moving set C(u) defined by

C(u) = {ϕ ∈ H0
1 (0, 1) : |ϕ′(x)| ≤ ψ(x, u(x)) for a.e. x ∈ (0, 1)},

for u ∈ L2(0, 1) and ψ(·, ·) is a prescribed given function arising in the modeling of
the evolution of sandpiles (see [21] and references therein for more details). ��

6 Concluding Remarks

In this paper, we established that the following second order sweeping process

(P)

{
−du̇(t) ∈ N (C(t, u(t)); u̇(t)) + F(t, u(t), u̇(t))

u(T0) = a, u̇(T0) = b
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has at least one solution. An application of this existence result to the theory of vari-
ational inequalities is given. Many questions need further investigations like e.g. the
study of the optimal control governed by a discontinuous second order sweeping pro-
cess or to relax the prox-regularity assumption of the moving set, for instance by
considering the class of α-far sets. It will be also interesting to investigate the prob-
lem of optimal control governed by a differential inclusion (with or without memory)
of the form studied in this paper, to establish an existence result and also necessary
optimality conditions [7,14]. Such a study is out of the scope of this manuscript and
will be the subject of another work.
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